Porting SPICE to the

INMOS IMS T800
transputer

INMOS Technical Note 52

Andy Hamilton and Clive Dyson
INMOS Bristol

September 1988
72-TCH-052-00

tirlanis
plujt]e[r

njelt|

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

Contents
1 Introduction
2 Background on SPICE

3 Background on transputers
3.1 Transputers L
3.2 The transputer / host relationship
3.3 SPICE and the transputer
3.4 Multiple tasks on one or many transputers.

4 The transputer implementation of FORTRAN
4.1 Placement of the run-time stack
4.2 Placement of thecode

Qo

O a & »

4.3 Useofstackspace

Porting SPICE

5.1 Routines needing no modification

5.2 Routines that set the size of VALUE in a COMMON block

5.3 Routines often supplied in assembler
5.4 Other routines to be modified
5.5 Calculating the FORTRAN VALUE array size
5.6 Problems with long or large simulations

Performance information

6.1 Performance comparisons L.
6.2 Additional performance improvements to SPICE on a T800 .

Multiple transputer SPICE

7.1 Ways of running SPICE on multiple transputers
7.2 A multiple SPICE farm
7.3 A networked SPICE farm example

Summary

Routines for copy, zero and move

Changes to ROOT found by VAX DIFFERENCES
Changes to TITLE found by VAX DIFFERENCES

Rewriting routines in transputer assembler

References

10
10
11
12
12
13
15

15
15
16

17
17
20
21

22

22

25

27

28

29

1 Introduction

This document describes work carried out by INMOS Bristol to port the
public-domain circuit simulator program SPICE to the INMOS IMS T800
transputer [1]. The document concentrates on the issues of porting the ap-
plication, but also includes some background information on the application,
on transputers, and some performance information. Methods of increasing
the performance of SPICE are also outlined.

It is hoped that the experiences described in this document are of value to
others attempting to port existing applications onto transputers. For addi-
tional information on the general subject of porting software to transputers,
the interested reader is directed to [2].

We chose to port SPICE as an example because it is in the public domain,
is widely used within the electronic engineering community, and because it
is a highly floating-point intensive application. It is written in FORTRAN,
and the results we have obtained show that a single transputer is a high-
performance sequential processor in its own right. As such it can be used
to accelerate the performance of any conventional application.

However, the transputer is specifically designed to allow multiple processors
to be used for a single application, and with a small amount of work many
conventional applications can be modified to use a number of processors.
The availability of a FORTRAN 77 compiler! for the transputer allows most
scientific applications to be ported in this manner.

2 Background on SPICE

SPICE is a circuit simulator program, written in FORTRAN-77, which is
widely used in the electronic design community. It was written at the Uni-
versity of California, Berkeley, by L. Nagel, E. Cohen, and R. Newton with
contributions from many others [3, 4] over the years, and have released
successive versions into the public-domain. This work is based on version

SPICE 2G.6.

SPICE simulates the behaviour of electrical circuits, at the level of voltages
and currents in the circuit, rather than at the logical behaviour level. To
execute the SPICE program, a data input file is supplied by the user. This
file contains a description of an electrical circuit to be simulated, as a node
connection list for the circuit. It also includes electronic device model param-
eters, and operating specifications for the simulation (e.g. time, temporal

'PC-hosted transputer FORTRAN compiler, version 1.1, Part IMS D713C

resolution, required outputs, etc.).

The output from SPICE takes the form of tables of figures, or character-
based graphical plots.

Partly because SPICE is so large and demanding, and partly because of
its early origins, it is generally run on large main-frame or mini computer
facilities.

SPICE is not an interactive application, so it is well suited to being run as a
background task in a batch job. However, as SPICE is very computationally
intensive, especially in its usage of floating-point numbers and matrix opera-
tions, it can consume a large proportion of a multi-user machines processing
power, unless it is run at a very low priority.

More recently SPICE has been run on workstations dedicated to supporting
a single engineer, but the users’ machine is again fully occupied whilst a
SPICE job is in progress.

The FORTRAN compiler for the transputer allows SPICE to be easily run
on a separate processor from the users’ other tasks. In particular, the T800
has an on-chip floating point processor which is rated at 1.5 MFLOPS on
the 20 MHz part [5]. The transputer concept is discussed in the next section.

3 Background on transputers

3.1 Transputers

The INMOS transputer consists of a high-performance processor, on-chip
RAM, and inter-processor communication links, all on a single chip of sil-
icon. Figure 1 shows an example of the transputer family, the IMS T800
transputer.

The IMS T800 integrates a 32-bit micro-processor, a 64-bit floating point
unit, four standard 20 Mbits/sec transputer communications links, 4 Kbytes
of on-chip RAM, a memory interface and peripheral interfacing on a single
CMOS chip. The floating point unit performs floating point operations
concurrently with the CPU, and operates on single and double length (32
bit and 64 bit) items to the ANSI/IEEE 754-1985 floating point arithmetic
standard. The concurrent operation allows floating point computation and
address calculation to fully overlap, giving a realistically achievable per-
formance of 1.5 MFLOPS (4 million Whetstones/second) on the 20 MHz
part [5].

The on-chip RAM is part of the transputer’s address space, and allows crit-

Serial i / 0
(4 full-duplex
INMOS links)

Figure 1: Block diagram of an IMS T800 transputer

ical routines and data to be accessed in a single machine cycle. The on-chip
RAM can be thought of as replacing the register set found on conventional
micro processors. The inter-processor links are controlled by autonomous
DMA engines, and permit any number of transputers to be connected to-
gether in arbitrary networks, allowing extra processing power to be injected
into a system very easily. The external memory interface allows linear access
to a total memory space of 4 gigabytes.

Transputers can be programmed in conventional sequential languages such
as C, Pascal, and FORTRAN. The occam language is supported to allow
the development of complex parallel programs across multiple transputers.
However, sequential sections of code written in C, Pascal or FORTRAN can
be included in an occam program.

For further information on the transputer family, the reader is directed to [1].

The T800 is especially relevant in connection with SPICE, because of it’s
floating point performance and the ability to interface to large amounts of
external memory.

