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1 Introduction

There is a planet-wide plethora of existing C, Pascal, and FORTRAN soft-
ware which could benefit from execution on INMOS transputers [1]. Trans-
puters are fast, flexible, and fun. And cost-effective too. Transputers offer
an unparalleled opportunity for incrementally upgradable multiple-processor
solutions.

In the past, most of the available transputer software support has been
centred on the occam [2] programming language, which was developed by
INMOS especially for the transputer. Now, development systems for a num-
ber of popular languages are available from INMOS and third parties. These
development systems can accommodate a range of target and development
environments.

This document explains, in programmers’ terms, how one can use the IN-
MOS development systems to support existing non-occam applications for
execution on single or multiple transputers across a variety of hosts. For
information concerning the actual modifications required to the structure of
a non-occam application, in order to fully exploit the parallelism offered by
transputers, the reader is directed towards [3].

1.1 Document notes

This document places emphasis on the INMOS D705B occam toolset. How-
ever, VAX and Sun-3 versions of the occam toolset are available [4]. Every-
thing shown here in relation to the D705B is also applicable to any other
development platform: Three dots ... will be used to represent areas of
hidden source text in any language. Hexadecimal numbers will be prefixed
by the hash character ’#’. A typewriter font denotes program text (occam
or otherwise). For information on the occam language the reader is ad-
vised to refer to [2]. The % symbol is used as a one character wild-card
in D705B toolset file names. The term ”EOP” represents ”Equivalent Oc-
cam Process”. An EOP consists of compiled C, Pascal, or FORTRAN, with
the necessary run-time library support, linked together with special occam
interface code.

Many thanks to the INMOS Bristol Software Group for their assistance in
the preparation of this document.
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2 Background information

2.1 Transputers

The INMOS transputer consists of a high-performance processor, on-chip
RAM, and inter-processor links, all on a single chip of silicon. Program
variables in on-chip RAM are accessed much faster than if they were off-
chip. The inter-processor links are autonomous DMA engines, and permit
any number of transputers to be connected together in arbitrary networks.
The external memory interface allows linear access to a total memory space
of 4 gigabytes.

The T800 and T425 transputers have 4 Kbytes of single-cycle on-chip RAM
(40ns access time on a 25 MHz part), and the T414 has 2 Kbytes. The
on-chip RAM is usually at least four times faster than the external memory
provided with most transputer boards, depending on the hardware design
of the board. The fastest external memory supported by the transputer is
three-cycle (two cycle on the T801), with most boards using four- or five-
cycle memory - using external RAM will not make programs run three to
five times slower.

For further information on the transputer family, the reader is directed to [1].

2.2 The transputer / host development relationship

In the development environment, the transputer is normally employed as an
addition to an existing computer, referred to as the host. Through the host,
the transputer application can receive the services of a file store, a screen,
and a keyboard. This document assumes an IBM PC or compatible host,
in so far as it makes reference to some MS-DOS specific features - there are
equivalents for the other toolset platforms. For a more thorough guide to
product availability, please refer to [4].

The transputer communicates with the host along a single INMOS link.
A program, called a server, executes on the host at the same time as the
program on the transputer network is run. All communications between
the application running on the transputer and the host services (like screen,
keyboard, and filing resources) take the form of messages. The standard
transputer C, Pascal, and FORTRAN development systems use a server
called afserver. The D705B occam toolset, along with the INMOS Parallel
C and Parallel FORTRAN development systems, use a server called iserver.

The root transputer in a network is the transputer connecting to the host
bus via the link adapter. Any other transputers in the network are connected
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Figure 1: The transputer / host development relationship

together using INMOS links, to the root transputer. A transputer network
can contain any size and mix of transputer types.

The relationship between the transputer and the host during software devel-
opment does not impose restrictions on the way the transputer is employed
in the target environment.

2.3 Connecting transputers together

The INMOS transputer development and evaluation boards use a triplet of
signals to control and monitor the status of a transputer network connected
to them. These signals are called reset, error, and analyze, and are all used
in three ports called up, down, and subsystem. This allows a hierarchy of
transputers in a network, where some transputer board can be given the
authority to reset and analyze others.

The down and subsystem ports can assert the reset and analyze signals to
control boards connected to them, and in turn monitor the error signal of
the sibling board. The up port receives the reset and analyze lines from its
parent board, and is used to feed back the status of the error line to the
parent. On any given board, a connection is made between the down or
subsystem ports to the up port on next board. If the down port is used,
then both boards are at the same hierarchy. If the subsystem port is used,
then the child board is at a lower level of hierarchy than its parent.

With the occam toolset, a single bootable program is created which con-
tains code for all the transputers in the network. The host (PC) computer
should have the authority to monitor and control the reset, analyse, and
error signals for the whole network. Therefore, when using the toolset soft-
ware to develop multi-transputer programs, all transputer boards should be
connected ”down port to up port” from the root transputer outwards. If
this is not done, then:

• It will be impossible to load the whole network without taking ad-
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ditional steps to ensure that all transputers are correctly reset and
analysed.

• The host file server will be unable to monitor the error situation in
the network, which will impair the use of the post-mortem debugger.

For users familiar with the INMOS Transputer Development System (TDS),
the network attached to the root transputer board is normally connected to
the subsystem port, rather than the down port. This allows the TDS to
monitor and control a transputer network, without the risk of itself hanging
up due to an execution error in the network. It should be noted however,
that this type of connection is not preferred when using the toolsets.

2.4 The other occam toolsets

Equivalent versions of the INMOS D705B occam toolset exist for the VAX
and Sun-3 environments. These development systems contain the same com-
ponents and libraries; they accept the same command line arguments and
parameters, and offer compatibility at occam source and object binary levels.

This means that occam source, or compiled/linked object code can be freely
migrated amongst these development platforms, and compatibility is guar-
anteed. So, for example, at the time of writing (April 1989), INMOS did not
offer VAX and Sun-3 hosted scientific-language compilers. But C Pascal, or
FORTRAN source could be compiled with the PC scientific-language com-
pilers, transferred to a different development platform, and integrated with
the rest of the application to be ultimately fully portable across the range
of occam toolset development platforms.

3 The INMOS scientific-language compilers

The INMOS scientific-language compilers can be used to compile and run
a non-occam application on a single transputer. They can also be used to
build a compilation unit equivalent to an occam process, which can then be
incorporated into a complex mixed-language system using the D705B occam
toolset (or the Parallel C and Parallel FORTRAN packages).

This chapter deals only with the capabilities of the scientific-language com-
pilers, and not with those of the D705B occam toolset.
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3.1 The compilers

In connection with the PC environment, the scientific-language compilers
discussed in this document are:

C As defined in Kernighan and Ritchie ”The C
Version 1.3 Programming Language”, Prentice-hall, 1978.

INMOS Part no: IMS D711C
Pascal As defined in BS6192:1982,
Version 1.2 Functionally equivalent to ISO 7185.

INMOS Part no: IMS D712C
FORTRAN Based on ANSI FORTRAN 77,
Version 1.1 Defined in ANSI X3.9.1978 with extensions.

INMOS Part no: IMS D713C
Parallel C As defined in Kernighan and Ritchie ’The C
Version 2.0 Programming Language”, Prentice-hall, 1978.

INMOS Part no: IMS D711D
Parallel FORTRAN Based on ANSI FORTRAN 77,
Version 2.0 Defined in ANSI X3.9-1978 with extensions.

INMOS Part no: IMS D713D

INMOS scientific-language compilers are additionally available for the VAX
environment. Remember that binary object code produced by the PC
scientific-language development systems can be integrated with the occam
toolsets on a different development platform. For details concerning the
current product availability and part numbers for the products, refer to [4].

3.1.1 Features

Each scientific-language system offers some useful features over and above
those required by the respective standard. The features common to all the
scientific-language compilers are listed below:

• They support T414 and T800 transputers. At the time of writing
(January 1989), support from INMOS and other manufacturers for the
16-bit transputers (such as the T212/T222 and M212) is in progress.

• In the PC environment, most of the scientific-language tools execute
on a transputer board connected to the PC. They can run on any
32-bit transputer. In other environments, such as the VAX, the tools
are executed directly by the host computer, but create code for a
transputer network.
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• The same linker and loader are supplied with C V1.3, Pascal V1.2,
and FORTRAN V1.1, for flexibility without requiring additional tools.
The D705B occam toolset, D711D Parallel C V2.0, and D713D Par-
allel FORTRAN V2.0, all use a different but more versatile linker and
loader.

• There is a standardized, language-independent, procedural calling in-
terface to access non-occam code.

• 2 Kbytes of the transputer’s fast on-chip RAM is reserved for use as
a run-time stack

• Separate compilation program units are permitted in any language.

• One can repeatedly execute the compilers and linker without reloading.
This is useful when there are several operations that have to be done
consecutively, using the same tool.

• The tools support the host operating system’s terminal I/O redirection
and piping.

• There are two versions of run-time libraries supplied for each trans-
puter target, depending on whether the application program requires
host I/O support.

• The scientific-language run-time library mechanism allows component
library nodules to be selectively linked.

3.2 Using the scientific-language compilers in the simplest
case

A single transputer, single non-occam process, is the special simplest case
where the occam toolset is not required. It is possible to compile and run
a scientific-language process on a single transputer in as few as three com-
mands! These systems are constructed using the pre-compiled binary object
files supplied with each of the scientific-language transputer compilers, using
a command structure which is similar for C, Pascal and FORTRAN applica-
tions. A transputer bootable file is one which contains enough information
to allow it to be sent to a transputer (network) by the host file server, and
executed. A bootable file is created by linking the compiler’s object out-
put with various run-time support components, and prepending a bootstrap
loader:

Each command shown below causes the appropriate tool to be loaded onto
the transputer board, and run with the appropriate parameters. All the
compilers accept their respective source-level input, and produce by default
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a binary object file as output. The linking command causes the compiled
binary object file to be linked with the appropriate run-time library, and
also with a supporting fragment of occam which is known as the ”harness”.
The purpose and content of the harness is described in Section 5.

Note that the file name extensions are optional, but are included here explic-
itly. The filename convention for the PC environment for binary object files
is bin. The scientific-language compilers can optionally produce hexadeci-
mal object code, identified by a .hex filename extension. A .b4 extension
identifies a transputer bootable file for a single transputer. Source files for
C, Pascal, and FORTRAN have the default extensions of .c, .pas, and .f77
respectively.

3.2.1 Building a simple C program

Standard tool operation is:

Operation T414 target T800 target
Compile t4c prog.c t8c prog.c
Link t4clink prog.bin t8clink prog.bin
Run run prog.b4 run prog.b4

3.2.2 Building a simple Pascal program

Standard tool operation is:

Operation T414 target T800 target
Compile t4p prog.pas t8p prog.pas
Link t4plink prog.bin t8plink prog.bin
Run run prog.b4 run prog.b4

3.2.3 Building a simple FORTRAN program

Standard tool operation is:

Operation T414 target T800 target
Compile t4f prog.f77 t8f prog.f77
Link t4flink prog.bin t8flink prog.bin
Run run prog.b4 run prog.b4

13



3.3 Loading the tools

Although the user may not be aware of it, all tools are loaded by calling the
host file server. This is afserver or iserver depending on the development
system. For systems using the afserver, the server is supplied with the name
and parameters of the tool to be loaded. For example, the command t4c
world, to compile the C program world.c, is actually doing something like
this:

afserver -:b \tc1v3\tc.b4 world /t4 -:o 1

The -:b command is the server’s boot command, and causes the file refer-
enced to be sent to the transputer board and executed. The -:o 1 is concerned
with the workspace allocation that the compiler will use on the transputer
board. This is an example of using the run-time workspace specification
capability described in Section 3.8.3.

The same approach is used for the other scientific-language compilers, and
for the linker. For example, the command t4clink world does the following:

linkt world.bin+\tc1v3\crtlt4.bin+\tc1v3\t4harn.bin,world.b4

The plus signs above represent the concatenation of the input files, and the
comma separates the list of input files from the output file. The reference
to linkt calls the afserver with the linkt.b4 transputer bootable linker. This
adds the necessary parts from the T414 C runtime library crtlt4.bin, and
the supporting harness t4harn.bin, to make a bootable file called world.b4.

For the Parallel C and Parallel FORTRAN compilers, which use the iserver,
the principle is the same as above, but the boot files and server options are
different.

3.4 Rerunning the tools without reloading them

It is straight forward to re-run the compiler and linker tools described above,
without having to boot the tool onto the transputer board each time the
tool is used. This is achieved by calling the afserver program directly, but
without specifying the boot command (-:b filename).

As an example of this, suppose that the C compiler has been loaded onto
the transputer board, and set to compile a file called c1.c for the T800, using
the following command:

t8c c1
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Then to compile separate applications c2 and c3 for the T414 and c4 to c7
for the T800, but without reloading the C compiler each time, one can use
the following commands

afserver c2 /t4 -:o 1
afserver c3 /t4 -:o 1
afserver c4 /t8 -:o 1
afserver c5 /t8 -:o 1
afserver c6 /t8 -:o 1
afserver c7 /t8 -:o 1

Note that once a compiler has been loaded, then each time it is re-run, the
afserver must be given a -:o 1 directive. This is so that when the compiler
is running, it is given the maximum available memory on the transputer
board for its own workspace requirements (see Section 3.8.3). For example,
to compile the following three FORTRAN programs, use this technique:

t8f f1.f77
afserver f2.f77 /t8 -:o 1
afserver f7.f77 /t4 -:o 1

The first command here will actually load the FORTRAN compiler, and the
remaining two will correctly re-run it for the different processor targets.

The same technique can be used to re-run the linker, and also applies to
iserver tools.

3.5 Running transputer bootable files as MS-DOS commands

It is possible to run any transputer executable .b4 file as if it were an MS-
DOS command. This is done using the linkt.exe program supplied with all
the scientific-language compilation systems. Make a copy of the linkt.exe
program but give it the same root filename as the bootable .b4 program you
wish to run as an MS-DOS command; keep the .exe extension.

The linkt.exe program works by taking the command verb from its command
line, adding the .b4 extension, and calling the host file server afserver to load
that file from the same directory as the linkt.exe was loaded from. When
invoking a .b4 file in this way, the afserver is passed the -:o 1 directive
automatically to give the application (if it uses the standard occam harness)
one large combined workspace. It is still possible to specify the -:o 0 directive
on the command line to over-ride this, ensuring the run-time stack is placed
in on-chip RAM.
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3.6 The run-time libraries

Each scientific-language comes supplied with two different run-time libraries.
This is important when one is developing multiple-process systems. A pro-
cess which expects to communicate with the host file server must be linked
with the full run-time library. A process which uses only the channel com-
munication primitives discussed in Section 3.9, plus other functions that do
not require to access the host I/O facilities, can be linked with the reduced
(stand alone) run-time library. This offers certain advantages in terms of
code size, execution speed, and ”portability” within a multi-process system.

Each run-time library consists of separately compiled program modules. The
full and stand alone libraries have many modules in common the stand
alone library being essentially a subset of the full run-time library. The
languages of implementation of the modules include C, IMP, and occam.
The library management facilities offered by the linker permit the binary
object files produced from different language compilers to be mixed together
and referenced as a single entity; the library. Only those library modules
that satisfy outstanding external references will be linked into an application
by the linker.

At start-up, all the static workspace in the referenced modules in the run-
time library is relocated from the non-occam code area to the heap workspace
area. This is done because the code area could be in read only store such as
EPROM, whereas the heap workspace must be writeable. The existence of
this static data in some component modules prevents the run-time libraries
(as a whole) from sharing the re-entrancy property that occam libraries
possess.

The component object modules which were used to build each library are
also supplied with each scientific language system, along with control files
to allow the linker to reconstruct these libraries. This allows users to cre-
ate their own libraries, add their own modules to them, and delete unused
modules, to suit specific project requirements.

3.7 Transputer memory allocation

This section discusses the memory allocation policy used by the scientific-
language compilers. An overview of the occam memory allocation strategy
is given first, because all scientific-language memory allocations conform to
this framework.
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3.7.1 The occam memory allocation map

The transputer employs a signed memory address space, which for 32-bit
machines begins at MOSTNEG INT (Mint) #80000000 and extends up
through zero to the positive address space and onwards to MOSTPOS INT
#7FFFFFFF. External memory is usually decoded at very negative addresses,
because in this way it forms a seamlessly-joined contiguous block with the
transputer’s on-chip RAM. Memory in a system is allocated from the most
negative addresses onwards. This is shown in Figure 2.

Figure 2: The transputer memory map

With reference to the Figure, there are five memory zones in the memory
map. Starting at the bottom of memory is an area reserved by the trans-
puter. The first memory location in the transputer not required by the
transputer itself is called Memstart. On a T414, this corresponds to address
#80000048, and on the T425/T800 series corresponds to #80000070. The
host file server loads the boot file, using memory from Memstart onwards.

The Figure shows that scalar occam workspace is placed as low down in
memory as possible, starting in on-chip RAM just above Memstart. The
occam compiler places the most recently declared variables in the lowest
workspace slots.

Directly following the scalar occam workspace is the code area. This rep-
resents the concatenation of all the object files comprising the application,
plus any library routines that were referenced. If any of the occam source
was compiled with separate vector space on, then after the code area follows
the vector space area. Above this, the memory on a transputer system is
unallocated.