3.2 The transputer / host relationship

The transputer is normally employed as an addition to an existing computer,
referred to as the host. Through the host, the transputer application can
receive the services of a file store, a screen, and a keyboard. Presently,
the host computer can be an IBM PC or compatible, a NEC PC, a DEC
MicroVAX II, or a Sun-3. Also available are software tools to allow VAX
development for transputer systems. For a more thorough guide to product
availability, please refer to [6].

The transputer communicates with the host down a single INMOS link.

A program, called a server, executes on the host at the same time as the
program on the transputer network is run. All communications between
the application running on the transputer and the host services (like screen,
keyboard, and filing resources) take the form of messages, which are always
initiated by the transputer system.

The transputer connected to the host by means of a link adapter is known as
the root transputer. Figure 2 shows the root transputer of a transputer net-
work. All other transputers in the network (if there are any) are connected,
using INMOS links, to the root transputer.

{ from.server

Host file server

to.server

To other transputers

Local Hard Disk

Figure 2: The transputer / host relationship

3.3 SPICE and the transputer

A single process, such as SPICE, is run on a single transputer in the same
way that a single process would be run on any other microprocessor. Using
the development tools, the single conventional program is actually run as
a process within a standard harness, which is used to establish the correct
workspaces and provide access to the screen, keyboard, and filing facilities
on the host. The communication channels defined in the harness are then
mapped directly onto the hardware links of the transputer, allowing the
application to execute.

3.4 Multiple tasks on one or many transputers

Using the tools supplied with the transputer FORTRAN compiler, it is pos-
sible to sub-divide a single conventional program into a set of occam [7]
processes. The occam mufti-process model for transputers is defined by
the CSP model of communicating processes [8]. A system can be described
in terms of a collection of concurrent processes which communicate with
each other and with the outside world. Processes are connected together
using synchronized, un-buffered, point-to-point, uni-directional communica-
tion channels. An example of this is shown in Figure 3, where each circle

represents a process, and each arrow represents a communications channel.
At this stage, there is no implied or rigidly defined mapping between the
software processes and the actual hardware.

Figure 3: Occam processes and their communication channels

Some ways in which conventional programs such as SPICE can be distributed
across a number of transputers are discussed in later sections of this doc-
ument. The concepts of CSP and occam are only required to distribute
multiple processes onto one or more processors. Note that there is no need
to be familiar with occam in order to be able to directly port any conven-
tional program, such as SPICE, to a single transputer.

4 The transputer implementation of FORTRAN

SPICE is written in FORTRAN-77. The transputer FORTRAN compiler is
based on the ANSI FORTRAN-77 standard, as defined in ANSI X3.9-1978.

Extensions to the language have been provided as a transition aid from other
FORTRAN dialects. A full description of this compiler can be found in [9].

The T800 transputer has 4 Kbytes of single-cycle on-chip RAM (50ns access
time on a 20 MHz part). The on-chip RAM is usually at least four times
faster than the external memory provided with most transputer boards.
The fastest external memory supported by the transputer is three-cycle,
with most boards using four or five-cycle memory, although using external
RAM will not make programs run three to five times slower.

The next two sections describe how the FORTRAN compiler allows the on-
chip RAM to be used, in terms of stack and code storage. The discussions
are appropriate to any of the INMOS scientific language compilers.

4.1 Placement of the run-time stack

The user can select to place the run-time stack either in on-chip RAM or in
external memory.

If the whole of the stack for a program can be accommodated within 2 Kbytes,
then it can be placed on-chip on either the T414 or the T800. The general
heap storage is then placed in external memory. This is the default assumed
by the standard occam harness.

If the size of the stack is expected to be larger than 2 Kbytes, then it must
be placed off-chip, and the application is therefore run with all workspace
off-chip. This is the manner in which SPICE is run. The parameter -:0 1,
supplied to the host server at run-time, specifies that all workspace is to go
off-chip. Note that no action is required at compile-time to specify the loca-
tion of the stack. This facility should be used while developing a program,
for which one is uncertain of the requirements in terms of stack size

4.2 Placement of the code

The other half of on-chip RAM on the T800 (2 Kbytes) is reserved for code
storage. The ordering of the files to link is critical for the performance of
the program, because code placement on a processor is determined by the
linking order of the binary object files. On the T800, files specified at the
beginning of the link operation will be loaded into the 2 Kbytes of on-chip
RAM that is not reserved for the variable stack. Programs will therefore
run faster if small, speed-critical routines are placed at the beginning of the
list of files to be linked, and the occam harness is placed at the end.

It is not possible to have the whole of on-chip memory on the T800 exclu-
sively as a stack or code area. It is also not possible to have part of the
stack on-chip and part of it off-chip. This is due to the implementation of
the development tools. Note that on the T414, there is no internal RAM
available for code storage with the scientific language compilers.

These restrictions on the specification of the scientific-language compilers
were adopted for the following reasons. Studies showed that in the event of a
trade-off in the use of on-chip memory between code and data, it is generally
more efficient to permit some data to be placed on-chip (in the stack) rather
than only having application code on-chip. This is due to the high density
of transputer machine code, and the transputer’s hardware instruction pre-
fetch mechanism. Therefore, to provide a development system that could
be used on both the T800 and the T414 transputer, both transputers can
have their internal RAM used as a variable stack (2 Kbytes in each case),
but only the T800 can additionally accommodate some code.

4.3 Use of stack space

Besides deciding whether to place the stack on or off-chip, the user can
choose to place the local scalar variables of active subroutines on the heap
or on the stack. Placing them on the heap guarantees that their values
remain unchanged between calls to the same subroutines, but at a cost of a
measured 20% performance penalty for the SPICE application.

By default, local scalar variables are placed on the stack. They are placed on
the heap by using the /S compiler option. To the authors’ knowledge, SPICE
does not rely on local variables retaining their values between subroutine
calls, so they were placed on the stack.

In addition to local variables, the stack space of FORTRAN programs is
also used for SUBROUTINE calls (5 words per level of calling), storing
arguments, and run-time library workspace (about 40 words).

5 Porting SPICE

This chapter describes how to port SPICE to run on a single T800 trans-
puter. Details of how to run compilers, linkers, and other software tools
are not included, as these are readily available in the appropriate software
documentation, and in [10].

There are around 130 source routines in SPICE, which fall into four cate-
gories with respect to porting to the transputer:

5.1 Routines needing no modification

The following routines require no modification for use with the V1.1 trans-
puter FORTRAN compiler:

ALFNUM ALIAS AVLM16 AVLM4

AVLM8 CHIVE CLRMEM CMEYER
CMULT COMPRS CRUNCH DMPMEM
ERRMEM EVTERM EXTMEM FETLIM
GETCJE GETLIN GETM16 GETM4

GETM8 GETMX KEYSRC LIMVDS
MAGPHS MEMADJ MEMORY MEMPTR
MOSEQ1 MOSEQ2 MOSEQ3 MOSQ2

MOSQ3 MQSPOF NXTCHR NXTEVN
NXTMEM NXTPWR PNJLIM PTRMEM
RELMEM SCALE SLPMEM SIZMEM

10

SHLSRT UNDEFI XXO0R

5.2 Routines that set the size of VALUE in a COMMON
block

In porting SPICE to any new machine it is necessary to choose a value for
the size of the COMMON array called VALUE, which is used to manage
the dynamic data requirements of the program. On machines that support
virtual memory it is usual to set this to a very large size, and leave the mem-
ory management system to page the data in and out of memory. However,
the transputer does not support virtual memory, but a range of transputer
boards are available with different physical memory sizes. It is therefore
convenient to be able to easily change the size of VALUE in all the routines
that reference it.

This would be most easily achieved by using an include mechanism, but
unfortunately version V1.1 of the transputer FORTRAN compiler does not
support included files. We used a simple DCL procedure and the EDT editor
on the VAX to overcome this problem and to automate these changes in a
single batch file, involving a search and replace operation for each of the
listed files.

From the point of view of porting SPICE the following line:

COMMON /BLANK/ VALUE(......)

must be edited so that the array VALUE has a size suitable for the hardware
to be used. For example, for a 2 Mbyte board, the array would consist of
150000 elements each of 8 bytes, which therefore occupies 1200 Kbytes of
store. See section 5.5 for guidance in the calculation of appropriate sizes for
this array.

Here are the routines requiring this treatment:

ACAN ACASOL ACDCMP ACLOAD
ACSOL ADDELT1 ADDNAM1 ALTER
ASOL BJT CARD CODGEN
COMCOF CPYTB4 CPYTBS8 DCDCMP
DCOP DCSOL DCTRAN1 DINIT
DIODE DISTO DMPMAT ELPRNT1
ERRCHK EVPOLY EXTNAM FIND1
FNDNAM FOURAN GETNOD1 INDXX
INTGRS8 ITERS JFET LNKREF
LOAD MATLOC MATPTR MODCHK

11

MOSCAP MOSFET NAMTAB1 NEWNQOD1

NLCSRC NODSTR1 NOISE NTRPLS8
OUTDEF1 OUTNAM1 OVTPVT PLOT
PUTNOD1 READIN1 REORDR RESERV
ROOT1 RUNCON1 SENCAL SETMEM
SETPLT SETPRN SETUP SORSTP
SORUPD1 SSTF SUBCKT SUBNAM
SWAPIJ TERR TITLE1 TMPUPD
TOPCHK1 TRUNC UPDATE

5.3 Routines often supplied in assembler

The following routines are often supplied in assembler. Equivalent FOR-
TRAN routines are given in section A, and we have compiled these to obtain
the performance information given in this document.

COPY16 COprY4 COPY8
ZERO16 ZER0O4 ZERO8
MOVE

The block move instructions of the transputer could be used to write efficient
assembler routine equivalents - refer to section D for some suggestions.

5.4 Other routines to be modified

The following routines require modification, either due to machine depen-
dency, unsupported language extensions, or compiler limitations

ROOT This is the entry routine to SPICE. It is machine dependent, with
routines to handle date and times, file opening and closing etc. Sec-
tion B gives the list of changes made to ROOT, as found by VAX
DIFFERENCES.

TITLE VAX specific dates use LOGICAL*1, which is a FORTRAN extension
not supported by the transputer FORTRAN compiler. This has been
removed from TITLE, as shown in section C.

SECOND This routine calls machine specific system routines concerned with
timing. We simply return zero, although a full implementation could
be provided using the transputer’s TIMER facility.

LOCF This is the only routine that the authors of SPICE intended to be ma-
chine dependent. It returns the physical address of any variable passed

12

to it. On the VAX, LOCF calls a system routine called LOC. We have
implemented an equivalent routine to LOC as an in-line transputer
assembler insert in a C routine:

int loc(a)
int *a;
{
asm {
1dl 2; /* return first parameter, which is */
/* the address of the parameter (a) */
}

This is compiled using the transputer C compiler?. The source must be
compiled separately for the T414 and the T800 transputers to satisfy
the processor type requirements imposed by the linker. The compiled
code produced is compatible with that from the FORTRAN compiler,
and is linked without problem. This is because the INMOS scientific
language compiler set permits different parts of the same task (process)
to be written in different languages, and to interact using the normal
mechanisms of procedure / function calling.

It is also possible to write mufti-process, mixed-language applications
(like the ones described in [10]), in which each process is written in
one of the supported scientific languages. These processes then com-
municate with each other using occam channels.

ERRMEM uses an Octal output specifies which is an extension not supported

in transputer FORTRAN V1.1. We changed it to use a Hex output
specifies, as it was only used in connection with an error message.

MOSFET exceeded a compiler implementation limit, giving a Dictionary Table

Overflow error. We overcame this problem by replacing some unused
variables at the end of COMMON block declarations with arrays con-
taining the same number of variables. This reduced the number of
declared variables to a compilable size. This problem should be fixed
on the next release of the compiler.