This memory arrangement is made possible because, in occam, all data
allocation is static. This means that after compilation and linking, the
loader knows exactly the data requirements of the program, for both scalar
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and vector workspaces.

After the boot file has been loaded by the file server, the bootstrap code
does a KERNEL.RUN of the process code, and execution on that processor
begins.

All memory allocation in the scientific-language systems is ultimately under
the control of some standard occam specification. All memory allocation in
the scientific-language systems conforms to the occam memory allocation
policy described above. This fact should guide one’s understanding of the
memory allocation diagrams in Section 5.4.

3.7.2 The scientific-language memory allocation map

Memory for scientific-language workspace usage is allocated from an integer
vector representing all the available memory left on the board once the
application has been loaded. This vector extends from the top of the board
memory right down to the top of the occam vector space zone. This memory
area is shown in Figure 2 as unallocated memory.

Using only the tools provided with a scientific-language compiler, a single
transputer single process system can be created1. The memory allocation
in this system is shown in Figure 3. This represents the memory map of the
standard occam harness supplied with each scientific-language system (for
creating a single process single processor system).

Figure 3: The scientific-language compiler memory map

All the scientific-language compilers operate with two logical workspaces: a
run-time stack and a combined heap and static data area. Depending on
a run-time option, and various decisions made when compiling the occam

1The Parallel C and Parallel FORTRAN systems additionally support multiple trans-
puters.
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support software, the physical realization of these logical workspaces varies.

Figure 3 shows this reserved run-time stack area in the occam scalar workspace
zone. On a T414 transputer, this uses up all the on-chip RAM. Even if the
user does not run the application to make use of this stack, this memory is
always reserved when using the standard occam harness. The Figure also
shows a run-time stack at the top of the memory map, and a heap lower
down. Only one stack area is ever used by a scientific-language process at
any one time.

3.8 Implementation details

These features are common to all the scientific-language compilers. Some are
designed to allow good use of the transputer on-chip RAM. Others simplify
the accommodation of changing development situations.

3.8.1 The runtime stack

The run-time stack is known as a ”falling” stack. The stack pointer starts
off high in memory and descends as space is allocated. Called functions will
have their workspaces placed at lower addresses than the caller. The loader
will attempt to determine the size of the target board, so it can make best
use of the available memory by placing the top of the stack at the very top
of physical memory.

If the user elects to use the on-chip stack (assuming it is sufficiently spacious
for the application), then the space at the top of memory will not be used.
If the off-chip stack is selected for use, then it is important that as the
stack grows downwards and the heap grows upwards, ”never the twain shall
meet”. Heap allocation requests are range checked to ensure that the stack
is not about to be overwritten - but for performance reasons, this is not true
of stack allocation requests. The stack can overwrite the heap area, but not
the other way round. If any workspace overwriting occurs, the program will
fail in unpredictable ways.

3.8.2 The run-time heap

The run-time heap is known as a ”rising” heap. This means that it starts off
at a low memory location and uses successively higher memory locations as
data is added to it. The heap directly follows from the static data storage
area. The heap is used typically for variable-length memory allocations,
for items such as strings, arrays, and the dynamic commands like malloc().
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Compared to the stack, allocation requests for heap space are much more
infrequent, and tend to be for larger data items. This means that there is
a comparatively low overhead in checking run-time requests for heap space,
to ensure that the heap is not about to overwrite the stack.

Section 5.4.4 discusses ways of calculating and fine-tuning the amount of
stack space and heap space to reserve for non-occam processes in multiple-
process systems.

3.8.3 Selecting the run-time stack

The user can select to use the run-time stack either in on-chip RAM or in
external memory.

If the whole of the stack for a program can be accommodated within 2
Kbytes, then the on-chip stack can be used on either the T414 or the T800.
In this case, only the heap and static data area is placed in external memory -
the default assumed by the standard harness implementation. The standard
harness reserves an on-chip stack regardless of whether it is used.

If the size of the stack is expected to be larger than 2 Kbytes, then the
off-chip stack area is used, and the application will therefore have all its
workspace off-chip. The parameter -:o 1, supplied to the afserver at run-
time, specifies that all workspace is to go off-chip. Note that no action is
required at compile-time or link-time to specify the location of the run-time
stack. This facility should be used while developing a program, for which
one is uncertain of the requirements in terms of stack size. Refer to Section
5.4.4 for details on dynamic fine-tuning of workspace requirements.

Note that the Parallel C and Parallel FORTRAN development systems op-
erate slightly differently than described above. With these systems, the
”standard harness” does not reserve an on-chip stack area unless this is
specified when the bootstrap is prepended. In this way, no on-chip RAM is
wasted needlessly. Using an option on the bootstrap tool, the programmer
specifies the size of a separate stack (if one is required), and this is placed
as low down in memory as possible.

3.8.4 Placement of the code

Some on-chip RAM can normally be used far code storage. On the 1414,
using the afserver-based development systems, there is no internal RAM
available for code storage. The iserver-based tools, because they don’t re-
serve unused stack space, do permit code storage on-chip in a T414. The
T800/T425 families have at least 2 Kbytes of on-chip RAM that is not re-
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served for the variable stack, available as a code store. The inner tools avail
even more.

The ordering of the files to link is critical for the performance of the program,
because code placement on the processor is determined by the linking order
of the binary object files. Programs will therefore run faster if small, speed-
critical routines are placed at the beginning of the list of files to be linked,
and the occam calling process is placed at the end.

It is not possible to have the whole of on-chip memory on the T800 exclu-
sively as a stack or code area. It is also not possible to have part of the
stack on-chip and part of it off-chip. This is due to the implementation of
the development tools.

These restrictions on the specification of the scientific-language compilers
were adopted for the following reasons. Studies showed that in the event
of a trade-off in the use of on-chip memory between code and data, it is
generally more efficient to permit some data to be placed on-chip (in the
stack) rather than only having application code on-chip. This is due to
the high density of transputer machine code, and the transputer’s hardware
instruction pre-fetch mechanism. Therefore, any transputer can offer some
on-chip RAM for stack purposes, but the availability of on-chip RAM for
code depends on the transputer and the family of development tools.

3.8.5 The static data area

Physically, the initialized static data area is placed at the bottom of the heap
workspace area. This is placed immediately above the mixed-object code
area. The size of the initialized static area can be determined at compile-
time, and all the compilers generate a pre-initialized ”image” of this static
data, rather than generating code to perform a run-time initialization of
this area. Two draw-backs of the adopted method are that large static
initialized arrays result in large binary object files, since the value of each
element appears explicitly. However, in addition to this, some run-time
initialization is performed by using embedded initialization information in
the code output by the compiler for each module (some items cannot be
initialized at compilation or linkage phases). Each static data variable has
initialization data embedded in this way; a byte of initialization data for
every byte of static data required by the variable.

The run-time initialization involves relocating the static data from the code
area to the static/heap workspace area, and initializing it prior to execution.
This is because the code area could be in read-only store.
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3.8.6 The scientific-language process communications interface

The scientific-language systems create compilation units which can be made
into an equivalent occam process (EOP). The interface to this compilation
unit was devised for flexibility, and is not suitable for direct inclusion into a
parallel system- it should always be wrapped in a layer of occam, described
in Section 5.

The ”raw” communications interface to an EOP takes the form of two arrays
of pointers to channels. These are passed as arguments to the process by
the surrounding occam environment, and consist of one array of pointers to
input channels, and one array of pointers to output channels. The run-time
libraries for the language involved provide access to these channels. The
general interface to an EOP is shown in Figure 4.

Figure 4: General scientific-process interface

Depending on the run-time library used with a particular scientific-language
process, some elements of the channel address vector will be reserved:

• If the EOP uses the full run-time library, then the first two elements
of both vectors are reserved. Element 0 of the output vector is used
for run-time library diagnostic output, and element 1 of both vectors
carries host I/O traffic as defined by the language’s input/output fa-
cilities.

• If a C or FORTRAN EOP uses the standalone run-time libraries, then
only element zero of both vectors is reserved.

• If a Pascal EOP uses the standalone run-time library, then no elements
are reserved.

Either vector of pointers to channels can be arbitrarily large, and the user is
free to use them for interconnection to other processes, occam or otherwise.
In general, elements 0 and 1 of the input and output channel pointer vectors

22



should never be used by the programmer; only elements 2 and upwards
should be used. Section 5 shows how best to conceal the implementation
interface to non-occam components in a system, using the D705B occam
toolset.

3.9 Scientific-language channel I/O support

In occam, parts of an application communicate by sending messages to each
other on channels. This is also true of the scientific-language implemen-
tations. Channels provide unbuffered, unidirectional, synchronized, point-
to-point communications between two concurrent processes. Each scientific
language is provided with four message-passing facilities by means of run-
time library functions, which map directly onto the transputer’s channel I/O
instructions [5]. These facilities in each scientific-language behave exactly
the same as occam’s input (?) and output (!) primitives, and are outlined
below

3.9.1 C support

The four channel communications functions for V1.3 C are as follows:

Command Parameters Description
_outword w, chanp word output
_outbyte b, chanp byte output
_inmess chanp, buffer, nbytes message input
_outmess chanp, buffer, nbytes message output

The parameter types in the above table are as follows:

int w, nbytes;
CHAN *chanp;
char b;
char buffer[];

The C main() body is given the following arguments:

typedef int CHAN;
main(argc, argv, envp, in, inlen, out, outlen)
int argc, inlen, outlen;
char *argv[], *envp[];
CHAN *in[], *out[];
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Elements of the vectors in[] and out[] correspond exactly to those described
in the previous section about the scientific-language program interface.

The channel communication primitives shown above are made available by
including this header file in all compilation units that perform message pass-
ing:

#include <chanio.h>

These examples assume that the messaging routines are called from within
the main () function body, otherwise the in and out vectors declared as
arguments to main() are not in scope:

• Receive on channel 3 a one byte value and store as an integer

int tag=0;
_inmess(in[3], &tag, 1);

Notice that the tag is initialized to zero before the byte read. This is
because only the least significant byte of the integer will be affected
by the byte read, so it is advisable to initialize the whole integer to a
known and sensible value before operating on only part of it.

• Receive on channel 2 a 4 byte integer, then display it

int value;
_inmess(in[2], &value, 4);
printf("%d\n", value);

• Receive on channel 4 a double, then send it out on channel 3

double item;
_inmess (in[4] , &item, 8);
_outmess(out[3], &item, 8);

• Output a byte tag #02 on channel 4, then output integer 3

_outbyte(2, out[4]);
_outword(3, out[4]);

It is particularly important to notice that in the case of the _inmess and
_outmess functions, the second parameter is the address of a buffer contain-
ing the actual data. If one uses the _outmess to send a word or a byte, be
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sure not to place a literal constant (ie, a number like 42) as the data. This
should only be attempted with the _outbyte or _outword functions.

To be able to use the messaging facilities from functions outwith main(),
and yet avoid passing in the channel pointers as function parameters each
time, it is necessary to declare outside main () two pointers to these channel
vectors. One way of doing this would be as follows:

typedef int CHAN;

CHAN **in, **out; /** This does the scoping **/

main(argc, argv, envp, topin, inlen, topout, outlen)
int argc, inlen, outlen;
char *argv[], *envp[];
CHAN *topin[], *topout[];
{

... usual declarations
in = topin;
out = topout;

}

Only now is it possible to globally reference elements of in and out from any
functions other than main(). This is particularly important, because the
system may appear to behave as if the channels were correctly connected,
yet produce incorrect results and fail to terminate if this channel scoping is
not correct.

3.9.2 Pascal support

The four channel communications procedures for V1.2 Pascal are as follows:

Command Parameters Description
outword w, channel word output
outbyte b, channel byte output
inmess channel, buffer, nbytes message input
outmess channel, buffer, nbytes message output

The parameter declarations in the table above are as follows:

w, channel:INTEGER;
b:CHAR;
VAR buffer:UNIV CHAR;
nbytes:INTEGER;
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These are made available by including the following file with one’s applica-
tion code, and compiling the application with the /x option (which has the
effect of allowing certain extensions to the ISO 7185/BS6192:1982 Pascal
definition to which the compiler normally conforms):

$include ’\tp1v2\channels.inc’

The directory tp1v2 is the home directory for the version 1.2 Pascal compiler,
so it is specified in the path for the include file.

The UNIV type of parameter, shown above in procedures inmess and out-
mess, provides a loophole for breaking Pascals’ strict type checking rules
when passing parameters. As an extension to the ISO/BS standards, the
reserved word UNIV can be prefixed to the type of a VAR parameter. This
allows the parameter to be specified as a variable of any type.

The channel numbers used with these message-passing procedures corre-
sponds exactly to those described in the previous section about the scientific-
language program interface.

Some examples of Pascal channel communications in action:

• Receive a byte called tag on channel 2

inmess(2, tag, 1)

• Receive an integer called data on channel 3

inmess(3, data, 4)

• Output an integer called count on channel 2

outword(count, 2)

• Output a byte #05 on channel 3

outbyte(chr(5), 3)

3.9.3 FORTRAN support

The four channel communications subroutines for V1.1 FORTRAN are as
follows:
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Command Parameters Description
CHANOUTWORD VALUE, ICHANNEL word output
CHANOUTBYTE VALUE, ICHANNEL byte output
CHANINMESSAGE ICHANNEL, BUFFER, NBYTES message input
CHANOUTMESSAGE ICHANNEL, BUFFER, NBYTES message output

The parameter declarations in the table above are as follows:

INTEGER ICHANNEL, NBYTES, VALUE
Any FORTRAN object -- BUFFER

It is not necessary to specify any additional information in the source text
of your application (as is the case with C and Pascal) before these can be
used. They are made available at link-time from the FORTRAN run-time
libraries.

The ICHANNEL number used with these message-passing subroutines corre-
sponds exactly to those described in the previous section about the scientific-
language program interface.

Now, some examples of FORTRAN channel communications:

• Send a real number on output channel 2

REAL*4 A
C Note that A IS 4 bytes in size

CALL CHANOUTMESSAGE(2, A, 4)

• Receive an integer number from input channel 2

INTEGER*4 B
C Note that B IS 4 bytes in size

CALL CHANINMESSAGE(2, B, 4)

• Receive into channel 2 as an integer a byte tag (length 1)

INTEGER TAG
TAG = 0
CALL CHANINMESSAGE(2, TAG, 1)

The TAG integer is initialized to zero before reading in data to its
least significant byte - the byte read will not affect the top 3 bytes in
the integer, so to allow direct comparisons in this way it is sensible to
pre-initialize the whole word to a known value.
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• Output a byte of value #01, then a word VALUE, on channel 2

INTEGER VALUE
VALUE = 1
CALL CHANOUTBYTE(1, 2)
CALL CHANOUTWORD(VALUE, 2)

It is particularly important to notice that in the case of the CHANINMESSAGE
and CHANOUTMESSAGE subroutines, the second parameter is the address of a
buffer containing the actual data. So ensure you never attempt to use literal
constants for this parameter. For example, CHANOUTMESSAGE(2, 0, 1) will
not send a byte of value 0 on channel 2 - it will attempt to decode memory at
hardware address 0 and send that as a byte. Since positive address space is
rarely decoded as physical memory on current production transputer boards,
this is certainly wrong and could be dangerous!

3.9.4 Parallel C support

Parallel C version 2.0 offers some additional message passing primitives
compared to the C version 1.3. One gains access to these by inserting
#include <chan.h> in the source.

Command Parameters Description
chan_in_byte in_b, chanp byte input
chan_in_byte_t in_b, chanp, timeout timeout / byte input
chan_init chanp initialize a channel word
chan_in_message nbytes, buf, chanp message input
chan_in_message_t nbytes, buf, chanp, t.. timeout / message input
chan_in_word in_w, chanp word input
chan_in_word_t in_w, chanp, timeout timeout / word input
chan_out_byte out_b, chanp byte output
chan_out_byte_t out_b, chanp, timeout timeout / byte output
chan_out_message nbytes, buf, chanp message output
chan_out_message_t nbytes, buf, chanp, t.. timeout / message output
chan_out_word out_w, chanp word output
chan_out_word_t out_w, chanp, timeout timeout / word output
chan_reset chanp reset channel word

The parameter types in the above table are as follows:

char *in_b, out_b;
int *in_w, out_w;
char *buf;
int *chanp;
int timeout;
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For compatibility reasons, the channel messaging routines supplied with the
version 1.3 C compiler are also included, and can be accessed by referencing
header file #include <chanio.h>.

3.9.5 Parallel FORTRAN support

Parallel FORTRAN version 2.0 again offers a superset of message passing
primitives compared to the FORTRAN version 1.1. One gains access to
these by inserting INCLUDE ’CHAN.INC’ in the source.