5.5 Calculating the FORTRAN VALUE array size

The FORTRAN VALUE array, mentioned previously, occupies the largest
amount of workspace in SPICE. The larger this array, the bigger the sim-
ulations that can be run. The size of this array is set to occupy about

2PC-hosted transputer C compiler. version 1.3, Part IMS D711C

13

300 Kbytes less than the amount of memory available on the board once the
SPICE code has been loaded.

For example, an executable SPICE file takes about 500 Kbytes of mem-
ory, leaving 1500 Kbytes on a 2 Mbyte board (such as an IMS B004 with
T800 [6]). Each element of the VALUE array occupies 8 bytes, so if the
array was sized at 150000 elements, this would occupy 1200 Kbytes of store.
So, the FORTRAN sources would all have the array dimensioned as 150000:

COMMON /BLANK/ VALUE(150000)

This is illustrated in Figure 4. The T800 internal on-chip RAM and the
first 500 Kbytes are used for the SPICE executable code. The VALUE array
occupies the next 1200 Kbytes of memory, with some additional FORTRAN
workspace shown. The standard occam harness will automatically reserve
sufficient workspace for SPICE, but if the user is intent on writing their
own harness, then at least 1400 Kbytes of workspace must be reserved for
SPICE. If an application has insufficient workspace, it will fail to operate.

_ Reserved by
OCCAM harness

/VALUE array / Other FORTRAN
Workspace
200Kbytes

150000 * 8 =
1200Kbytes

Spice Executable Code
About 500Kbytes

Figure 4: SPICE memory usage for a 2 Mbyte board

As another example, on an IMS B405 TRAM board (8 Mbytes of RAM and
a T800 transputer [6]), there is 7500 Kbytes of store available after SPICE
has loaded. An array of 900000 floating point values occupies 7200 Kbytes
of store (8 bytes per element). Therefore, the FORTRAN source code would
have the array dimensioned at 900000:

COMMON /BLANK/ VALUE(900000)

14

5.6 Problems with long or large simulations

SPICE uses the array VALUE to store all of its simulation data structures,
and to store all the simulation output during simulation. This means that
large amounts of data can be accumulated during a simulation and this
is normally coped with by virtual memory. The requested user output is
transferred to the output file at the end of the simulation.

This can give problems for large circuits on machines not supporting virtual
memory, where little space is left in which to store simulation results.

The problem can be solved by making changes to the routine DCTRAN, to
cause the required voltages and currents to be dumped to a file rather than
to the array VALUE. These changes require a detailed understanding of the
internal operation of SPICE, and are beyond the scope of this document.

6 Performance information

6.1 Performance comparisons

The following table gives an indication of the performance of some randomly
selected SPICE input decks when run on a variety of different machines. The
first benchmark involves a simple resistor network, the second simulates
an inverter circuit. The third benchmark represents a clock distribution
network, and the fourth is a sense amplifier circuit. Comparisons were made
between a Sun-3 (with and without a 68881 numeric co-processor), a VAX
11/785 with FPA®, and the T800 transputer.

The timings were obtained by averaging the time taken for the same job
to be run several times on each machine in an attempt to isolate non-
computational factors such as fluctuations in speed of disk access, I/O band-
width, and CPU loading peaks. Note that the output files from all machines
were identical. The timings represent the actual CPU times used, and are
given in seconds.

Machine Resist | Invert | Corclk | SenseAmp
Sun-3/160C 0.20 19.40 | 356.90 1855.50
Sun-3+68881 0.30 4.60 44.20 266.70
VAX 11/785+FPA 0.38 4.51 30.22 141.55
IMS T800-20 1.48 5.17 23.72 153.04

The transputer timings do not include the time taken to boot the transputer

3FPA-Floating Point Accelerator

15

with SPICE - they are pure execution times. The boot time for SPICE is
around 15 seconds, depending on the host computer, but once booted it can
rerun instantly without any re-load penalties.

The high usage of floating point arithmetic in SPICE lends itself much better
to the T800 transputer than the T414. The T414 requires almost 75 Kbytes
of floating point software support, and SPICE ran about ten times slower
than the T800 on the same jobs. Even without a floating point processor,
the T414 is still faster than a Sun-3 without a floating point processor.

Note that for extremely small simulations, the simulation time on the trans-
puter is dominated by file transfer times from the host PC.

6.2 Additional performance improvements to SPICE on a
T800

The performance described in the previous section is typical of that which
can be achieved using near-standard INMOS products. However, it is pos-
sible to obtain higher performance using the following techniques

Faster memory and shorter cycle times

The figures quoted above are for a T800-20 transputer with a 4-cycle mem-
ory interface. This compares with the IMS B004 evaluation board which
is supplied with a T414 and a 5-cycle memory interface. The transputer
can support a 3-cycle memory interface, which would reduce the run-times
quoted above by an order of 25%.

Sample T800-25 components are now available, and using these with a
shorter memory cycle time would increase performance by a father 25%.

Optimum linkage strategy

To make best use of the existing hardware without modifying the application
code, software tools can be used to ensure optimal utilization of the T800’s
on-chip RAM.

Code placement is determined by the linking order of the binary object
files per processor. On the T800, files specified at the beginning of the link
operation will be loaded into the 2 Kbytes of on-chip RAM that is not used
for the variable stack. Programs will therefore run faster if small, speed-
critical routines are placed at the beginning of the link list, and the harness
is placed at the end. One can use profiling techniques* to establish the
routines which consume most CPU time, and place these in on-chip RAM.

Rewriting critical routines in assembler

4For example, as in the UNIX environments PROFIL command.

16

As mentioned earlier, the SPICE routines to move, copy, and initialize blocks
of memory are often ceded in assembler. The T800 has special instructions
for performing block operations of this type. By encoding the move, copy
and zero subroutine sets into C and then transputer assembler (to ensure the
use of specific transputer instructions), a 5% to 10% performance increase
was observed. This is shown in more detail in section D

Program profiling can also be used to establish the relative benefits in con-
verting specific routines into C or transputer assembler code.

7 Multiple transputer SPICE

The work described so far in this technical note has demonstrated that a
single transputer is a powerful processor in its own right. However, the
transputer was specifically designed to allow many of them to be used to
solve a single problem.

There are two ways in which multiple transputers can be applied to SPICE.
The first is to increase the performance of SPICE by modifying the program
to run parts of it across multiple transputers. The second is to increase the
throughput of a series of SPICE tasks by means of a processor farm, in which
many copies of SPICE are run simultaneously, each on its own transputer.

7.1 Ways of running SPICE on multiple transputers

There are two compute intensive tasks performed by SPICE in a simulation.
The first is to set up a matrix to be solved, which involves calculating the
current through every element in the circuit from the model equations for the
device. The second is to solve the matrix to obtain an improved estimate of
the unknown voltages and currents in the circuit. Both of these operations
have to be performed many times at each timestep in the simulation, and
there are usually thousands of timesteps in each simulation.