Command Parameters Description
F77_CHAN_ADDRESS CHANWORD address of channel word
F77_CHAN_IN_BYTE IBUFF, ICHANADDR byte input
F77_CHAN_IN_BYTE_T IBUFF, ICHANADDR, TIMEOUT timeout / byte input
F77_CHAN_INIT ICHANADDR initialize a channel word
F77_CHAN_IN_MESSAGE LENGTH, BUFF, ICHANADDR message input
F77_CHAN_IN_MESSAGE_T LENGTH, BUFF, ICHANADDR, T.. timeout / message input
F77_CHAN_IN_PORT PORTNO value of input port binding
F77_CHAN_IN_PORTS -- number of input ports
F77_CHAN_IN_WORD WORD, ICHANADDR word input
F77_CHAN_IN_WORD_T WORD, ICHANADDR, TIMEOUT timeout / word input
F77_CHAN_OUT_BYTE IVAL, ICHANADDR byte output
F77_CHAN_OUT_BYTE_T IVAL, ICEANADDR, TIMEOUT timeout / byte output
F77_CHAN_OUT_MESSAGE LENGTH, BUFF, ICHANADDR message output
F77_CHAN_OUT_MESSAGE_T LENGTH, BUFF, ICHANADDR, T.. timeout / message output
F77_CHAN_OUT_PORT PORTNO value of output port binding
F77_CHAN_OUT_PORTS -- number of output ports
F77_CHAN_OUT_WORD WORD, ICHANADDR word output
F77_CHAN_OUT_WORD_T WORD, ICHANADDR, TIMEOUT timeout / word output
F77_CHAN_RESET ICHANADDR reset channel word

The parameter types in the above table are as follows:

INTEGER CHANWORD
INTEGER IBUFF, ICHANADDR, TIMEOUT
INTEGER PORTNO, IVAL
INTEGER NCHAN, ICHANADDRARRAY(NCHAN)
Any FORTRAN object -- BUFF
Any 4 byte FORTRAN object -- WORD

For compatibility reasons, the channel messaging routines supplied with the
version 1.1 FORTRAN compiler are also available.
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3.10 Additional support from Parallel C and Parallel FOR-
TRAN

The Parallel C and Parallel FORTRAN compilers have some additional ca-
pabilities to support the generation of parallel processes, and also replace
the toolset’s occam configuration stage with a C-like meta-language.

Parallel C has the concept of parallel threads of execution. A C task can
contain several parallel execution threads. All of a task’s threads share
the same static, extern, and heap data, and therefore run on the same
processor as the governing task. Each thread has its own stack for auto
variables, which is allocated from the heap of the main task by using a
thread_create function. A semaphore mechanism is provided to ensure
mutual thread exclusion from critical shared data areas. Threads can also
communicate with each other by using channels.

Parallel FORTRAN also has a multiple thread facility, but this is more
restricted than in Parallel C because FORTRAN sub-programs are not re-
entrant - a sub-program cannot call itself, directly or otherwise.

Using threads without due care in synchronizing access to shared data areas
with semaphores can introduce errors which are very difficult to pin-point.
In contrast to a thread, a task is a more substantial entity. Tasks correspond
to the compilation units of the other compilers. Tasks communicate with
each other only by using channels. Each task has its own code and data
areas which are separate from those of all other tasks.

The Parallel C and Parallel FORTRAN configuration meta-language allows
one to specify a process to processor mapping without recourse to an occam
specification. The hardware topology is described in terms of processor and
wire statements, which include the host PC as a processor. Each task in
the network is identified with a task specification which names the task and
identifies the number of input and output channels, plus specific require-
ments such as heap space. Tasks are allocated to processors with the place
directive, and are interconnected using connect statements.

One attraction of the Parallel C and Parallel FORTRAN compilers over
the occam toolset software is the flood-filling configures. This allows appli-
cations written in a particular way (a single controller task with arbitrary
numbers of identical workers) to be broadcast in a transputer network to
automatically take advantage of how ever many transputers happen to be
present.

The Parallel C compiler is supplied with a decoder utility which can examine
the binary object output from the compiler. It produces a listing showing
the source code and the corresponding disassembled machine code. It can
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also be used on the object output of the V1.3 C, V1.2 Pascal, and Parallel
FORTRAN compilers. Note that the utility cannot be used on bootable .b4
files. The utility is similar to the D705B toolset’s ilist utility.

For further information on INMOS Parallel C or Parallel FORTRAN, refer
to [6, 7].

3.11 Transputer assembler inserts

The two C compilers described earlier both support the inclusion of trans-
puter assembler inserts. This is not documented for the version 1.3 C com-
piler because the implementation provided in this case is limited and can
give incorrect code generation without notification (for example, if one at-
tempts to access local auto variables symbolically). Note clearly that this
facility is not supported by INMOS. The Parallel C version 2.0 offers a more
flexible and correct assembler insert capability.

3.11.1 Usage of assember

The use of transputer assembler should be restricted to either increasing the
performance of short sections of time-critical code, or for direct manipulation
of the hardware. The assembler capability in the C compilers is suitable for
these tasks, but should not be seen as a means of writing large sections of
code in assembler (for this a proper symbolic macro-assembler is advised).
And don’t try it unless you have access to [5].

A transputer assembler insert is introduced with the asm directive. Instruc-
tion mnemonics are expressed in lower case. An example of using transputer
assembler is shown below:

int loc(a)
int *a;
{

asm
{ ldl 2 ; }

}

This function was used in a large FORTRAN application [8] to return the
address of a variable passed as a parameter to it. As FORTRAN passes
parameters by reference anyway, it is simply necessary to load the param-
eter into the transputer’s A register and return. To understand why the
parameter is referenced with a ldl 2 instruction, the following discussion on
workspace allocation is helpful.
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3.11.2 Local workspace allocation

Assuming that no temporary variables are required, the transputer C com-
pilers allocate local function workspace as follows:

• Local auto variables are allocated from workspace slot 0 upwards, in
their lexicographic definition order. So, for example, the C function
below, called snark, declares three auto integers called source, dest,
and len. These variables would be placed in workspace slots 0, 1, and
2 respectively (workspace slot 0 has the lowest memory address in the
falling stack).

• Following the local auto variables, is the return address and the static
link pointer. The static link pointer is used by the transputer’s non-
local load, store, and pointer instructions. With reference to snark,
this would put the return address in workspace slot 3, and the static
link in workspace slot 4. However, if the module used any static data,
another slot is used as a static pointer to the other module.

• Finally, in ascending slot positions, comes the function parameter list,
again in order of their lexicographic left-to-right declaration. So, for
snark, parameter a occupies slot 5, b occupies slot 6, and slots 7, 8,
and 9 go to parameters i, j, and n.

If the function has no local variable declarations, then the first parameter
occupies workspace slot 2. This is why the loc(a) example above used the
assembler command ldl 2 to access the first parameter.

int snark (a, i, b, j, n)
char *a, *b;
int *i, * j, *n;
{
int source, dest, len;

source = b + (*j) - 1;
dest = a + (*i) - 1;
len = *n;

asm {
ldl 0; /* source */
ldl 1; /* dest */
ldl 2; /* len */
move;

}
}
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A function like snark is used in [8], again called from a FORTRAN environ-
ment. The reason for the -1 offset in the initialization of source and dest is
to do with the subscripting incompatibilities between C and FORTRAN lan-
guages (as opposed to an obscure feature of the INMOS scientific-language
systems). This problem is further compounded in higher dimensions (as
Dr Who frequently observes) due to the array column/row major allocation
differences.

3.11.3 Review of how the transputer implements procedure calls

It is instructive at this point to consider how the transputer implements a
function call/return. The snark function will be used as an example to show
how the parameters are set up and how the workspace is used. Figure 5
illustrates the situation.

Figure 5: Function calls and workspace usage

The transputer implements function/procedure calling with the call and ret
instructions. The workspace pointer is adjusted using the ajw instruction [5].

Consider the mechanics of a function call:

• The function that calls snark places all but two of the snark parameters
at the bottom of its own workspace. In descending memory order,
these are shown as n, j, and b. It then puts the other two parameters
and the static link into the transputer’s registers. Register C gets i,
register B gets a, and register A gets the static link.

• The transputer’s call instruction adjusts the workspace pointer, allo-
cating four new positions into which it stores the three registers and
the instruction pointer. This has the effect of placing the function
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return address, the static link, and all the function parameters con-
tiguously in memory, as shown in Figure 5. The diagram shows the
initial value of the workspace pointer, immediately following the call
to the snark function - the return address (old instruction pointer) is
at slot 0.

• The first action done by snark is to allocate workspace for its own
auto variables. Since there are three, it does this with an ajw -3,
which leaves the snark workspace numbered as shown in the Figure.
The total stack workspace of snark is then ten words, of which the
top three overlap with the workspace of the calling function. All the
parameters are stored contiguously above the static link pointer, and
all the local variables are stored contiguously below the return address.

• The last action of snark is to restore workspace used by the local
function variables. This is done by an ajw 3 instruction. This leaves
the return address at slot 0 again. It is important to ensure that
the workspace pointer has the value it had originally, immediately
following the call instruction to the snark function.

• The ret instruction restores the instruction pointer to the value it
had before the call to snark, and deallocates four workspace locations.
This returns the workspace painter to the value it had immediately
preceeding the call. Since ret does not corrupt the evaluation stack,
up to three values can be returned to the calling environment.

3.11.4 The C assembler restrictions and capabilities

The V1.3 C compiler should not be used to symbolically access local variables
or parameters - use the explanations given here as to where items will be
placed in local workspace, and access them explicitly by slot number as in
snark. Remember, the assembler insert feature in V1.3 C is not documented
and not supported, so don’t expect too much from it. However, both C
assemblers will handle automatically any pfix and nfix instructions required
to encode large values.

The Parallel C assembler allows symbolic access to parameters and local auto
variables. extern variables can also be symbolically accessed but only within
the scope that reserves storage for them. Individual statements within an
asm directive cannot be labelled. Reference [6] should be consulted for the
implementation capabilities of Parallel C.
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3.12 Mixing occam and non-occam compilation units within
the same process

There are many advantages to having a non-occam compilation unit call an
occam PROC, rather than call another scientific-language procedure compi-
lation unit. Firstly, the occam PROC requires no elaborate support from a
run-time library. Secondly, occam PROCs are re-entrant because they have
no concept of ”writable static data”, which means that occam PROCs and
any of the occam library support procedures can be shared by any number
of scientific-language processes on the same transputer. Thirdly, the occam
support package is more mature and robust than any of the current INMOS
scientific-language development systems.

In addition to the above discussions of the scientific-language compilation
systems, some additional considerations are appropriate when involving oc-
cam PROCs. These include:

• Parameter type compatibilities between occam and non-occam sys-
tems.

• Hidden parameters required by occam PROCs.

• Array parameters.

• Occam vectorspace support by non-occam compilation units.

• Calling occam FUNCTIONS rather than occam PROCs

These additional considerations are now explored:

3.12.1 Parameter type compatabilities

A working knowledge of the data storage and parameter passing mechanisms
discussed above in the context of mixed-language scientific-language systems
is useful when calling occam PROCs.

Occam’s VAL parameters correspond to C’s non-pointer parameters, and
Pascal’s non-VAR parameters. In addition, occam VAL parameters which
do not fit into a single machine word are expected to be passed by pointer
refenence. So, FORTRAN DOUBLE PRECISION real parameters would
correspond to either a VAL REAL64 or simply a REAL64 parameter in oc-
cam. (Generally though, FORTRAN parameters are not in correspondence
with occam VAL parameters).
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C’s pointer parameters, Pascal’s vAR parameters, any FORTRAN param-
eters, and those parameters which cannot fit into a single machine word
correspond to occam’s non-VAX. parameters.

3.12.2 Hidden parameters

Each scientific-language compilation unit passes, as a hidden parameter,
the so-called static link pointer. This is a pointer to the static data for
that compilation module. In occam this static link has to be accommo-
dated by explicitly including a dummy integer first parameter in the formal
specification of the occam procedure

PROC occamproc (INT dummy, REAL32 other.parm)

This PROC can be called from C, Pascal, or FORTRAN, but the caller must
not explicitly use two parameters in the calling specification.

3.12.3 Array parameters

C and occam enjoy totally compatible array allocation strategies, in terms
of the storage mapping function, and array index subscripting. This is
definitely not true of FORTRAN, which stores array dimensions in exactly
the reverse strategy to occam, with wild and wacky possibilities as far as
subscripting is concerned. It is not encouraged to access multi-dimensional
arrays between either occam or C, and FORTRAN. [8] shows an example
of the complications involved in accessing elements in a single dimensioned
FORTRAN character array, from a C function.

In occam any unsized array strides in the formal specification of the PROC
are in fact included as hidden parameters, immediately following the pointer
to the array parameter, in lexicographic left-to-right order of the missing
strides. This means that a scientific-language compilation unit calling an
occam PROC with an unsized array must explicitly include parameters to
specify the each unsized dimension. For example, the following occam PROC
specification

PROC occamproc (INT dummy, []BYTE other.parm)
-- dummy holds the static link
-- this PROC has hidden parm for size of other.parm
-- call it explicitly with an extra INT parameter

must be called from, say C, like this:
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char string [MAXSTRING];
... initialize the string
occamproc (string, MAXSTRING);

Here, it is faster and safer to pass a pointer to the whole memory block
reserved for the string, rather than do a run-time strlen for example.

3.12.4 Vectorspace

If the occam PROC to be called has been compiled with vector space on,
then it is necessary to explicitly pass to the PROC, as the last parameter,
a word vector of a size sufficient to contain the vectors used by the occam
PROC. The pointer required should point to the base address of a sufficiently
large contiguous memory area. This figure can be determined by using the
D705B ilist utility on the compiled and linked occam .c%% file, with the /e
entrypoint option; or alternatively from the compilation descriptor. Worked
examples are included elsewhere in this document.

As an example, if the previous example was compiled with separate vector
space on, and required 42 words of vector space storage, then the C must
pass an extra final parameter

char string [MAXSTRING];
int vectorspace[42];

... initialize the string
occamproc (string, MAXSTRING, vectorspace);

3.12.5 Occam parameter supersets

In occam timers, channels, and ports can never be VAL parameters. A timer
parameter occupies no storage and so no parameter slot is reserved for it
(this is also true for arrays of timers).

A CHAN type is represented by a pointer to the word containing the channel
contents, which could be either a hard or soft channel.

Ports are represented the same way as the datatype for which they are a
port. When a port is passed as a parameter, it is represented as a pointer
to the corresponding data item.

3.12.6 Calling an occam FUNCTION

All the discussions of occam PROC parameter arguments apply to occam
FUNCTIONS, but with some additional complications. The recommen-
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dation to be given is to never directly call an occam FUNCTION from a
non-occam compilation unit. Instead, call the occam FUNCTION from a
stub occam PROC. Here’s why:

For occam FUNCTIONS returning a single result that can be accommodated
in a single machine word, the result is returned in the transputer’s A register
(on a T414 or T425), or in the floating point A register on a T800 if the
result is floating point. The first case here is compatible with where the C
compiler expects to find function results.

However, for occam FUNCTIONS returning more than one result or where
the single result does not fit in a single machine word, there is the additional
complication of where to store the multiple results. This is in fact achieved
by passing hidden parameters to the FUNCTION arguments, which rep-
resent pointers to areas of memory where the results can be stored. The
first three results that can be accommodated in a single machine word are
returned in the transputer’s A, B, and C registers. Other results require one
hidden parameter per result, and on the T800, the floating point registers
are not used at all to return values if there is more than one result. Its life,
Jim, but not as we know it!

These hidden parameters for FUNCTION result storage must be placed at
the very start of the explicit parameter list. The problem with calling non-
occam FUNCTIONS directly from non-occam compilation units is that the
static link is unavoidably passed in as the first parameter to the FUNCTION.
This is no good because the FUNCTION could try to use it as a results
storage area.

So, if one wishes to make use of occam FUNCTIONS from a non-occam
compilation unit, and since you canny change the laws of physics, the rec-
ommendation is to call the FUNCTION indirectly from an occam PROC,
and use non-VAL parameters to return the results to the calling environ-
ment, thereby circumventing all the difficulties described above. You know
it makes sense...

4 The INMOS D705B occam-2 toolset

The D705B occam toolset consists of an occam-2 cross compiler, an occam-2
syntax checker, a librarian, a linker, a binary lister, a bootstrap utility, a
configurer, a makefile generator, a symbolic network debugger, a simulator,
and the iserver file server/loader. In addition, some support for converting
TDS software into toolset format is provided.

Code produced by the D705B is compatible at source and binary levels
across the PC, VAX, and Sun-3 toolset platforms. All tools display usage
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information if invoked with no parameters, all tools have the same ”work in
progress” information selector (/i), and most can be re-run without reloading
them. The file name conventions facilitate the use of automated tools to
control the system generation of arbitrary transputer networks.

The remainder of this chapter discusses the D7058 product occam-2 toolset.
As each tool is discussed, the filename extensions employed at each stage will
be shown in brackets. The k symbol is used as a single character wild-card
in these filename extensions.

4.1 Software development using the D705B

Figure 6 shows a simple overview of the software development cycle using the
D705B occam toolset software. Software implementation begins at the top
of the diagram, and ends at the bottom. Rounded boxes represent specific
operations, hexagonal boxes identify specific tools employed, and squared
boxes represent real files such as libraries. The dashed line shows that
the occam compiler accesses the (proprietary and user’s) occam libraries at
compile time, to check the procedure parameter interfaces across separately
compiled units. The security afforded by this strict type-checking is part of
the occam language specification, and is not offered by the scientific-language
implementations.

Figure 6: Overview of D705B software development

In any software project, it is not possible to proceed down the diagram
past any point until all the relevant operations shown above it have been
done. Any operations shown horizontally adjacent can be performed at the
same time. In broad terms, the software permits the occam and non-occam
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software for a transputer network to be developed concurrently by indepen-
dent teams of programmers. At both source and binary level, the software
developed will be compatible across PC, Sun-3, and VAX development plat-
forms. A further advantage is that any development systems not available
across the occam toolset development base, can still be used on their native
machine and contribute binary object code for integration by the occam
toolset on another platform. The D705B facilitates hooks for use with the
programmers favourite version control and reconstruction software.

A typical application development scenario might look like this. Numbers re-
fer to Figure 6. When all scientific-language source for a process is available,
it is compiled and linked with run-time support. Once all such scientific-
language object is available for a single transputer, and all occam source is
available for that transputer, (point 1 in the Figure), the occam compiler
is invoked. Immediately afterwards, at point 2, the toolset linker resolves
external occam references by reading in the occam libraries specified, and
merging all required code into a single object file that represents the pro-
cess that runs on that transputer (point 2). Only when this has been done
for each unique transputer (point 3) can the system as a whole be realized
(point 4).

In real-life, for a large project, one would place pre-compiled and pre-linked
compilation units (derived from any language) into libraries that could be
used by other parts of the system. One would also employ structured
and methodical validation and verification techniques to components before
bonding them together. The toolset’s support for teams of programmers
facilitates all stages of software implementation.

Because it is expected that teams of developers could be working on the same
project, across potentially several development platforms, it is important to
have a clear convention for identifying the contents of each file. This is
achieved by using a homogeneous set of filename extensions. Because of
the sophistication of the D705B, this requires a sizeable range of filename
extensions, shown in the next section.

4.2 File naming convention

The file name extension convention for the D705B is extensive. For some
files, the last two filename extension positions are dependent on the processor
type and the error mode, explained in Sections 4.3 and 4.4.
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File extension Contents
.occ occam source
.inc include file of protocol or constant definitions
.t%% separately compiled object code
.l%% linker indirect command file
.c%% linked code unit
.s%% linker symbol table
.m%% linker code map
.b%% bootable code file for a single transputer
.d%% descriptor file for a single transputer
.r%% single transputer code with no bootstrap
.lib library file
.lbb librarian build command file
.liu library usage file (describes library nestings)
.pgm occam configuration description file
.map configuration map
.dsc configuration descriptor
.dmp memory dump file
.btl link bootable file for transputer network
.btr ROM bootable file for transputer network

Don’t be put off by this horrific-looking table - its really seductively powerful
once familiar. Simple calculation shows that there are over 200 different pos-
sible filename extensions, although not all of these are likely to materialize
in a single project.

A word of advice: stick to these file name conventions, and be explicit with
the filename extensions wherever possible. This will give you the maximum
support from the automated system makefile generator (imakef).

4.3 Processor types

The compiler can produce code for the T212, T222, T414, T425, and T800
transputers. While all transputers are compatible at the occam source level,
some transputers are additionally guaranteed compatible at the binary T-
code level, This compatibility is determined by the intersections of their
instruction sets. To this end, the compiler can produce code that is guaran-
teed to run on a set of transputers:

Code set Compatible processors
TA T414, T425, and T800
TB T414 and T425
TC T425 and T800
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The source restrictions on what can be compiled in each code set are de-
termined by the instruction set intersection of the code class. Code set TA
cannot contain any floating point, CRC, or 2D block-move. Code set TB
can contain floating point (implemented in software by libraries), but not
CRC or 2D block-move. Code set TC can support CRC and 2D block-move,
but not floating point. Providing that the code produced for the different
processors in a class would be the same for a given compilation unit, then
that unit can be compiled in that class. All the 16-bit transputers (T212,
T222, and M212) share the same instruction set, so the compiler makes no
distinction.

These code sets are illustrated in Figure 7, which also shows the relationship
between the processor classes and the basic processor types. The diagram
shows that code compiled for processor types lower down in the tree can
call code compiled for processor types above them and connected to them
(possibly indirectly) by an ascending line. For example, T414 code can call
T414, TB, or TA code, but TA code can only call other TA code.

Figure 7: Processor compilation class hierarchy

To identify which processor (class) a given piece of code has been compiled
for, the table above uses the % in the second position of the filename ex-
tension to indicate the processor type, which is one of 2, 4, 5, 8, a, b, and
c.

If you compile code for any transputer class other than TB, the use of the
compiler maths libraries must be disabled with the /e compiler option. This
is because the compiler maths libraries are significantly different between the
floating point T800 transputer, and the non-floating point transputers which
are represented by class TB. So, classes TC and therefore TA encompass
the floating-point and non-floating-point transputers, and therein lies the
problem. The main differences arise because the T800 implements directly
as instructions many functions which are represented as library calls for
non-floating point transputers.

A further advantage of processor class compilation is that resultant libraries
using generic code can be considerably smaller while still supporting a pro-
cessor range. This technique will help to reduce the software size overheads
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of supporting present-day and future more powerful processor types.

4.4 Error modes

The compiler can produce code with differing behaviour when run-time er-
rors occur. There are three error modes, suitable in different cases:

Error mode Behaviour on error Identity
HALT system Total system halts h
STOP process Only errant process stops s
UNDEFINED Arbitrary effect u

These are referred to as HALT, STOP, and UNDEFINED (REDUCED),
and are identified with the letters h, s, and u in the last position of the
filename extensions shown previously.

Each error mode is suitable in different situations.

HALT : The default mode is HALT system mode, which is useful for devel-
oping and debugging a system. This mode is implemented using the
transputers’ seterr instruction following segments of code to be checked
by causing an unconditional assertion of the error flag, or using in-line
checks like csub0.

This mode is used in conjunction with a halt-on-error bootstrap, and
run with the iserver’s /se error test parameter.

STOP : The STOP process mode ensures that errant processes do not com-
municate with other processes. This mode can be used to construct a
system with software redundancy that exhibits ”graceful degradation”,
allowing some operation even if parts of a system fail. This mode is im-
plemented using the stoperr instruction, which deschedules the current
process if the error is set (but does not affect the status of the error
flag). It is used in conjunction with the testerr instruction which loads
false into the evaluation stack if the transputer’s internal error is set,
and true otherwise (it also clears the error flag). This mode produces
the largest and slowest code, due to having to use testerr/stoperr pairs,
rather than seterr instruction used in the previous execution mode.

UNDEFINED : The UNDEFINED (REDUCED) error mode should only
be used for optimising programs that are known to be correct, because
the amount of run-time checking included by the compiler is minimal.
In this mode, invalid processes have an arbitrary effect. Code compiled
in this mode is the most compact and fastest, compared to the other
two error modes.
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There is an additional error mode called UNIVERSAL, identified by x. This
is implemented in the same way as UNDEFINED, with minimal checking.
Separately compiled units compiled in this mode can be called from units in
any of the other error modes, and may call other units compiled in x mode.
This is shown in Figure 8. The general rule is that all separately compiled
units must be compiled in the same error mode. These error modes are
described more fully in [2].

Figure 8: Processor error mode hierarchy

If code is to be compiled in UNIVERSAL error mode, use of the occam
compiler’s libraries must be disabled with the /e option, This is because the
compiler libraries exhibit different behaviour in different error modes, so it
is not possible to use floating point, extended data type and other compiler
library functions with the UNIVERSAL error mode.

4.5 The makefile generator

The imakef utility automatically generates a makefile to rebuild a multi-
transputer program, a single transputer program, or a library. The C source
is supplied so that users can adjust the program for similar tools. The
program will also generate linker command files and library usage files. The
program does not produce any rules for object code that has been imported
using the #IMPORT occam compiler directive, although it does assume that
any linked code referred to is derivable ultimately from occam source files.

4.6 The occam compiler

The compiler occam is a full occam-2 compiler, supporting FUNCTIONS.
Occam source is placed in .occ files, and compiled object is stored in .t%%
files.

The #USE directive is used to reference separately compiled units from within
occam source text. The imakef utility ensures that certain rules surrounding
#USE are observed, in connection with non-circularity of references, compi-
lation before usage, and compatible processor types and error modes. The
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default suffix with #USE is .t%% for compiled units, depending on compiler
options, and .lib for libraries.

The #SC references a separately compiled unit, and is included only for com-
patibility with the INMOS TDS. It is recommended that the #USE directive
is instead employed to reference separately compiled procedures, as this re-
moves the constraint on specific ordering of separately compiled units at
link time. (SCs must be linked in a special order because the occam com-
piler generates direct calls to the SCs, rather than allowing the linker to
patch them. To do this, the compiler must assume they are loaded in a
specific way). Simple substitution of the directive #USE for the #SC directive
is sufficient.

The #IMPORT directive takes the filename of the compiled and linked non-
occam application, to allow the imakef utility to handle non-occam aspects
of a system. This also serves to conceal unpleasant detail concerning the
instantiation of non-occam processes, while presenting to the occam compiler
something that looks like an occam PROC.

An additional #COMMENT directive allows a comment string to be associated
with the compilation unit, intended to hold the version number, date of last
udpate, and a short description.

The directory path in which a referenced file resides can be specified ex-
plicitly, or relative to the directory in which the compiler was invoked, or
have no path specified. It is strongly advised, especially in multi-platform
toolset development, that no directory path specifications are ever included
in occam source directives. This would have the effect of compromizing the
source-level portability amongst platforms on the Sun-3, VAX, and PC. To
circumvent this, a sequence of directory paths which will be searched can
optionally be specified by using the PC environment variable ISEARCH.
There are equivalent path specifications in the other toolsets, and these
should represent the only host-specific parts of toolset development.

The default is to compile occam for a T414 in HALT-system compilation
mode, with separate vector space, alias and usage checking enabled. This
gives a .t4h object file.

4.7 The syntax checker

The occam compiler stops when it detects the first error. At times, it is more
useful to have. a list of errors available to permit bulk editing operations on
virgin source. The syntax checker icheck generates such a list of errors, and
has particularly good error recovery due to the fixed format of the occam
language.
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4.8 The librarian

The librarian ilibr is used to collate separately compiled units into a sin-
gle library file (.lib). Libraries can be built from units compiled for mixed
processor types and error modes. They provide a convenient unit for dis-
tributing collections of procedures and functions in a single file. Libraries
form the basis for the selective loading mechanisms of the linker (The linker
will selectively load separately compiled units from a library only if they
satisfy an outstanding reference and match the processor type and error
mode requirements). Indirect files can be used to list the names of files to
be included in the library.

A specification describing what object files have to go into a library is pro-
vided in a .lbb file. One can specify compiled object and linked object files,
for a range of processors and error modes. Note that it is not possible to
mix source and object in the same file, so for example it is not possible to
have occam source INCLUDE files in a library.

The librarian also supports building libraries from units compiled with
the scientific-language compilers. Occam procedures and functions are re-
entrant and can be shared, through libraries, by separate parallel threads of
execution on a single processor. As not all modules in the scientific-language
libraries are reentrant, the libraries as a whole are not re-entrant. This re-
quires that separate copies of the libraries are linked with each scientific-
language process.

Libraries may reference other libraries, but may not reference code via a #SC
directive. This is because the positioning of SC code is critical, whereas the
library mechanisms locate code in arbitrary places. The librarian ensures
the integrity of the library by checking each new addition for violation of
uniqueness of processor type and error mode within the library.

4.9 The linker

The linker ilink composes a collection of separately compiled units, (.t%%
and bin and .c%% linked units) resolving external references, to give a single
code unit (.c%%). This is typically used to build the program code for a
single processor. The output of the linker is in the form of a separately
compiled unit, like that produced by the occam compiler, which means that
linker output can be re-submitted as input at a later linking stage.

The first argument in the link list is always a separately compiled unit, not a
library. This defines the processor target type, error mode, and entry point
for the linked unit, and all further units must be compatible with respect to
this processor target (set) and error mode.
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Separately compiled units in the argument list are loaded unconditionally,
but units in libraries are loaded only if they match the processor type and
error mode of the first argument, and if they satisfy some outstanding ref-
erence. The processor target rule specifies that units may call units with
at least as general target set (so T800 units can call TA and TC units, for
example). The error mode rule is that units may call units with at least as
general error mode set (so HALT, STOP, UNDEFINED, and UNIVERSAL
may call UNIVERSAL, but HALT may only be called from HALT).

If the #SC directive is used to reference separately compiled units, then these
units must be linked in the correct order. The imakef utility will generate
the linker command file to achieve this correctly.

There are some restrictions as to how the linker can be used with scientific-
languages. Only complete scientific-language programs can be linked using
the linker - this is because the linker has to resolve the initialization chain
for the scientific language compilers. To do this, it has to associate an entry
point name with the output file it produces, and this is only meaningful for a
complete scientific-language process. Multiple scientific-language processes
to run on a single processor may be individually prelinked with run-time
support and resubmitted to the linker with the main occam calling process.

Linker control input may be re-directed from a specified file or standard
input. However, re-directed linker command input may not itself be re-
directed. Therefore, an indirect file may not refer to another indirect file
or to standard input. Several indirect files can be specified on the linker
command line. Command options can be placed in the linker indirect file,
for example, to optimize the positions of certain symbols.

4.10 Binary listen

The binary object listen ilist is used to generate documentation information
from binary files, either from separately compiled units or from library files.
Various command-line options permit different types of documentation to
be produced. The options are accumulative, so that more than one type of
output can be requested with a single command. Information concerning
modules, procedures within them, entry points, processor types and error
modes, external references, and workspace requirements can be extracted
from any binary object file (.bin, .lib, .c%%, .t%% etc).

4.11 The bootstrap tool

The iboot utility prepends bootstrap and loading code to a program for a
single processor. The input file will have been produced by the linker (.
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c8%), and the output file can be executed on a transputer (.b%%) using
the server (iserver). The default bootstrap will halt the processor if the
transputer error flag becomes set. Optionally, the bootstrap will not halt
the processor if the transputer error flag becomes set.

If the execution mode of the input object file is either HALT or STOP pro-
cess, then the halt-on-error flag is set by the bootstrap code; otherwise the
halt-on-error flag is not set in the bootstrap loader code. This, in conjunc-
tion with the type of bootstrap prepended, defines the program’s behaviour
if the error flag becomes set.

4.12 The configures

The iconf configures is used to create multi-transputer programs (.btl or
.lots), specified in a configuration description (.pgm), by using output from
the linker (.c%% files). The configures generates loading and bootstrap in-
formation for a transputer network of arbitrary topology and composition.
The bootstrap and loading information is complex due to the possibility
of different transputer types in the network, each with potentially different
amounts of memory.

The toolset configures allows multiple processes to be PLACEd at configu-
ration level. In addition, any occam that does not involve library references
can be expressed at configuration level.

Network description information (.dsc) is also created for use by the debug-
ger tool.

4.13 The debugger

The toolset debugger idebug allows a symbolic post mortem analysis of an
arbitrary transputer network. Facilities exist to examine the contents of
memory symbolically and in many different representations. The processes
on the run-queues and timer-queues can be identified. It is possible to
symbolically ”walk down links” to processes operating at different ends of a
channel (whether soft or hard). The debugger will locate to the source line
at which the transputer error flag became set, allowing variable inspection.
The procedure calling sequence can be traced back, also through libraries.

In the case of scientific-language debugging, the debugger can locate to the
source line at which the transputer halted. This is possible in a mixed
language system of arbitrary complexity. It is not possible to use symbolic
debugging facilities in scientific-language source file because the scientific-
language compilers do not produce sufficient information for the debugger.
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However, procedure trace-back is still possible within this framework.

Later sections in this document discuss how best to use the debugger with
scientific-language systems.

4.14 The simulator

The toolset simulator isim can run almost any program that can be run on a
single T414 transputer, on a boot-from-link evaluation board. The simulator
provides most of the symbolic debugging facilities provided by the toolset
debugger, plus the ability to set break and watch points at source level,
and single-step a program. An important feature of the simulator is that
the compiled code is exactly that which can be booted onto the transputer
board and run normally.

Unfortunately, the simulator cannot accommodate non-occam components.
The simulator is not discussed further in this document.

4.15 Supplementary tools

There are a number of utility tools supplied with the TDS which are also
supplied with the toolsets. In particular, the tools for EPROM and memory
interface programming, and the transputer network tester, are provided.

5 Handling non-occam processes

The previous sections have presented information concerning the INMOS
scientific-language systems, and the D705B occam toolset. Now, this in-
formation will be combined to show how to correctly integrate non Occam
processes within an occam framework. The methodology of arbitrarily in-
terconnecting non-Occam processes is known as equivalent occam process
technology (EOP).

5.1 Equivalent occam process technology

The scientific-language systems create processes which can be made equiv-
alent to an occam process. The interface to these processes was devised for
flexibility, and is not suitable for direct inclusion into a parallel system. The
language-independent interface affords a general bilateral communication
between a scientific language process and an occam process, while accom-
modating a certain flexibility in the workspace arrangements. It should
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always be wrapped in a layer of occam which exposes only conventional
occam channel parameters to the outside world.