For relatively small circuits, of less than around 100 nodes, the model evalua-
tion dominates the simulation time. For larger circuits the matrix evaluation
dominates, because the solution of large sparse matrices takes time of order
O(n'2) to O(n'*), where n is the number of nodes in the circuit.

The distribution of the solution of matrix equations across multiple proces-
sors is currently a subject of much research [11, 12, 13]. It appears that by
using the latency present in most large circuits, and by applying relaxation
and partitioning techniques, it is possible to achieve significant performance
increases by using multiple processors to solve large circuit simulation prob-

17

lems.

In the remainder of this section we discuss a simple technique which can be
applied to SPICE to allow many transputers to be used to speed up the eval-
uation of the device models. This approach has already been experimentally
applied to INMOS’s in-house circuit simulator.

SPICE maintains a list of the devices whose currents have to be evaluated,
as shown in Figure 5.

List of devices

LILTIL [1]
f

Select devices
one by one

Evaluate device

|

Insert results
in matrix
- Nodal
admittance
matrix

Figure 5: SPICE’S device evaluation mechanism

For each device its terminal voltages are passed as parameters to a routine
which evaluates the current through the device (together with terminal to
terminal capacitances and current derivatives with respect to terminal volt-
ages). The calculated values are used to fill in the appropriate locations in
the nodal admittance matrix. When this has been completed for all devices,
the matrix is solved to obtain the next estimate of the node voltages in the
circuit.

From the point of view of the present discussion it is important to notice
that all the model evaluations are completely independent of each other.
It does not matter in which order they are performed, or even if they are
performed in parallel on separate machines!

This fact can be used to distribute the model evaluations across a number
of processors. Figure 6 shows how the concurrent model evaluations are
handled, with respect to data movements in the system, by forming work
packets for a farm of model evaluators. This figure can be usefully compared
with Figure 5 shown previously.

In hardware terms, one method of implementing this mechanism on a num-
ber of transputers is shown in Figure 7.

The core of SPICE is run on a single transputer, and the model evaluation

18

Form work packets
List of devices

ldantis

Identity
Vs

[LTTT]
FFF

Vs To farm
Select several Vsb
devices
Evaluate
device models
concurrently
. in farm
Receive
’(results packets
Nodal N [
admittance —. Identity
matrix Insert results T ds From farm
in matrix

Figure 6: Data movements required to distribute the model evaluations

Tasks sent to
other processors

N, A BN
Ol Erauion)
! Evaluation
Y. AR
1 A
(Merger)

Results
| received
Host server from other processors

Figure 7: One way of farming the model evaluations

routines are placed on a number of other transputers. SPICE is modified so
that for each device to be evaluated it sends a message to the farm of model
evaluation processors, specifying which device is to be evaluated and what
its terminal voltages are. A free processor will accept the message, evaluate
the model equations, and pass back a message containing the required results
to the core transputer.

However, the core transputer is programmed so that it does not wait for this
message to return, but continues to transmit requests for other devices to
be evaluated. When a results message arrives back at the core processor it
inserts the results in the appropriate location in the nodal admittance matins
as before. Again, once all devices have been evaluated the single central
transputer must solve the matrix, and the model evaluation processors will
be idle during this period.

For small circuits of less than 100 nodes the model evaluations typically take
75% of the simulation time [14]. Therefore, halving the time taken for model
evaluations by adding two extra transputers, should theoretically make the

19

simulation run 38% faster. However, in practice another copy of the model
evaluation process would be run on the core transputer, which would, at
best, allow the model evaluation time to be reduced by a factor of three.
Therefore we would expect to roughly halve the simulation time by using
three transputers instead of one. From a circuit designers point of view this
is a very worthwhile improvement.

Note that using an infinite number of transputers just to solve the model
equations can at best only cut the simulation time by a factor of 4, as all the
remainder to the simulation is still running on the single core machine. This
illustrates that it is important to identify those sections of the code where
parallelism is available, and to concentrate on applying the correct number
of processors to exploiting this potential parallelism, without getting to the
point that the remaining sequential sections of code completely dominate
the CPU time.

7.2 A multiple SPICE farm

Farming is a technique which can be applied to almost all existing appli-
cations, where the same program is run on a farm of processors, each one
working on an independent set of data.

Some additional processes, usually written in occam are used to control
and regulate the distribution of work within the farm. The techniques of
farming are explained more fully elsewhere [15, 16, 17, 18, 2], though the
general composition of a processor farm is shown below in figure 8.

packets
and server
replies EEEg

. # [standard | ([standard
£ | task : | task -
system { ' :
Control : 4 B »
. ' From other
- A @ . @ ; | transputers

server requests
and ready tags

Figure 8: A general pipeline processor farm

Concurrent processes handle the tasks of work distribution, results collec-

20

tion, and performing the program itself. A system control process on the
root transputer acts as an overall manager. Referring to Figure 8, the farm
is controlled by the systemControl process, work is routed into the farm by
the routeWork process, and results are collected by the merge process. In
this case, the SPICE application is inserted in the place of the standardTask
process.

Although the diagram shows a pipeline farm, the farm can have any con-
nected topology. A pipeline is particularly easy to implement on the INMOS
TRAM motherboards [6], as a suitable pipe is hard-wired into the mother-
board, and requires no additional hardware or software configuration.

The list of tasks to be executed by the farm is made available to the system-
Control process, and the transputers are fed with tasks until there are no
more left. We used a small file on the host computer to specify the tasks to
be performed. Although this approach operates several identical concurrent
SPICE applications, the time taken by any given SPICE job is not reduced.

It would be possible to combine the techniques of this and the previous
section, to arrive at a system where each farm 'worker’ was itself a number
of transputers. In this case, each farm worker still executes identical code to
its” neighbours, but this code is distributed over a number of transputers.

7.3 A networked SPICE farm example

As an example of a SPICE farm, we have constructed a tree-like farm to
relieve VAX CPU overhead, by offloading SPICE jobs from a VAX to a PC-
hosted server which returns SPICE output files to the VAX. The server was
written to communicate via DECnet, allowing the farm to become a remote
processing engine for a VAX network. This is shown in Figure 9.