There are three basic forms of equivalent occam process (EOP) which can
be built

• Type 1 : Used when a program runs on a single transputer communi-
cating only with the host server.

• Type 2 : Used when the program communicates with other processes
as well as the host server.

• Type 3 : Used when the program communicates with other processes
but does not communicate with the host server.

To form an EOP from a C, Pascal, or FORTRAN program, the object
modules comprising the program (including the run-time library) are linked
with special occam interface code, using the toolset linker ilink. These
interfaces conceal various supporting details, and offer a fixed language-
independent interface to occam. INMOS supplies interface code for the
three types of EOP described above.

5.1.1 The Type 1 interface

A Type 1 interface is used for programs communicating only with the host
server iserver. This is equivalent to the standard occam harness used by
the scientific-language development systems. The Type 1 interface has the
following parameters:

PROC MAIN.ENTRY (CHAN OF SP fs, ts,
[]INT free.memory,
[]INT stack.memory)

The channels fs and ts communicate from and to the host server iserver,
using the protocol SP defined in a standard library (not shown). The
free.memory vector is used as program workspace. If the size of the stack.memory
vector is zero, then free.memory is used for the run-time stack, heap, and
static workspace. Otherwise, the free.memory is used for heap and static
workspace. The DOS environment variable IBOARDSIZE specifies the size of
free.memory; it’s read at run-time by the bootstrap loader. The stack.memory
is used as run-time stack storage if the size of the vector is not zero. Its size
is determined when the bootstrap is prepended by the iboot tool, using the
/s option.
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The code for MAIN.ENTRY is contained in the files mainent .c%%, depend-
ing on the transputer type and error mode required. The programmer does
not have to write any occam for this interface.

To use this interface, consider the following example to build a T414 program
in UNDEFINED error mode. A list of compiled program object binaries (in-
cluding run-time libraries) is placed in the linker control file proglink.l4u.
The required linked output is to be placed in file cprog1.c4u, then boot-
strapped with a 512 word run-time stack vector. The D705B operations
required are:

ilink mainent.c4u /f proglink.l4u /o cprog1.c4u
iboot cprogl.c4u /s 512

5.1.2 The Type 2 Interface

A Type 2 interface is used for programs communicating with other processes
as well as the host server. This interface is used with non-Occam programs
linked with the full versions of their run-time libraries. The Type 2 interface
has the following parameters:

PROC PROC.ENTRY (CHAN OF SP fs, ts,
VAL INT flag,
[]INT ws1, ws2,
[]INT in, out)

The channels fs and ts communicate from and to the host server iserver.
The flag is used in conjunction with the workspace vectors ws1 and xs2. If
flag is zero then ws1 is used as the run-time stack and ws2 is used for statics
and the heap. If flag is 1 then ws1 is used as a combined stack/heap/static
workspace. Vectors in and out are used as pointers to occam channels going
to and coming from the non-occam process.

The code for PROC.ENTRY is contained in the files procent.c%%, depend-
ing on the transputer type and error mode required. To use this interface,
a simple occam harness of the type below is written to bind the channels
used by the server and the other processes to a clean procedural interface:

PROC p.EOP2 (CHAN OF SP fs, ts,
CHAN OF ANY from.outside, to.outside)

#IMPORT "cprog2.c4u"
[3]INT in, out:
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[1024]INT stack.vector:
[5000]INT heap.vector:
SEQ
-- establish user input and output channels
LOAD.INPUT.CHANNEL (in [2], from.outside)
LOAD.OUTPUT.CHANNEL(out[2], to.outside)

-- EOP2 is the entry point name in cprog2.c4u
EOP2(fs, ts, 0, stack.vector, heap.vector, in, out)

:

The #IMPORT command references the file name containing the linked EOP
object binary file, its run time library, and the Type 2 interface code. The
channel pointers are initialized using the predefines LOAD.INPUT.CHANNEL
and LOAD.OUTPUT.CHANNEL. 1024 words have been allocated for the
stack, and 5000 words for the heap/static area. EOP workspace is required
by the scientific-language process and the run-time libraries, and must be
large enough for all of the run time stack, static data, and the heap used
by the program and its libraries. As a rough guide, a minimum of 4000
words for static & heap workspace, and a minimum of 400 words for the run
time stack, is advised. By the time an EOP is ready to commence, having
been through the initialization sequence controlled by the run-time library,
almost 100 words of stack space have already been used.

It is important to emphasize that this occam harness is completely standard
for a Type 2 interface. In the last line in the example above, the EOP2
is the substituted name for the PROC.ENTRY defined. The name-change
occurs at link-time, allowing any number of EOPs in a system to use the
same interface code:

ilink EOP2=procent.c4u /f proglink.l4u /o cprog2.c4u

This has the effect of creating a linked file called cprog2.c4u which is #IMPORTed
into the occam harness above. From there onwards, the procedure p.EOP2
is considered as a standard occam procedure in the system - but it must
always connect to the server.

5.1.3 The Type 3 interface

A Type 3 interface is used for processes that do not need to communicate
with the host server. There are three types for use with C, Pascal, or FOR-
TRAN programs linked with the reduced version of their run-time libraries:

• C programs
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PROC PROC.ENTRY.RC (VAL INT flag,
[]INT ws1, ws2,
[]INT in, out)

• Pascal programs

PROC PROC.ENTRY.RP (VAL INT flag,
[]INT ws1, ws2,
[]INT in, out)

• FORTRAN programs

PROC PROC.ENTRY.RF (VAL INT flag,
[]INT ws1, ws2,
[]INT in, out)

Another Type 3 interface is used with C, Pascal, or FORTRAN programs
that have been linked with the full version of the run-time libraries. This
is called the stub interface. Normally, EOPs linked with their full run-time
library would require a connection to the host server, preventing their use
in a ”remote” position. But the stub interface obviates this.

PROC PROC.ENTRY.STUB (VAL INT flag,
[]INT ws1, ws2,
[]INT in, out)

These interfaces take parameters with the same meaning as the Type 2 in-
terface. Depending on processor and error mode, the C interfaces are stored
in files procentc.t%%, the Pascal interfaces are stored in files procentp.t%%,
and the FORTRAN interfaces are stored in files procentf.t%%. The stub in-
terfaces are in procents .c%%. They are used in exactly the same way as the
Type 2 interfaces. A simple template harness is written (exactly the same as
for the Type 2 interface, but without the server channels), and the linker is
used to change the entry-point name. For example, a Pascal program for a
T800 in HALT error mode, to be instanced with the identifier EOP3 would
be linked as follows:

ilink EOP3=procentp.t8h /f proglink.l8h /o pprog3.c8h

The corresponding #IMPORT for this would refer to file pprog3.c8h. An ex-
ample of a Type 3 EOP is given in Section 7.2.4.

The most common arrangement in a multi-process system is for one Type 2
interface (communicating with the server), and the remainder are all Type
3.
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5.2 D705B Processor classes

Concerning scientific-language processes, the EOPs cannot be compiled for
a general processor class (ie TA, TB, TC), and therefore cannot be called
by code compiled for a general processor class. This has an implication
for library usage. For example, TA Occam harness code cannot call T414
EOP code. TA code can only call TA code. So, if one wishes to place
occam harness parts into a library as well as the linked EOPs, they must be
compiled for either T414 or T800 execution.

5.3 EOP Startup and shutdown overheads

Each time an EOP is instantiated, there is a timing penalty to be paid. The
nature and magnitude of this penalty depends on whether the non-Occam
process is using the host file server facilities provided by the full run-time
library, or whether the EOP is using the standalone run-time library for
the language concerned. In either case, the EOP instantiation overheads
are enormous compared to calling an occam procedure. An understanding
of these penalties is useful in deciding how finely to partition a non-Occam
system into individual parallel processes. Both these cases are discussed
below:

• EOP using the full run-time library

On a 20 MHz transputer, the time taken for an EOP to startup to
be in a state capable of doing useful work varies from 25 to 40 mifli-
seconds, depending on the language. The start-up overheads in this
case are partly concerned with run-time initialization of static data for
each module in the EOP. Also, the start-up routines attempt to open
the standard input, output, and error channels to the keyboard and
screen. This involves dealing with the host file server, and accounts
for the bulk of the time spent for most reasonably sized EOPs. This is
clearly not the sort of thing to do too often - once an EOP is running,
don’t terminate it with a view to restarting it regularly!

There is also a timing penalty in shutting down an EOP. This is usually
of lesser consequence than the startup overhead. In the shutdown
period, any open files and streams are closed, which again involves
dealing with the host file server. This is again typically 25 to 40
milliseconds, although it can be less than 10 milliseconds in unusually
trivial cases.

• EOP using the standalone run-time library

For an EOP using the standalone run-time library, none of the penalty
associated with communicating with the host file server is incurred.
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This typically results in start-up and shut-down penalties an order of
magnitude smaller than those using the full run-time library. In other
words, expect to spend between 1 to 4 milliseconds in starting and
stopping each EOP in this way.

A corollary of this is that EOPs should only be used to perform fairly sizable
units of work, compared to the overheads in instantiating and terminating
them. It is important to be quite dear that once instantiated, the operation
of the normal function 1 procedure 1 subroutine calls in EOPs is every
bit as efficient as for compiled occam. Calling an embedded heterogeneous
compilation unit from within another compilation unit incurs no additional
temporal penalties.

5.4 Practical considerations for writing harnesses

In writing custom harneses, either as EOPs or as the top-level occam on a
transputer, there are several factors one can control. For example, the size
and placing of stack and heap workspaces, board size considerations, and
run-time specifications can all be used to advantage.

These issues are discussed below, after reviewing how the single-processor
standard occam harness supplied with the scientific-language systems is im-
plemented.

5.4.1 Memory allocation by the standard scientific-language har-
ness

In the INMOS scientific-language systems, all memory allocation is under
control of occam procedures. The INMOS scientific-language compilers em-
ploy a common model of memory usage. This enables the outputs from all
compilers to be linked and loaded with the same tools, and also facilitates
some mixed-language operations.

Using the Type 1 interface for an EOP on a single processor, the workspace
allocated from the free.memory vector extends from the top of the occam
vector space zone to the top of the board memory. This memory area is
shown in Figure 2 as unallocated memory. The size (in bytes) of the board
in use is specified by the DOS environment variable IBOARDSIZE. Figure 9
shows how the unallocated memory is used by the Type 1 interface.

From Mint onwards, the occam compiler that compiled the ”standard har-
ness” to support a single EOP, can allocate workspace. Using techniques
described in (9), the compiler places a block of 512 words as low down in
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Figure 9: The scientific-language compiler memory map

memory as possible. This memory block is reserved for a run-time stack
for an EOP, and is mostly on-chip. Figure 9 shows this reserved run-time
stack area in the occam scalar workspace zone. On a T414 transputer, this
uses up all the on-chip RAM. Even if the user does not run the application
to make use of this stack, this memory is always reserved when using the
standard occam harness2. There will also be a few words of scalar workspace
required by the occam process which instances the EOP.

With a single combined vector for workspace, the free.memory vector estab-
lishes the amount of memory available. As the size of this is determined at
run-time using a DOS environment variable, the application always has ac-
cess to the most workspace available. This obviates the need to re-compile an
application to take full advantage of a larger / smaller board. If IBOARDSIZE
is set too large, the run-time stack would be placed off the end of the board;
if IBOARDSIZE is set too small then not all of the board’s memory is availed.

Directly following the occam scalar workspace (and EOP stack reserve) is the
code for all the component modules in the non-occam application and the
occam calling process. This includes occam and non occam library modules.
The linker will decide in what order each component part should be linked.
By referencing any compiled occam in an application referenced with #USE,
the linker is free to select an arbitrary loading map for each transputer.

Immediately above the code is the non-Occam initialized static data area.
2The Parallel C and Parallel FORTRAN development systems do not reserve a block

of 512 words for stack space unless instructed to do so. This means that even on a T414,
the standard harness has an opportunity to place some code on-chip.
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5.4.2 Writing harnesses to allocate scientific-language workspace
memory

When writing a harness, one can allocate workspace far the scientific-language
systems from occam vectorspace, rather than from the free.memory param-
eter. This would be the preference in two cases; first when one is writing
a compact EOP harness, and second when one is writing harnesses for a
transputer network (free.memory is not available in multiple processor sys-
tems).

One scientific-language process

The memory allocation for the system shown in Figure 9, has been instead
allocated from occam vector space, as shown in Figure 10.

Figure 10: Allocating memory from occam vector space

This figure shows that, providing the occam harness is compiled with sep-
arate vector space on, then the stack and heap areas sit lower down in
memory than before (but still above the code zone). Suitable D705B occam
to implement a Type 3 interface like this is:

[50000]INT heap.vector:
[512]INT stack.vector:
PLACE stack.vector IN WORKSPACE:
program (0, stack.vector, heap.vector, in.EOP, out.EOP)

To increase the chances of placing the stack-vector (mostly) on-chip, the
occam harness to implement this would have to be compiled with vector
space off (in which case the main static / heap workspace would sit below all
code, or with vector space on the stack vector would be explicitly PLACEd
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IN WORKSPACE. This latter case corresponds to Figure 10 and the occam
fragment above.

Notice that if the application will definitely not require the use of a separate
run-time stack, one need not reserve any memory for it in a custom-harness.
This will save on overall memory requirements, and allow the code to be
placed lower down in memory.

In a single transputer system, the free.memory parameter is still available;
but it is unused and will be smaller than before since there is a much
larger occam vector space content. In a multiple transputer system, the
free.memory parameter is not available, so harness techniques like those dis-
cussed here must be understood and employed by the performance-conscious
programmer.

Two scientific-language processes

In a more general case, applicable to a single transputer and to an arbitrary
transputer in a network, consider placing two scientific-language processes on
a transputer. Following the guidelines above, one must allocate workspace
for the EOPs by using occam vectors (remember that the free.memory vec-
tor is not available in a network). One would normally compile the oc-
cam harness with vector space on, thereby placing the workspaces above
all loaded code, but remembering to explicitly PLACE the stack vectors IN
WORKSPACE.

In Figure 11, this case is illustrated.

Figure 11: Allocating memory for two EOPs from occam vector space

D705B occam to implement this memory arrangement (as a pair of Type 3
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interfaces) is shown below:

PAR
[50000]INT heap.vector2:
[512]INT stack.vector2:
PLACE stack.vector2 IN WORKSPACE:
EOP2 (0, stack.vector2, heap.vector2, in.EOP2, out.EOP2)

[50000]INT heap.vector1:
[400]INT stack.vector1:
PLACE stack.vector1 IN WORKSPACE:
EOP1 (0, stack.vector1, heap.vector1, in.EOP1, out.EOP1)

Because the occam compiler places the most recently declared variables in
the lowest memory locations, this occam and Figure 11 shows that the EOP1
stack is placed closer to Memstart because it is declared after EOP2. The
stack for EOP1 is also smaller than that of EOP2, which would have been
empirically determined as per Section 5.4.4.

5.4.3 Placing all EOP stacks below the code

It is usually worth compiling the occam harness with vector space on, and
explicitly forcing stack vectors to be placed in WORKSPACE. This has
the effect that all EOP stacks are placed below the code area. Although
it is unlikely that all such stacks could be accommodated on-chip, some
board products such as the INMOS B404 module have a region of faster
static memory below a large but slower dynamic store, and this software
technique would allow the most suitable use to be made of this fast memory
block without adjusting the software or re-compiling it.

5.4.4 Establishing EOP workspace requirements

INMOS do not provide any tools to allow one to estimate the size of stack or
heap workspace required by an EOP. There is no simple way to determine
the requirements for workspace, but the following comments might be useful
in fine-tuning workspace sizes:

• When developing and testing an EOP, use one large combined stack
and heap workspace. This is because there is less chance of an EOP
running out of workspace if one allocates a total amount for stack and
heap, compared to explicitly defining the sizes of these independently.
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• As a rough guide, allow a minimum of 400 words for a separate stack
area, and a minimum of 4000 words for static / heap area, for each
EOP. Even during EOP start-up, at least 80 words from the stack are
used. The 0705B toolset diet object lister can be used to indicate the
amount of initialized static workspace required by the linked EOP -
this could guide one’s heap workspace sizing estimates.

• The actual amount of memory used in any workspace by any given
execution can be established by adding some extra pieces to the oc-
cam harness. By initializing all the elements in the stack and heap
workspaces of an EOP to some value before instancing, as the EOP
executes, the pattern will be over-written. This allows the extent of
each workspace to be established, and can be done for each EOP in the
system one by one. Remember that heaps grow upwards and stacks
fall downwards.

Suitable occam PROCs to perform the size estimation on stack and
heap workspace areas are shown below:

-- stack and heap workspaces to be fine tuned
[512]INT stack.ws:
[50000]INT heap.ws:

PROC init.vec ([]INT vector, VAL INT pattern)
SEQ i = 0 FOR SIZE vector
vector[i] := pattern

:

PROC used.in.stack ([]INT stack.ws, VAL INT pattern, INT used)
-- stacks fall down so scan upwards from element 0
BOOL found:
INT loop:
SEQ
found := FALSE
loop := 0
WHILE (NOT found) AND (loop < (SIZE stack.ws))
IF
stack.ws[loop] = pattern
loop := loop + 1

TRUE
found := TRUE

used := (SIZE stack.ws) - loop
:

PROC used.in.heap ([]INT heap.ws, VAL INT pattern, INT used)
-- heap grows upards so scan from top element downwards
BOOL found:
INT loop:
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SEQ
found := FALSE
loop := (SIZE heap.ws) - 1
WHILE (NOT found) AND (loop >=0)
IF
heap.ws[loop] = pattern
loop := loop - 1

TRUE
found := TRUE

used := loop
:

One would then structure one’s top-level harness like this:

PROC application (CHAN OF SP fs, ts)
VAL INT pattern IS #55555555:
INT heap.used, stack.used:
WHILE TRUE
SEQ
-- initialize workspaces
init.vec (stack.ws, pattern) -- preset stack vector
init.vec (heap.ws, pattern) -- preset heap vector

PAR
... Execute all application

-- determine stack and heap usage
used.in.stack (stack.ws, pattern, stack.used)
used.in.heap (heap.ws, pattern, heap.used)

... report findings and terminate
:

Obviously, to have significant meaning, this methodology would have
to be repeated many times to thoroughly exercise the EOP. One would
then leave a suitable (large) safety margin. Each EOP in a system
would be tuned in this way, one at a time.

• If the D705B is involved, the same technique can be easily used for
EOPs on any transputer because the debugger can be used to exam-
ine the workspace vectors after run-time. Use of the debugger in this
technique only requires that all elements are pre-initialized to some
identifiable value. Section 6 explains how the sizing data can be ac-
cessed using a general-purpose storage technique.

• If one suspects that an EOP is running out of stack space during
execution, it is sufficient to preinitialize only the lowest few elements
in the stack vector, and examine these after a failure.
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5.4.5 Terminating the host file server

The host server is a slave process running on the host system, at the same
time as the transputer application runs. The top-level process on the root
transputer must tell the server when to terminate, and thereby return control
to the host operating system. This can be done to the iserver as follows

#INCLUDE "hostio.inc"
#USE "hostio.lib"

so.exit (fs, ts, sps.success)

Note: sps.success is declared in the hostio.inc file.

5.4.6 Re-running the application without reloading

In most cases, it is convenient to be able to re-run a transputer network
application without having to reboot the network. This is achieved by us-
ing an occam WHILE TRUE loop in top-level process on each transputer
node in the network Re-run is achieved by invoking the host server without
specifying a boot file to load, but retaining all other command-line options.

For example, an outline of the top-level transputer process on the system’s
root transputer is:

WHILE TRUE
SEQ
PAR
... run application

... terminate host server

When the server terminate command is sent to the host, the user is aware of
return of control to the host operating system. But the transputer network
has entered a state of readiness to be re-run.

Only the root transputer in the system requires to terminate the host server.

5.4.7 Process priorities

It is possible to run an EOP at either high or low priority, in exactly the same
way as an occam process. Exactly the same constraints and guidelines apply
to non-occam processes as for occam processes, in selecting the priority of
execution. So, for example, it would be perfectly reasonable to execute a
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non-occam process at high priority if it performed a lot of communication
to other transputers.

The default priority should be to execute at low priority.

While on the subject of process priorities, it should be observed that it is not
obvious how best to obtain performance timing information from processes
at high priority. For example, supposing one wished to time the interval
between two events in an EOP running at high priority. To obtain a good
timing resolution, the high priority dock is to be used.

As a kick-off, to read the high priority timer from a low-priority occam
process, the following occam code can be used:

PRI PAR
clock ? before
SKIP

This assumes a suitably declared TIMER for the clock. This fragment can be
used anywhere within a low-priority occam process to read the high priority
timer, and allow meaningful timing measurements to be made.

To signal to the timing measurement mechanism the start and stop for the
event under investigation, one method would be for the non-occam process
to send a message on a channel, and to use the receipt of the message as a
timing reference. For a C EOP, the arrangement might look like this

#define SIGNAL 1
{

_outword(SIGNAL, out[2]); /** signal before event **/

... do the event to be timed

_outword(SIGNAL, out[2]); /** signal after event **/
}

The word SIGNAL is sent as an indication of the start and stop of the event
within the process. Some corresponding occam for this arrangement would
be:

PRI PAR
PAR -- high
... run non-occam process being timed at high priority
SEQ
signal ? any
clock ? before -- immediately before event
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signal ? any
clock ? after -- immediately after event

... run rest of code at low priority

The problem with this arrangement is one of scheduling. Once the high pri-
ority EOP has sent its signal message, and the occam has read the message
using signal ? any, the occam will deschedule (due to a communication) and
the EOP will re-schedule until it sends the terminate signal. Only at this
point, will the clock be read corresponding to the first signalling. If the EOP
happens to signal the event completion at the end of the EOP process itself,
the before and after timings will be read almost immediately consecutively,
giving results of 1 or 2 microseconds regardless of the event one intended to
time. This is clearly not robust.

The correct way to make timings of involving high-priority processes in this
way is to force a lock-step synchronization between the event being timed
and the timing process. This can easily be achieved by incorporating a
simple acknowledge protocol between the occam and the C. The occam now
uses an ack channel, which can be read by the EOP.

PRI PAR
PAR -- high
... run non-occam process being timed at high priority
SEQ
signal ? any
clock ? started -- immediately after startup
ack ! frig -- essential acknowledge

signal ? any
clock ? stopping -- immediately before stopping
ack ! frig -- essential acknowledge

... run rest of code at low priority

The C fragment (run at high priority) then becomes:

#define SIGNAL 1
{

int ack;
_outword(SIGNAL, out[2]); /** signal before event **/
_inmess(in[2], &ack, 4); /** ack lockstep sync **/

... do the event to be timed

_outword(SIGNAL, out[2]); /** signal after event **/
_inmess(in[2], &ack, 4); /** ack lockstep sync **/
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Another way to force lock-step, but without using an extra acknowledge
channel, is to have the EOP send a pair of signals for each event to be
recorded. The occam process reads the timer between the two signals from
the EOP, thereby forcing lock-step.

6 D7058 debugging guidelines

This chapter discusses some concepts which are useful in connection with
using the toolset debugger supplied with the D705B.

6.1 Problems with conventional debugging techniques

In a parallel system, one cannot use conventional debugging techniques.
For example, the traditional strategy of causing screen or file output to
represent the passing of a specific point in the program cannot be used with
reliability. This is because other processes executing in parallel may cause
processor resource to be deflected from causing the anticipated output.

Furthermore, in a multiple process system, there is generally only one (user)
process (the root process) which is directly connected to the host file server.
This is true in systems containing one or several transputers, and in mixed-
language systems too. This can often present problems when one is at-
tempting to debug a system of processes, because of the hassle of having
time-stepped status information routed from processes deep in a network to
the screen or to a file for later perusal.

6.2 Error mode considerations

The error mode employed in compilation of harnesses is important. The
scientific-language compilers have no concept of the occam compiler’s error
modes. With the D705B, however, the error mode adopted by an EOP is
that of its harness (the EOP). The following discussion concerns debugging
opportunities in a customer’s software development and production phases.

• Development phase

To debug correctly and effectively, one requires three things; the HALT
error mode harness, a halt-on-error bootstrap, and the host file server’s
/se error test directive.

For the development environment, the use of error mode HALT is
advised. This will cause a halt-on error bootstrap to be employed
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automatically by the bootstrap tool, and will allow the debugger to be
used for post-mortem debugging and correct location to the source line
causing the error. This error mode must be used in conjunction with
a halt-on-error bootstrap and the host server’s /se error test directive
to allow correct and effective debugging of scientific-language systems.

Note that the requirement of HALT mode for debugging purposes
requires that atloccam referenced in the system must be compiled in
HALT mode.

• Production phase

For a customer’s production software, the use of error modes UN-
DEFINED and UNIVERSAL is recommended. This will allow the
fastest execution due to the minimal run-time checking of the occam
parts in the system, and also avoid unnecessary termination due to
the transputer’s error flag becoming set. All the scientific-language
compiler range can cause the transputer’s error flag to be set during
exceptional circumstances in normal processing (a performance-driven
feature). Only by adopting these error modes will a non halt-on-error
bootstrap be prepended automatically to the linked object file by the
bootstrap tool.

However, such conditions do not permit correct error-location by the
debugger. This is because running a system with the server invoked
with the /se option is not sufficient to stop the actual transputer pro-
cess, even although the iserver will terminate immediately. The trans-
puter process will continue to execute until it has to communicate with
the server - and then stop of necessity because the server has. This
would cause the debugger to locate to the wrong line of source.

6.3 Run-time debugging aids

When debugging a scientific-language system, it is frequently useful to be
able to halt the transputer if a specific assertion is found to be true at run-
time. One way to achieve this is to use a simple function, written using
the C compiler’s assembler-insert mode, to set the transputer’s error flag
depending on the value of a parameter passed to the function. For example,

void assert(test)
int *test;
{

if (*test)
asm {

sethalterr;
testerr;
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seterr;
};

}

The function first selects the processors’s halt-on-error mode, using the
sethalterr instruction. This allows the function to be used in systems that
have not been used with a halt-on-error bootstrap. It then tests the error
flag, with a view to clearing it. The seterr instructionn sets the error flag
unconditionally. It is necessary to clear the error flag and then set it for
the halt-on-error mode to cause the transputer to halt. If the error flag was
already set then the introduction of the halt-on-error mode would not halt
the processor if the halt-on-error mode was not indigenous to the current
execution. Although the error flag is not preserved during normal process
descheduling, there are no deschedulable instructions in this function, so if
the test is true then the transputer will halt. (The error flag is preserved
when a high priority process interrupts a low priority process) [5].

This binary object of this function can be linked in with any scientific-
language system compilation units, as shown previously in this document.
It is called with a single integer reference parameter. A reference parameter
has been used to accommodate the FORTRAN reference parameter passing
mechanism. A C caller would use the reference s operator for the assertion
test parameter. A Pascal caller would require visibility of the function using
this technique:

IMPORT procedure assert ALIAS ’assert’ (VAR test: INTEGER);

If the parameter references a value that is not zero, the transputer will halt
dead, allowing the debugger to locate to this line of source. The procedure
call invocation trace-back facility can be used to find out where the function
was called from in that specific instance, and thereby determine the current
state of the program under examination.

6.4 Debugging processes that are not connected to the host
server

This section discusses a simple-to-implement post-mortem technique for de-
bugging and examining the status of any or all processes in a multiple proces-
sor environment, and is equally effective for any of the supported transputer
source languages. It allows strategic information capture and storage, which
the debugger can examine following program execution.
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6.4.1 Overview of technique

The technique relies upon the use of a circular buffer, preferably one per
transputer in the system, which is connected to each process on the same
transputer that one wishes to monitor. The technique is for the user to em-
bed debug information in each process required, and to have this information
captured in time sequence from all active processes. The programmer can
then use the D705B toolset’s debugger to examine the contents of the cir-
cular buffer. Providing one outputs sensible messages to the buffer, one can
gain an overview of the status of not only each individual process in the
system, but also of all the processes on that transputer as they synchronize
and interact together. An implementation of this is shown in Figure 12. The
EOPs in the diagram consist of the EOP plus supporting occam processes.

Figure 12: General purpose information capture and storage for post-
mortem debugging

One could have a monitor process for each EOP, or one that accepted input
from many EOPs. Both cases are illustrated. Monitor 1 is shown as handling
EOPs 1, 2, and 3 (EOP 3 is the root process). This monitor is being used to
examine the timing interactions between the EOPs on transputer 1. Unless
a timing interaction was being investigated, it would not normally be useful
to have the root process (EOP 3) contributing to a message buffer because
of the ease of accessing the host’s display or filestore.

Monitors 2 and 3 (for EOPs 4 and 5) are shown as servicing debug data from
only one EOP each. In this case, it’s because the EOPs in question are on
different transputers. But it’s also useful for examining lots of trace points
within an EOP but without concern as to how the execution of the EOP is
related to the rest of the system. The debug data in question is received on a
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channel allocated and controlled by the programmer’s message preparation
routines in the EOP.

6.4.2 Implementation detail

There are two parts to consider in the implementation. First, the data
storage buffer, of which one is required per transputer. Secondly, the debug
message preparation code, used by each process in the system.

• The data storage buffer

Each transputer in a network will possess a top-level occam harness
which describes how all processes on that transputer interact with each
other (and with those on other transputers). To implement the debug
monitor system, an additional process called circ.buff is added to the
occam. The process defines and manages a circular BYTE buffer, and
accepts input messages from any number of connected processes. Each
message from any process has the same format, allowing the buffer to
be general-purpose. An occam protocol called p.MESSAGE is used to
enforce the communication format. The format consists of an integer
identifying the number of bytes of message about to be received from
that process, followed by a byte vector of that size.

One possible implementation of the buffer manager is shown below:

PROC circ.buff (CHAN OF INT RootHasTerminated,
[]CHAN OF p.MESSAGE UserDebug)

VAL INT BUFFSIZE IS 2000: -- BYTES of buffer
[BUFFSIZE]BYTE buffer:
[100]BYTE last.message:
INT pointer, process, mess.length:
BOOL going:

PROC insert.message (VAL []BYTE message)
SEQ i = 0 FOR SIZE message
SEQ
buffer[pointer] := message[i]
pointer := ((pointer + 1) REM BUFFSIZE)

:

SEQ
pointer := 0
going := TRUE
WHILE going
PRI ALT
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-- Terminate input command
INT any:
RootHasTerminated ? any
SEQ
going := FALSE
insert.message ("!! Normal termination !!")
STOP

-- Normal message storage
ALT i = 0 FOR SIZE UserDebug
UserDebug[i] ? mess.length::[last.message FROM 0 FOR mess.length]
SEQ
... insert ID number of process into buffer
insert.message ([last.message FROM 0 FOR mess.length])

:

The parameters to the circ.buffer consist of a channel which is used
to terminate the buffer manager, and an array of channels which are
used to receive debug input messages in the correct format from an
arbitrary number of processes. The termination of the buffer manager
is considered next.

• Termination considerations

In a multiple process system, the user’s design will provide for one
process that should terminate last. For example, on the root trans-
puter, the root process communicating with the host file server should
terminate last, because there should be nothing useful happening after-
wards. But here, the buffer manager should never terminate, although
it can be signalled of the root process’s shut-down.

This is so that the debugger can easily examine the workspace it used.

WHILE TRUE
SEQ
CHAN OF ANY RootStopped:
[2]CHAN OF ANY UserDebug:
... other channel definitions
PAR
SEQ
... run root non-occam process
RootStopped ! 1 -- stop debug buffer manager
... terminate iserver

... run second non-occam process

... run third non-occam process
circ.buff (RootStopped, UserDebug)

• Message preparation code
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Each process requiring debugging must have the capability to prepare
meaningful messages in the correct format; an integer length followed
by a byte vector. This is simple to achieve in occam. Also, because all
the INMOS scientific-language systems provide message-passing func-
tions, this can be easily achieved in other languages too.

Without going into too much detail, some general principles should
be expounded. Firstly, the channel used for the outputting of debug
messages should be exclusively used for that purpose. Secondly, a
designated group of functions / procedures should have exclusive use
of this channel, ensuring that all output is of the correct format.

As an example of this, consider a C process that one wishes to debug
using the circular buffer technique. The following C function can be
used to output a message in the correct format to the circular buffer
manager process. This function conforms to the p.MESSAGE protocol
used by the occam buffer manager.

debug (message)
char *message;
{

int len;

len = strlen(message);
_outword(len, out[DEBUG_OUT_CHAN]);
_outmess(out[DEBUG_OUT_CHAN], message, len);

}

Once can write a simple suite of functions to package integers and
floating point data into strings for outputting to the buffer in the cor-
rect format. Once written, these routines can be used from processes
written in other languages, in any system one can mention.

• Using the debugger

The debugger is run on the transputer network after running the mem-
ory dumper program. It can express the address at which the message
buffer is stored in memory, and the current value of the buffer pointer.
Returning to the debugger’s monitor page allows one to do an ASCII
dump of the memory map starting at this address. One can then read
out all the debug messages that were captured during the program’s
running.

This technique can be used to perform post-mortem debugging on
an arbitrarily complex transputer network. The technique and its
component tools are universally applicable and totally general purpose
once written.
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6.4.3 What to do it you don’t have a debugger

Buy the D705B!

Alternatively, for use in environments such as the D705A or Parallel C/FORTRAN
where no debugger is provided, the above technique is still important. In-
stead of having the debugger investigate the contents of the data storage
buffers, the application itself dumps the buffer contents to the screen. For
transputers other than the root transputer, the buffer contents must be
routed back to the host using a simple protocol like the one used to place
messages in the buffer in the first place.

If you happen to own additional PC’s and transputer boards or link adapter
cards, then it is possible to have more than one non-occam process linked
with the full run-time library. This would permit ”probing” of a troublesome
process not directly connected to the host server on the main host computer,
because auxiliary output can be observed using the other PC. It’s a long shot
but it might just work! Try it ....

7 Using the D705B occam-2 toolset

This chapter describes some worked examples using the D705B Occam
toolset. It is presented in a tutorial fashion, and can be read in front of
a computer while doing the examples. Following an overview of makefiles,
a twin EOP system using one, then two transputers is shown. Use of the
D705B libraries is also explored. A technique for sharing code modules
amongst EOPs is demonstrated, in the context of the debugging monitoring
buffer.