DECnet

to

VAX IBM PC Host
4

Local Hard Disk

Figure 9: A four processor SPICE system

In this implementation, the PC server program was used to control the farm,
receiving incoming task requests over DECnet. An occam multiplexes was
used to correctly interleave SPICE accesses to the host facilities. Although

21

a tree structure rather than a pipeline was used, the farming principle is the
similar to that discussed in the previous section. A full discussion of our
implementation of this DECnet-hosted farm server, as shown in Figure 9,
can be found in [19].

8 Summary

This technical note has demonstrated that existing programs can be easily
ported to run on the transputer. Very little modification was required to
SPICE, which is a large and demanding application, to allow it to compile
and run on the transputer.

The floating point performance of the IMS T800 allowed a pure FORTRAN
version of SPICE to run more than one and a half times faster than on a
Sun-3 with 68881 coprocessor, and nearly as fast as a version with assembler
code routines running on a VAX 11/785 with floating point accelerator. By
coding the same memory management routines in transputer assembler as
those coded in assembler on the VAX, we obtained a performance equal to

that of the VAX 11/785.

We have discussed how a single conventional program can be distributed
over a number of processors, and illustrated some of the techniques that can
be used to make use of potential parallelism in an application. We have
also shown how a farm of transputers can be used as a cost effective way of
offloading CPU intensive tasks from mainframe and mini-computers.

Acknowledgements

Glenn Hill and Vic Dewhurst of INMOS Bristol have made major contribu-
tions to this work.

A Routines for copy, zero and move

This section lists the FORTRAN equivalents for the copy, zero, and move
routines.

SUBROUTINE COPY4(IFROM,ITO,NWORDS)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
C
DIMENSION IFROM(1), ITO(1)
C THIS ROUTINE COPIES A BLOCK OF #NWORDS# WORDS (OF THE
C APPROPRIATE TYPE) FROM THE ARRAY #FROM# TO THE ARRAY #TO#.
C IT DETERMINES FROM WHICH END OF THE BLOCK TO TRANSFER FIRST,

22

C TO PREVENT OVER-STORES WHICH MIGHT OVER-WRITE THE DATA.

C

10

20

40

110

120

140

210

220

IF (NWORDS.EQ.0) RETURN

IF (LOCF(IFROM(1)).LT.LOCF(ITO(1))) GO TO 20

LOCF() RETURNS AS ITS VALUE THE ADDRESS OF ITS ARGUMENT
DO 10 I=1,NWORDS

ITO(I)=IFROM(I)

CONTINUE

RETURN

CONTINUE

DO 40 I=NWORDS,1,-1
ITO(I)=IFROM(I)
CONTINUE

RETURN

END

SUBROUTINE COPY8 (RFROM, RTO, NWORDS)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION RFROM(1),RTO(1)

IF (NWORDS.EQ.0) RETURN

IF (LOCF(RFROM(1)).LT.LOCF(RTO(1))) GO TO 120
DO 110 I=1,NWORDS

RTO(I)=RFROM(I)

CONTINUE

RETURN

CONTINUE

DO 140 I=NWORDS,1,-1
RTO(I)=RFROM(I)
CONTINUE

RETURN

END

SUBROUTINE COPY16 (CFROM,CTO,NWORDS)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMPLEX CFROM(1),CTO(1)

IF (NWORDS.EQ.0) RETURN

IF (LOCF(CFROM(1)).LT.LOCF(CTO(1))) GO TO 220
DO 210 I=1,NWORDS

CTO(I)=CFROM(I)

CONTINUE

RETURN

CONTINUE

DO 240 I=NWORDS,1,-1
CTO(I)=CFROM(I)

23

[@)

Q

QaQaa

240 CONTINUE
RETURN

SUBROUTINE ZERO4 (IARRAY,LENGTH)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION IARRAY(1)
THIS ROUTINE ZEROES THE MEMORY LOCATIONS INDICATED BY
ARRAY (1) THROUGH ARRAY (LENGTH).

IF (LENGTH.EQ.0) RETURN
DO 10 I=1,LENGTH
IARRAY(I)=0

10 CONTINUE
RETURN
END

SUBROUTINE ZERO8(ARRAY,LENGTH)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION ARRAY (1)
THIS ROUTINE ZEROES THE MEMORY LOCATIONS INDICATED BY
ARRAY (1) THROUGH ARRAY (LENGTH).

IF (LENGTH.EQ.0) RETURN
DO 10 I=1,LENGTH
ARRAY(I)=0.0D0

10 CONTINUE
RETURN
END

SUBROUTINE ZER016 (CARRAY,LENGTH)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMPLEX CARRAY (1)

THIS ROUTINE ZEROES THE MEMORY LOCATIONS INDICATED BY
ARRAY (1) THROUGH ARRAY (LENGTH).

IF (LENGTH.EQ.0) RETURN

DO 10 I=1,LENGTH

CARRAY(I)=CMPLX(0.0E0,0.0E0)
10 CONTINUE

RETURN

END

SUBROUTINE MOVE (A,I,B,J,N)
CHARACTER*1 A(1),B(1)

24

C THIS ROUTINE MOVES N CHARACTERS FROM CHARACTER ARRAY B
C TO CHARACTER ARRAY A, BEGINNING WITH THE J*TH AND I*TH
C CHARACTER POSITIONS, RESPECTIVELY.
C
IF (N.EQ.0) RETURN
DO 10 K=1,N
A(I+K-1) =B(J+K-1)
10 CONTINUE
RETURN
END

B Changes to ROOT found by VAX DIFFER-
ENCES

This section is concerned with changes made to ROOT to allow compilation
with the V1.1 transputer FORTRAN compiler. The changes mostly concern
the VAX-specific handling of files, dates, and times. The first part of each
result shows the source as used on the VAX, and the second part shows the
source as used on the transputer.