Refer to section 8 for a checklist on what has to be set-up to allow the D705B
to be used correctly.

This chapter discusses topics in the context of the PC-based D705B. Toolset
operation would be exactly the same in any of the toolset platforms (but
it should be remembered that the switch-character is a’ -’ in UNIX-based
toolsets). The EOPs can be compiled and linked on a PC, then transferred
to a Sun-3 or VAX for integration with a toolset on that machine. There
would be no change in tool operation or procedure.

7.1 About makefiles

Makefiles specify how all the different parts of a system depend on each
other. A makefile allows a tool, called make, to perform the minimum
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number of operations to correctly update a system following changes in any
number of parts of that system. The D705B toolset uses makefiles in this
way.

The format of commands in a makefile is significant, in terms of spaces and
tab characters. So, for example, the following two lines in a makefile

dualharn.c4x: dualharn.l4x dualharn.t4x
$(LINK) /f dualharn.l4x $(LINKOPT)

indicate that the file duatharn. c4x depends on two files called dualharn.l4x
and dualharn.t4x. When the make tool processes the makefile, if any of the
files to the right of the colon are more recent than the one to the left of the
colon, then it will execute the following command $(LINK) /f dualharn.l4x $(LINKOPT).
The directives involving dollar signs and round braces are macros, which are
defined at the top of the makefile. These are optional, but have been used
here to allow the programmer to easily change the boot commands and op-
tions to all the toolset tools. In this example, the command will run the
linker if the compiled occam (.t4x) or the linker command input file (.l4x)
is more recent than the output file from the linker (.c4x).

The D705B tool imakef generates makefile descriptions of a systems’ inter-
dependencies. This will be shown in the examples.

7.2 Two communicating EOPs on one transputer

Suppose we have two EOPs and we wish them to execute concurrently on
the same transputer. Using the D705B occam toolset, each EOP can be
enclosed by a simple harness, with a top-level harness describing how the
EOPs interconnect.

In order not to obscure the details of operating the toolset and of construct-
ing the supporting occam, the EOPs will be deliberately trivial. Of the two
processes, the ”root” process will display messages on the screen, consisting
of data sent to it from the ”remote” process which has a Type 2 interface.
The remote process is only remote in the sense that it is not directly com-
municating with the host file server, and consequently is linked with the
standalone run-time libraries - it has a Type 3 procedure interface.

7.2.1 Operations overview

Firstly, the non-Occam source is compiled and linked with the necessary run-
time library support. At the same time, occam development can proceed.
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The occam harness will reference each EOP using the #IMPORT directive.
The HALT execution mode is used to facilitate debugging during develop-
ment. A makefile description of the system is built using the imakef tool.
Once the non-Occam code has been linked, the system can be built.

Consider in turn the two EOPs.

7.2.2 The root EOP

This process outputs messages to the screen, representing data sent to it
from the remote process. A tagged protocol is used, allowing firstly a se-
quence of integer numbers to be received, followed by a sequence of character
information. In C, this could be implemented as follows.

• The source

#include <chanio.h>

#define OUT_CHAN 2
#define IN_CHAN 2

#define STOP 0
#define NUMBERS 1
#define LETTERS 2

typedef int CHAN;

main (argc, argv, envp, in, inlen, out, outlen)
char *argv[], *envp[];
int argc, inlen, outlen;
CHAN *in[], *out[];

{

int value, count, size, total, tag = 0;

printf("\nHow many items in the first group ? ");
scanf("%d",&total);
_outword(total, out[OUT_CHAN]);

printf("\nSTARTED\n");
_inmess(in[IN_CHAN], &tag, 1);
while (tag != STOP)
{
if (tag == NUNSERS)
{

_inmess(in[IN_CHAN], &value, 4);
printf("%d\n", value);
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}
else if (tag == LETTERS)
{

_inmess(in[IN_CHAN], &size, 4);
for (count = 5; count < size; count++)
{
_inmess(in(IN_CHAN], &value, 4);
printf("%c\n", value);

}
}

_inmess(in(IN_CHAN], &tag, 1);
}

printf("FINISHED\n");
}

Notice that this process is expecting to receive its messages on chan-
nel two (see pre-processor definition for channel) of the previously-
described input vector of channels to the process. This communication
is facilitated by the additional arguments shown to main(). When we
write the supporting occam, we must ensure the remote process and
this process are correctly connected up together - this is not a compile-
time issue for the scientific-language process.

• Building it

For an IMS T414, assuming this source is stored in a file called cprog1,
c, this is compiled using the command t4c cprog1. The object binary
must then be linked with the full standard run-time library and the
Type 2 interface

ilink NonOcc1=procent.c4h cprog1.bin crtlt4.bin /o nonocc1.c4h

This creates a linked file called nonocc1.c4h, which is #IMPORTed into
the occam EOP harness, and instanced using the identifier NonOcc1.
From this stage onwards, the linked compilation unit is treated as a
normal occam PROC, and the reference to ”nonocc” is simply intended
as a reminder of where the mixed-language components fit into the
scenario. The c4h filename extension indicates that the file contains
linked object code, compiled for a T414 in HALT error mode.

Notice the EOP run-time library crtlt4.bin does not have a directory path
specified, even although it is not in the same directory. This is due to
the library path-searching mechanism in the D705B3, which uses a DOS
environment variable ISEARCH, and could be set up as follows:

3The ISEARCH is not a true DOS path specification, because it is textually prepended
to filenames while searching the list of directories. Notice the trailing backslashes, for
instance.
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ISEARCH=c:\itools\libs\;
c:\itools\interf\;
c:\tc1v3\;
c:\tp1v2\;
c:\tf1v1\;

The directories specified in ISEARCH are searched to locate files that are
not in the directory in which the tool was invoked.

7.2.3 The remote EOP

This process sends messages to the root EOP described above. The tagged
protocol used in this process must conform to that expected by the recipient
process. Again in C, one possible implementation is as follows :

• The source

#include <chanio.h>

#define OUT_CHAN 2
#define IN_CHAN 2

#define STOP 0
#define NUMBERS 1
#define LETTERS 2

typedef int CHAN;

main (argc, argv, envp, in, inlen, out, outlen)
char *argv[], *envp[];
int argc, inlen, outlen;
CHAN *in[], *out[];

{
int current, total;
_inmess(in[IN_CHAN], &total, 4);
for (current = 1; current <= total; current++)
{
_outbyte(NUMBERS, out[OUT_CHAN]);
_outword(current, out[OUT_CHAN]);

}

_outbyte(LETTERS, out[OUT_CHAN]);
_outword(3, out[OUT_CHAN]);
for (current = 65; current <= 67; current++)
_outword(current, out[OUT_CHAN]);

76



_outbyte(STOP, out[OUT_CHAN]);
}

Notice that this C source has a main() body - every separate C process
has main() as its entry point, regardless of its position within a trans-
puter network. Again, this process will send its data on word two of
the output vector of channel pointers supplied to the process. The oc-
cam to be described is responsible for ensuring the channel connections
intended by the user are in fact correctly established.

• Building it

If this source is stored in tile cprog2.c, then it can be compiled for
the T414 using the command t4c cprog2. Since this process uses only
channel message passing to communicate (ie, it doesn’t use printf),
it will be linked with the reduced standalone run-time library and a
Type 3 interface:

ilink NonOcc2=procentc.t4h cprog2.bin sacrtlt4.bin /o nonocc2.c4h

This creates a linked file nonocc2.c4h which is #IMPORTed into the
occam EOP harness, and instanced using the identifier NonOcc2.

• Building both EOPs with a makefile

It is advisable to write a separate makefile for the non-occam software.
It is impractical for the D705B to create a makefile for non-occam
software, because of the required information concerning module com-
pilation and link requirements etc.

A suitable makefile for the two EOPs in this example would be as
follows:

# makefile for non-occam software

all: nonocc1.c4h nonocc2.c4h

nonocc1.c4h: cprog1.bin
ilink NonOcc1=procent.c4h cprog1.bin crtlt4.bin /o nonocc1.c4h

nonocc2.c4h: cprog2.bin
ilink NonOcc2=procentc.t4h cprog2.bin sacrtlt4.bin /o nonocc2.c4h

cprog1.bin: cprog1.c
t4c cprog1

cprog2.bin: cprog2.c
t4c cprog2
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If this makefile was called nonocc, then to build the non-occam com-
ponents of, the system automatically, type make -f nonocc.

In the above two C routines, it is important that the communications pro-
tocol used by the two partners is consistent. In other words, the protocol
tags used must correspond at each end of the communications channel. The
best way to guarantee this is to place the communication tag constants into
a #include file, and reference this file in both C sources. This technique
is also appropriate for communicating Pascal partners. Unfortunately, the
V1.1 FORTRAN compiler does not support a source textual file inclusion
mechanism, because this is not part of the ANSI standard. Parallel FOR-
TRAN does support source file inclusion.

It is not advised that the actual communications channel indexes (OUT_CHAN
and IN_CHAN above) are placed in a #include file shared between the EOPs,
because in most cases the communications channel indexes for both EOPS,
and indeed, in either direction, will be different. But all source components
of any one EOP should share this data.

7.2.4 The occam bits

The occam required consists of a harness for each EOP, and a top-level
interconnection. Assume the source is stored in the file dualharn.occ

• The source

#INCLUDE "hostio.inc"
PROC NonOcc.entry (CHAN OF SP from.link, to.link, []INT free.memory)

-- IMPORTS are nonocc1.c4h, nonocc2.c4h
#USE "hostio.lib"

PROC p.NonOcc1 (CHAN OF SP ft, ts,
CHAN OF ANY from.outside, to.outside)

[3]INT in.NonOcc :
[3]INT out.NonOcc :
SEQ
LOAD.INPUT.CHANNEL (in.NonOcc [2], from.outside)
LOAD.OUTPUT.CHANNEL(out.NonOcc[2], to.outside)

#IMPORT "nonocc1.c4h"
[1]INT dummy.ws :
[5000]INT work.space :
-- type 2 interface
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NonOcc1(fs, ts, 1, work.space, dummy.ws,
in.NonOcc, out.NonOcc)

:

PROC p.NonOcc2 (CHAN OF ANY from.outside, to.outside)

[3]INT in.NonOcc :
[3]INT out.NonOcc :
SEQ
LOAD.INPUT.CHANNEL (in.NonOcc [2], from.outside)
LOAD.OUTPUT.CHANNEL (out.NonOcc[2], to.outside)

#IMPORT "nonocc2.c4h"
[1]INT dummy.ws :
[5000]INT work.space :
-- type 3 interface
NonOcc2(1, work.space, dummy.ws, in.NonOcc, out.NonOcc)

:

WHILE TRUE
SEQ
CHAN OF ANY OneToTwo, TwoToOne :
PAR
--------------------------------------------------
p.NonOcc1 (from.link, to.link, TwoToOne, OneToTwo)
--------------------------------------------------
p.NonOcc2 (OneToTwo, TwoToOne)
--------------------------------------------------

so.exit (from.link, to.link, sps.success)
:

• Building it

The D705B imakef utility controls the sequence of commands required
to create your executable application. In this case, it will control the
occam compiler, the linker, and the bootstrap tool. To run the imakef
utility, specify the type of file you want to build. Here, we want to
build a bootable file for a T414, in HALT mode. This implies a .b4h
file extension. So, we issue the command

imakef dualharn.b4h /i

This creates a file called dualharn, which lists the file dependencies
and tool invocation commands, and a file called dualharn.l4h, which
is a control file for the linker.

The dualharn file contains the following:
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LIBRARIAN=ilibr
OCCAM=occam
LINK=ilink
CONFIG=iconf
ADDBOOT=iboot
LIBOPT=
OCCOPT=
LINKOPT=
CONFOPT=
BOOTOPT=

dualharn.b4h: dualharn.c4h
$(ADDBOOT) dualharn.c4h $(BOOTOPT)

dualharn.c4h: dualharn.l4h dualharn.t4h
$(LINK) /f dualharn.l4h $(LINKOPT)

dualharn.t4h: dualharn.occ nonocc1.c4h nonocc2.c4h
\itools\libs\process.lib
\itools\libs\hostio.lib

$(OCCAM) dualharn /t4 /h $(OCCOPT)

This file is a makefile.

The linker command input file created, dualharn.l4h, contains this:

dualharn.t4h
c:\itools\libs\hostio.lib
c:\itools\libs\convert.lib
nonocc1.c4h
nonocc2.c4h
OCCAMBH.LIB

This file indicates the list of binary objects to be linked. The OC-
CAMBH.LIB file is the occam compiler library, which is automatically
included by the makefile generator. The reference to convert .lib ex-
ists because the hostio library has a library usage file associated with
it. The programmer need not be aware of this, except when manually
linking components together.

To initiate the build, type make -f dualharn. These results in the
following commands being run automatically:

Command Takes as input Makes as output
occam dualharn /t4 /h .occ .t4h
ilink /f dualharn.l4h Files listed in .l4h .c4h
iboot dualharn.c4h .c4h .b4h
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These results in dualharn.b4h, a bootable file. The table does not
show the creation of supplemental files.

7.2.5 Running the program

To boot the program, use the iserver:

iserver /sb dualharn.b4h /se

The result will be a short sequence of numbers and characters on the screen,
depending on the user input. The server will then terminate and control
will return to the host operating system prompt. The following display is
observed when the number ”3” is specified at run-time:

STARTED
1
2
3
A
B
C
FINISHED

The application can be re-run without reloading by calling the iserver di-
rectly with only the ”serve link” /ss option. This is a direct consequence of
the WHILE TRUE construct in the occam harness.

7.2.6 Rebuilding

To rebuild the system, following editing changes, is simple. If changes were
made to any of the non-occam programs, then the makefile for them must
be used to re-generate new .c%% linked files. Then, all the necessary occam
components are updated using the makefile produced by the D705B imakef
tool. For example, following changes to a system that did not affect or
introduce more file dependencies, the following two commands are sufficient
to reconstruct the system:

make -f nonocc
make -f dualharn

It is only necessary to alter the makefiles or re-run the imakef tool if there
is any alteration to the file dependencies of the system.
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7.2.7 Re-implementation of the EOPs

Suppose one wished to re-implement the root EOP, referenced with the
identifier NonOcc1, in a different language. Previously, a C implementation
was shown. To implement a functional equivalent in Pascal, for example, to
slot into the existing framework, one could do the following:

program root (input, output);

$include ’\tp1v2\channels.inc’

const
OutChannel = 2;
InChannel = 2;

Stop = 0;
Numbers = 1;
Letters = 2;

var
tag : char;
value, count, total : integer;

begin
write(’How many items in the first group ? ’);
readln(total);
outmess(OutChannel, total, 4);
writeln(’STARTED’);
inmess(InChannel, tag, 1);
while (tag <> chr(Stop)) do
begin
if (tag = chr(Numbers)) then
begin
inmess(InChannel, value, 4);
writeln(value);

end
else if (tag = chr(Letters)) then
begin
inmess(InChannel, value, 4);
for count := 1 to value do
begin
inmess(InChannel, value, 4);
writeln(chr(value));

end;
end;

inmess(InChannel, tag, 1);
end;

writeln(’FINISHED’);
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end.

This Pascal source is functionally equivalent to the C function described in
earlier sections. Place this source in the file called pasprog1.pas, and adjust
the nonocc makefile as follows:

nonocc1.c4h: pasprog1.bin
ilink NonOcc1=procent.c4h pasprog1.bin prtlt4.bin /o pasprog1.c4h

pasprog1.bin: pasprog1.pas
t4p pasprog1 /x

The /x option permits the Pascal compiler to make use of the message-
passing extensions to the standard language definition to which the compiler
confirms.

Run make on both system makefiles, and reload the program as before. It’s
as simple as that. No changes are necessary to the occam.

Similarly, to re-implement the remote EOP in FORTRAN:

PARAMETER (IOUTCHAN=2, INCHAN=2)
PARAMETER (ISTOP=O, NUMBERS=1, LETTERS=2)
INTEGER VALUE, TOTAL
VALUE = 1
CALL CHANINMESSAGE(2, TOTAL, 4)
DO 10 I = 1, TOTAL
CALL CHANOUTBYTE (NUMBERS, IOUTCHAN)
CALL CHANOUTWORD (VALUE, IOUTCHAN)

10 VALUE = VALUE + 1
CALL CHANOUTBYTE (LETTERS, IOUTCHAN)
CALL CHANOUTWORD (3, IOUTCHAN)
VALUE = 65
D0 20 I = 1, 3
CALL CHANOUTWORD (VALUE, IOUTCHAN)

20 VALUE = VALUE + 1
CALL CHANOUTBYTE (ISTOP, IOUTCHAN)

STOP
END

Place the source in file fprog2.f77, and adjust the nonocc makefile as follows:

nonocc2.c4h: fprog2.bin
ilink NonOcc2=procentf.t4h fprog2.bin safrtlt4.bin /o fprog2.c4h

fprog2.bin: fprog2.f77
t4f fprog2
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The reduced run-time library is used for this FORTRAN process, in the
same way as for the C and Pascal examples. Again, there is no need to alter
or re-compile the other non-Occam process. To rebuild the system, simply
make the two makefiles. The program behaviour is exactly the same.