Hokok KKk KKK KK
File [.VAXJROOT.FOR;2

157 COMMON /VMSDAT/ BDATE
158 LOGICAL*1 BDATE(9)
159 CHARACTER*64 FILNAM
160 C

File [.TX]JROOT.FOR;2
168 C COMMON /VMSDAT/ BDATE
1569 C LOGICAL*1 BDATE(9)
160 C CHARACTER*64 FILNAM
161 C

ko ok ok ok ok ok ok ok ok ok
File [.VAX]ROOT.FOR;2

169 C stk sk sk sk sk ok ok ok oK ok ok ok ok ok o o ko sk sk sk sk ok ok ok ok ok ok ok ok o o o sk sk sk sk sk sk ok ok ok ok ok sk ok o ok
File [.TX]JROOT.FOR;2

170 DATA AHDRCMD / 8H00-00-00 /

171 C ok koK KKK oK oK oK oK oK ok ok oK o o K K K KK K oK oK oK oK ok ok ok ok o o o K K K KoK oK oK oK ok ok ok ok ok o

Hokkokok ook ook Kok k
File [.VAX]ROOT.FOR;2

185 CALL TODALF (ATIME)

186 CALL DATE(BDATE)

187 BOLTZ=1.3806226D-23
File [.TX]JROOT.FOR;2

187 C CALL TODALF(ATIME)

188 ATIME=AHDRCMD

189 C CALL DATE(BDATE)

25

190 BOLTZ=1.3806226D-23
sokokokok ok ok ok ok ok ok ok

File [.VAX]ROOT.FOR;2

202 TYPE 1
203 1 FORMAT(’ INPUT FILE: ’$)
204 ACCEPT 2,FILNAM
205 2 FORMAT(A)
206 OPEN (UNIT=5,NAME=FILNAM,TYPE=’0LD’)
207 TYPE 3
208 3 FORMAT(’ OQUTPUT FILE: ’$)
209 ACCEPT 2,FILNAM
210 OPEN (UNIT=6,NAME=FILNAM,TYPE=’NEW’)
211 C
File [.TX]JROOT.FOR;2
205 C TYPE 1
206 C 1 FORMAT(’ INPUT FILE: °’$)
207 C ACCEPT 2,FILNAM
208 C 2 FORMAT(A)
209 C OPEN (UNIT=5,NANE FILNAM,TYPE=’0LD’)
210 C TYPE 3
211 C 3 FORMAT(’ OUTPUT FILE: ’$)
212 C ACCEPT 2,FILNAM
213 C OPEN (UNIT=6,NAME=FILNAM,TYPE=’NEW’)
214 OPEN (UNIT=5,FILE=’SPICE.IN’,STATUS=’0LD’)
215 OPEN (UNIT=6,FILE=’SPICE.QUT’,STATUS=’NEW’)
216 C

ok kokokok ok ok ok k
File [.VAX]ROOT.FOR;2

215 CALL TIMRB
216 CALL GETCJE
File [.TX]JROOT.FOR;2
220 C CALL TIMRB !CMD
221 CALL GETCJE

ok koK ok Kok K
File [.VAX]ROOT.FOR;2

354 CALL TIMRE

355 ET=TIME2-TIME1
File [.TX]JROOT.FOR;2

359 C CALL TIMRE !CMD

360 ET=TIME2-TIME1

3k 3k >k >k 3k >k %k 3k >k %k k >k
File [.VAXJROOT.FOR;2

368 900 IF ((MAXTIM-ITIME).GE.LIMTIM) GO TO 10

369 WRITE (IOFILE,901)

370 901 FORMAT(’1WARNING: FURTHER ANALYSIS STOPPED DUE TO CPU TIME LIMIT’
371 1/)

372 1000 IF(NODATA.NE.O) WRITE(IOFILE,1001)
File [.TXJROOT.FOR;2
373 C 900 IF ((MAXTIM-ITIME).GE.LIMTIM) GO TO 10

26

374 C WRITE (IOFILE,901)

375 C 901 FORMAT(’1WARNING: FURTHER ANALYSIS STOPPED DUE TO CPU TIME LIMIT’

376 C 1/)
377 1000 IF(NODATA.NE.O) WRITE(IOFILE,1001)
Hkokok kK KoKk K

C Changes to TITLE found by VAX DIFFER-
ENCES

This section is concerned with changes made to the TITLE routine to permit
compilation with the V1.1 transputer FORTRAN compiler. The changes
mostly concern the VAX-specific handling of dates and times. The first part
of each result shows the source as used on the VAX, and the second part
shows the source as used on the transputer.

3k 3k 5k %k >k 5k >k %k 5k Xk %k >k
File [.VAX]TITLE.FOR;2

33 COMMON /VMSDAT/ BDATE
34 LOGICAL*1 BDATE(9)
35 C
File [.TX]TITLE.FOR;?2
33 C COMMON /VMSDAT/ BDATE
34 C LOGICAL*1 BDATE(9)
35 C
3k 3k >k 5k 3k >k %k 3k 5k k ok k
File [.VAX]TITLE.FOR;?2
a7 WRITE (IOFILE,31) BDATE,APROG,ATIME, (ATITLE(I),I=1,10)
48 31 FORMAT(1H1,15(1H*),9A1,1X,23(1H*),3A8,23(1H*),A8,15(1Hx)//1HO,
49 1 15A8/)
File [.TX]TITLE.FOR;2
47 C WRITE (IOFILE,31) BDATE,APROG,ATIME, (ATITLE(I),I=1,10)
48 WRITE (IOFILE,31) APROG,ATIME, (ATITLE(I),I=1,10)
49 C 31 FORMAT(1H1,15(1H*),9A1,1X,23(1H*),3A8,23(1H*),A8,15(1Hx)//1HO,
50 31 FORMAT (1H1,15(1B*),10(1H*),23(1Hx),3A8,23(1H*),A8,15(1H*)//1HO,
51 1 15A8/)
3k 3k >k 5k 3k >k %k 3k >k kK k
File [.VAX]TITLE.FOR;?2
58 100 WRITE (IOFILE,101) BDATE,APRQOG,ATIME, (ATITLE(I),I=1,10)
59 101 FORMAT(1H1,7(1H*),9A1,1X,7 (1Hx),3A8,7 (1H*),A8,5(1H*)//1HO0,10A8/)
60 IF (ICOM.EQ.0) GO TO 110

File [.TX]TITLE.FOR;2
60 C 100 WRITE (IOFILE,101) BDATE,APROG,ATIME, (ATITLE(I),I=1,10)

61 100 WRITE (IOFILE,101) APROG,ATIME, (ATITLE(I),I=1,10)

62 C 101 FORMAT(1H1,7(1H*),9A1,1X,7(1Hx),3A8,7 (1H*),A8,5(1H*)//1HO,10A8/)
63 101 FORMAT(1H1,7 (1Hx),10(1H*),7 (1Hx),3A8,7 (1H*),A8,5(1H*)//1HO0,10A8/)
64 IF (ICOM.EQ.0) GO TO 110

27

3k %k >k %k Xk K K K 3k %k %k k

D Rewriting routines in transputer assembler

As an example of re-writing a SPICE FORTRAN subroutine in transputer
assembler, consider the move subroutine.

The FORTRAN for this routine has already been shown in section A. Since
the transputer FORTRAN compiler does not permit the inclusion of trans-
puter assembler mnemonics, the first stage is to code and test an equivalent
routine written in C. This is shown below:

int move (a, i, b, j, n)
char *a, *b;
int *i, *j, *n;

{
int k;
if (*n == 0) return;
for (k=-1; k < (*n)-1; k ++)
al(xi)+k] = b[(xj)+k];
}

A couple of points need explaining here. Firstly, the parameter passing
mechanism implemented in the transputer FORTRAN compiler is to call by
reference. Secondly, arrays in FORTRAN (in SPICE) generally start from
subscript 1, and those in C start from subscript 0. This accounts for the
start and finish values of the index variable k shown above.

The V1.3 transputer C compiler allows limited transputer assembler inserts,
using the asm directive. So, the loop construct in the C representation is re-
placed by an explicit transputer assembler instruction, the move instruction.
One way of doing this is shown below:

int move (a, i, b, j, n)
char *a, *b;

int *i, *j, *n;

{

int source, dest, len;

source = b + (*j) - 1;

dest = a + (xi) - 1;
len = *n;
asm {

28

1d1 0 ; /* source */
1d1 1 ; /* dest */
1dl1 2 ; /* len */
move ;

The move instruction is more fully described in [20], but briefly it takes
a source, destination, and byte count, and performs a fast memory copy
operation. The arguments are easily set up in C, and there is little per-
formance penalty as this is only done once. The C compiler allocates local
integer automatic variables in the order they are declared, starting from
workspace location 0. Therefore, the instruction 1di 0 will access the data
held in source, which is the address of the vector b.

By implementing the seven move, copy, and zero routines in C, a 5% to 7%
performance increase over the FORTRAN equivalents were observed. This
can partly be explained by remembering that the FORTRAN routines had
to call C functions to obtain the addresses of the vectors being operated on
this overhead is not incurred here. By implementing the move function in
the assembler shown above, another 2% increase was observed.

This technique can also be used in other areas.

References

[1] Transputer Reference Manual, INMOS Limited, Prentice Hall.

[2] Issues in Application porting and farming, Technical Note 53, INMOS
Limited.

[3] SPICE2: A computer program to simulate semiconductor circuits,
L. W. Nagel, Memorandum No. ERL-M520, University of California,
Berkeley. May, 1975

[4] Program Reference for SPICE2, E. Cohen, Memorandum No. ERL-
M592, University of California, Berkeley. June, 1976

[5] Lies, damned lies, and benchmarks, Technical Note 27, INMOS Lim-
ited.

[6] INMOS Spectrum, (Contains a brief description of INMOS products)
INMOS Limited.

[7] Occam 2 Reference Manual, INMOS Limited, Prentice Hall.

29

8]

Communicating Sequential Processes, C. A. R. Hoare, Prentice Hall
1985.

3L FORTRAN Reference Manual (compiler version 1.1), INMOS Lim-
ited

Using the occam toolset, Technical Note 55, INMOS Limited.

Relaxation techniques for the simulation of VLSI circuits, J. K. White
and A. Sangiovanni-Vincentelli, Kluwer Academic Publishers, 1987

A Pipelined Event-driven Mixed-mode Simulator, Clive M. Dyson and
Alan H. Gray, IEEE Int. Conf on Computer-Aided Design, pp 488.491
Santa clara, California, 1987

CINNAMON : Coupled integration and nodal analysis of MOS net-
works, L. M. Vidigal, S. R. Nassif and S. W. Director, 23rd Design
Automation Conference, pp 179-198,1986

The Simulation of Large-scale Integrated Circuits, A. Richard New-
ton, Memorandum No. ERL-M78-52, University of California, Berkeley.
July, 1978

Exploiting concurrency; A Ray tracing Example, Technical Note 7, IN-
MOS Limited.

Program design for concurrent systems, Technical Note 5, INMOS Lim-
ited.

Performance Maximization, Technical Note 17, INMOS Limited.

Communicating Process Computers, Technical Note 22, INMOS Lim-
ited.

A transputer farm accelerator for networked computing facilities, Tech-
nical Note 54, INMOS Limited.

Transputer instruction set: a compiler-writer’s guide, INMOS Limited,
Prentice Hall

30

	1 Introduction
	2 Background on SPICE
	3 Background on transputers
	3.1 Transputers
	3.2 The transputer / host relationship
	3.3 SPICE and the transputer
	3.4 Multiple tasks on one or many transputers

	4 The transputer implementation of FORTRAN
	4.1 Placement of the run-time stack
	4.2 Placement of the code
	4.3 Use of stack space

	5 Porting SPICE
	5.1 Routines needing no modification
	5.2 Routines that set the size of VALUE in a COMMON block
	5.3 Routines often supplied in assembler
	5.4 Other routines to be modified
	5.5 Calculating the FORTRAN VALUE array size
	5.6 Problems with long or large simulations

	6 Performance information
	6.1 Performance comparisons
	6.2 Additional performance improvements to SPICE on a T800

	7 Multiple transputer SPICE
	7.1 Ways of running SPICE on multiple transputers
	7.2 A multiple SPICE farm
	7.3 A networked SPICE farm example

	8 Summary
	A Routines for copy, zero and move
	B Changes to ROOT found by VAX DIFFERENCES
	C Changes to TITLE found by VAX DIFFERENCES
	D Rewriting routines in transputer assembler
	References