7.3 Two communicating EOPs on two transputers

This section describes how to use the D705B to build a multi-processor
system, using the EOPS of the previous examples. The EOPs will be used
unchanged, one on each transputer. The EOP harnesses p.NonOcc1 and
p.NonOcc2 will be used unchanged - total portability! Each transputer will
require a top-level occam process to connect to the EOPs. In addition, a
network configuration description will be required.

Let the top-level occam processes for each transputer be called mainharn.occ
and auxharn.occ:

Source of mainharn.occ:

#INCLUDE "hostio.inc"
PROC NonOcc.root (CHAN OF SP from.link, to.link,

CHAN OF ANY OneToTwo, TwoToOne)

#USE "hostio.lib"

... PROC p.NonOcc1 from previous example

WHILE TRUE
SEQ
--------------------------------------------------
p.NonOcc1 (from.link, to.link, TwoToOne, OneToTwo)
-------------------------------------------------

so.exit (from.link, to.link, sps.success)
:

The source of auxharn.occ:

PROC NonOcc.remote (CHAN OF ANY OneToTwo, TwoToOne)

... PROC p.Nonocc2 from previous example

WHILE TRUE
------------------------------
p.NonOcc2 (OneToTwo, TwoToOne)
------------------------------

:
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The network configuration description is stored in a file with a .pgm exten-
sion, say multcon.pgm

#USE "mainharn.c4h"
#USE "auxharn.c4h"

VAL links.out IS [0, 1, 2, 3] :
VAL links.in IS [4, 5, 6, 7] :

CHAN OF ANY main.to.aux, aux.to.main

PLACED PAR
PROCESSOR 0 T4
CHAN OF SP from.link, to.link :
PLACE from.link AT links.in [0] :
PLACE to.link AT links.out[0] :
PLACE aux.to.main AT links.in [2] :
PLACE main.to.aux AT links.out[2] :
NonOcc.root (from.link, to.link,

main.to.aux, aux.to.main)

PROCESSOR 1 T4
PLACE main.to.aux AT links.in [1] :
PLACE aux.to.main AT links.out[1] :
NonOcc.remote (main.to.aux, aux.to.main)

Assuming that the nonocc makefile is used to create the linked .c%% EOPs,
then all that has to be done is to use the imakef tool to construct dependency
information. This is done (only once) as follows:

imakef multcon.btl /i

A makefile multcon is created, and linker control files for each processor,
mainharn.l4h and auxharn.l4h. To build and re-build the system, the two
makefiles are used in sequence:

make -f nonocc
make -f multcon

If the entire system has to be built, the operations invoked by the second
make are as follows:
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Command Takes as input Makes as output
occam mainharn /t4 /h .occ .t4h
ilink /f mainharn.l4h Files listed in .l4h .c4h
occam auxharn /t4 /h .occ .t4h
ilink /f auxharn.l4h Files listed in .l4h .c4h
iconf multcon multcon.pgm .btl

These results in a file called multcon.btl, suitable for booting a transputer
network down a link:

iserver /sb multcon.btl /se

The program behaviour is exactly the same as before, except it now runs
on two transputers. Neither the EOPs or their occam harnesses had to be
altered. And it can still be re-run without reloading.

Note that because vanilla occam can be used at configuration level, it would
have been possible to dispense with the NonOcc.remote procedure, and di-
rectly called p.NonOcc2 from configuration level:

... rest of configuration file
PROCESSOR 1 T4
PLACE main.to.aux AT links.in [1]
PLACE aux.to.main AT links.out[1]
WHILE TRUE
p.NonOcc2 (main.to.aux, aux.to.main)

There’s always more than one way to do anything!

7.4 Using the debugger with the twin EOP twin transputer
system

Supposing an error occurs during the execution of the twin transputer sys-
tem, described above. The transputers will stop dead because HALT mode
has been used. The iserver will stop if the /se option was used at run-time.
In this situation, it is necessary to make a ”coredump” of the root processor
so that the debugger can load onto it. The command to make the coredump
(of, say, 100000 bytes into a file called multcon.dmp) and load the debugger,
are:

coredump multcon 100000 multcon.btl
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This command makes use of the coredumper and the debugger, in the fol-
lowing way:

idump multcon 100000
idebug multcon.btl /r multcon

The debugger will then locate to the line causing the error; even if this
occurred during execution of a non occam process. To be fully effective, the
EOP harnesses should all be compiled in HALT mode, and the server would
be run with the /se error test option.

7.5 Placing the EOPs in a library

It is possible to place EOPs in libraries, which can then be used by oc-
cam processes. For example, the compiled and linked EOPs in the previous
section can be placed in a library. The library mechanism is very flexible,
because libraries can refer to items in other libraries, and the different mod-
ules in a library are all selectively loadable by the linker depending on the
satisfaction of outstanding external references, the processor type, and error
modes.

It is not recommended to use the imakef tool to generate a makefile for
libraries containing non-occam components. This is because the imakef tool
assumes the existence of occam source for all binary object components, and
it would create a lot of un-necessary make information if it were used.

As an example, both nonocc1.c4h and nonocc2.c4h will be placed in a li-
brary called EOPlib.lib. Both mainharn.occ and auxharn.occ will reference
EOPlib, but because mainharn only references the EOP called NonOcc1,
then only the module containing that item will be linked with mainharn.
The same is true of auxharn, but for NonOcc2.

The procedure here is to call the librarian directly:

ilibr nonocc1.c4h nonocc2.c4h /o EOPlib.lib

Using the ilist binary lister tool, you can check the library contents :

ilist EOPlib.lib /e

This will give the following display:
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Entry Pt Module Name No TT EM Offset Wspace Vspace
NonOcc1 il1:nonocc1.c4h 0 414 H 508 143 474
NonOcc2 il1:nonocc2.c4h 1 414 H 0 21 0

This indicates that the library EOPlib.lib contains two modules (either of
which can be independently loaded into an application), both suitable for
execution on a T414. Module 0 has an entry point name of NonOcc1, derived
from the contents of file nonocc1.c4h, and Module 1 has an entry point name
of NonOcc2, derived from the contents of file nonocc2.c4h. The occam source
of mainharn.occ and auxharn.occ is modified to reference the library by using
the command #USE "EOPlib.lib".

7.6 Sharing code amongst EOPs in a system

Share and Enjoy. It is possible for the EOPs in a transputer system to Share
and Enjoy some common code in certain circumstances. The requirements
are that the EOPs reside on the same transputer, and the code that they
share is implemented in occam. This provision allows for the standard occam
libraries to be shared between any number of EOPs, in addition to the
programmer’s own OccamPROCs.

The example to be given is that of the circular buffer debugging technique,
shown in C in Section 6.4.2. Three EOPs run on the root transputer. They
all require contributing messages to the buffer to examine timing relation-
ships during execution. The buffer manager is implemented in occam and
uses occam library procedures; and the code is to be shared by all EOPs.

Consider firstly the non-occam components in the system.

7.6.1 The EOPs

Each C EOP would have the following stub called debug, which would ref-
erence a shared occam procedure called debugocc. To avoid passing more
parameters than necessary, the debugocc procedure will be compiled with-
out separate vectorspace (by using the /v option). However, the size of the
message being passed must be included as an explicit parameter in the C
(it’s a hidden parameter in the occam). Each EOP could use a different
channel for outputting the diagnostic debug messages on.

#define DEBUG_OUT_CHAN 3

debug(message)
char *message;
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{
debugocc (out[DEBUG_OUT_CHAN], message, strlen(message));

}

Because each EOP has to share the occam PROC called debugocc, the
makefile for the EOPs must allow the linker to leave unresolved external
references (the /u option). For example, an extract from the makefile used
to generate the EOP interface for the C program cprog1:

al1.c8x: cprog1.bin
ilink EOP1=procent.c8x cprog1.bin crtlt8.bin /o al1.c8x /u

cprog1.bin: cprog1.c
t8c cprog1

7.6.2 The shared occam code

The debugocc PROC is filed in or.occ, perhaps like this:

PROC debugocc (INT dummy, CHAN OF ANY debug.chan,
[]BYTE string)

-- There is a hidden parm for the size of string
SEQ
debug.chan ! SIZE string
debug.chan ! [string FROM 0 FOR SIZE string]

:

The relevant part of a makefile to generate the compiled .t8x output is:

or.t8x: or.occ
occam or /t8/e/i/v/x

Notice it’s compiled without separate vectorspace, in UNIVERSAL error
mode. However, the main occam harness for the processor is to be compiled
in HALT mode. Code compiled for HALT mode can call code compiled
for UNIVERSAL mode, but not the other way round. It could have been
compiled in HALT mode.

If the main occam harness for the whole processor is called debugv.occ, then
the linker control file debugv.l8h might look like this

debugv.t8h
c:\itools\libs\hostio.lib
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c:\itools\libs\convert.lib
or.t8x
al1.c8x
al2.c8x
al3.c8x
OCCAM8H.LIB

To show that only one copy of the occam procedure debugocc has been
linked in to the system, the linker generates a link map automatically. This
is filed in debugv.m8h, and looks like this:

SC debugv.t8h 0 643
SC al3.c8x 644 3875
SC al2.c8x 3876 7303
SC a11.c8x 7304 45955
SC or.t8x 45956 45999
LIB c:\itools\libs\convert.lib (3) 46000 46131
LIB c:\itools\libs\hostio.lib (18) 46132 46207

The link map shows that the placement of compilation units is not related
to the ordering of items in the linker control file debugv.l8h. The linker is
free to arbitrarily re-order items. If it is especially important to have certain
compilation units placed low down in memory (in the hope of placing them
on-chip), then the linker symbol optimization facility can be used.

7.6.3 Linker symbol optimization

To use the linker symbol optimization facility, the programmer specifies the
symbol names which have to be ”optimized”. The optimization takes the
form of placing the specified symbols at the start of the items to be linked.
The hope is that the modules at the start of the list will be placed on on-
chip RAM, and thereby execute the most rapidly - effective use of on-chip
RAM is what symbol optimization is all about. If the modules happen not
to fall on-chip, then there is no tangible benefit in having them optimized
using this technique. See Section 7.6.4 for guidelines on calculating where
the tools place specific modules.

The linker’s /q parameter specifies the symbols to be optimized, all of which
are taken as equal priority for optimization. The /q directive can be placed
inside the linker control file debugv.18h, or on the command line. So, in-
cluding the directive

/q (debugocc, EOP1)
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in the linker control file debugv.l8h would place or .t8x (entrypoint symbol
debugocc) at the head of the link map, and all .c8x (entrypoint symbol
EOP1) immediately after it. The rest of the modules to be linked will follow
in the same order as before. Check them by examining the debugv.m8h link
map

SC or.t8h 0 43
SC al1.c8x 44 38695
SC debugv.t8h 38696 39339
SC al3.c8x 39340 42571
SC al2.c8x 42572 45999
LIB c:\itools\libs\convert.lib (3) 46000 46131
LIB c:\itools\libs\hostio.lib (18) 46132 46207

The default is for the linker to optimize the symbols REAL32OP and REAL32OPERR,
if they are used by the program.

With respect to the treatment of symbol optimization, the ordering of mod-
ule placement is the same as the order in which the component objects are
listed in the linker input specification (the debugv.18h file). So, if it were
vital that the all.c8x module were placed before the or.t8x module, the cor-
rect approach would be to edit the linker control file debugv.l8h and ensure
that all .c8x is placed before or .t8x. Re-ordering the symbol entrypoints in
the /q directive would have no effect.

If one of the library modules had to be ”optimized”, and only the module
number (shown in parentheses in the debugv.l8h link map) is known, then
the ilist utility should be used on the library in question. The specific module
numbers can be listed with the ilist’s /s () option, and the use of /e ensures
that the entrypoint symbols are listed. One can then have the required
module optimized by the linker.

7.6.4 Calculating where specific modules are placed

It can be useful to be able to calculate where specific code modules are
placed on a transputer. For example, by careful use of the linker symbol
optimization facility, one can endeavour to place critical modules in on-
chip RAM. In some transputer boards, the external memory is stratified
in performance terms (eg, the INMOS B404 TRAM module) with a certain
amount of low-down fast static RAM, topped up with slower dynamic RAM.
Even in these situations, code module placement can affect execution speed.

It is possible to calculate where any specific module is placed in the trans-
puter’s memory map. This breaks down into two parts. The first task is to

91



determine where the start of the cede area is. The second task is to deter-
mine the offset of the module of interest from the code start area. Consider
each in turn

• Calculating the code block start

The code start area is most easily calculated by not calculating any-
thing at all - if you see what I mean. Use the debugger to find out
where the code start area is, on any transputer in your network.

Assuming you have just run your single processor application, say
debugv.bh8, then the debugger would be used like this:

idump debugv 100000
idebug debugv.b8h /r debugv

This causes the core dumper to store 100000 bytes of data from the
root processor to a file called debugv.dmp. The debugger then loads
into the root processor, and refers to the debugv core dump file for
information about the root processor.

Alternatively, the program descriptor (with reference to the previ-
ous examples its debugv.d8h) can be used. Here’s the descriptor de-
bugv.d8h from the previous example:

Occam Toolset Make Bootable V1.0
PROCESSOR 0 0 T800 1
SC 0 46208
SCNAME debugv.c8h
CODE 20 0 1164 68124 46208 0

The relevant line is the line beginning with the word CODE. Without
going into too much detail, this descriptor says there is one T800
transputer in the system, and that there is one linked SC filed as
debugv.c8h. The relevant fields in the CODE specification are the
first one, 20, which indicate the number of bytes used for configuration
information, and the third field, 1164, which indicate the number of
bytes used by the occam scalar workspace. Recall from earlier sections
and diagrams that the code block (mixed occam and otherwise) is
placed immediately after the scalar workspace block.

In fact, to be strictly accurate at this point, the code block begins
above the configuration code, which is above the scalar workspace,
which is above MemStart. MemStart takes the value 112 (#70) on a
T800 or T425, 72 (#48) on a T414, and 36 (#24) on the T2 family. So,
the actual calculation for the position of the start of code is MemStart
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plus scalar workspace plus configuration code. In this example, 112 +
1164 + 20 = 1196, or #510. This is the same answer as the debugger
would give in its memory map display:

Memory Map
Workspace : #80000070 - #800004BF ( 1164 )
Configuration code : #800004FC - #8000050F ( 20 )
Program Body : #80000510 - #8000B98F ( 46k)
Vectorspace : #8000B990 - #8001C3AB ( 67k)

Total memory usage : 115628 bytes (113k)

Notice that the total memory usage shown by the debugger tells you
how large a core dump file you should have used!

As an aside, the other numbers in the descriptor identify the vec-
torspace requirements (68124 bytes, or 17031 words), and the code
size of the debugv.c8h linked module, 46208 bytes.

If the information option had been used on the bootstrap tool, the
vectorspace size is shown in words (17031). The scalar workspace
requirement is also shown in words, 282. The ilist utility will confirm
these two numbers. However, an ”extra” nine words are included
in the scalar workspace by the configuration operation, as far as the
descriptor and debugger are concerned4. Hence, 282 + 9 = 291 words
(or 1164 bytes on a T800) are reserved for scalar workspace once the
code has been rendered bootable.

• Calculating the module offset position

This is simply a matter of tracing backwards, starting with the module
requiring position location, and finding out all the things that are
linked in with it. Each time the module is linked with other object
code, the linker will produce a link map (in a .m%% file). The position
of the module in that particular linked unit can be observed from the
byte position addresses shown in the link map. Simply add together
the module offsets shown in each .m%% file, to determine the total offset
of the module from the start of the code.

Alternatively, one can trace the module position forwards from the
top-level linked unit which has the bootstrap prepended, through all
the intermediate linkings to the module under investigation.

The absolute module position is then determined by adding the module
offset address (from code start) to the code start address.

4This information is highly specific to the current D705B implementation, and is not
guaranteed to remain the same for all releases of the D705B tools. The appropriate
product documentation should always be consulted.

93



7.6.5 Using on-chip RAM effectively

Knowing the start and end addresses of critical modules, (the byte sizes of
each module can be derived from the .m%% files), it is apparent whether part
or all of the module is in on-chip RAM.

For performance reasons, it may be important to to fit a particular combi-
nation of modules in on-chip RAM. With reference to the above example,
the size of the scalar workspace is such that the program body starts at
1296 (#510), but the T800 on-chip RAM extends to only 4095 (#FFF). This
leaves 4095 - 1296 = 2799 bytes (#AEF) of on-chip RAM for the code.

Following the use of the linker symbol optimization in the previous example,
the first two items loaded are:

SC or.t8h 0 43
SC al1.c8x 44 38695

The or.t8x is an indivisibly loadable unit. However, the al1.c8x comprises
other parts. There is a corresponding linker map file for this, called al1.m8x.
The first parts of this file are listed below:

SC procent.c8x 0 9571
LIB crtlt8.bin (59) 9572 11467
LIB crtlt8.bin (39) 11468 12327
LIB crtlt8.bin (77) 12328 14255

The actual C object file cprog1.bin appears much further down the list.
Since only 2799 bytes of code are available on-chip, clearly the actual user-
code is not placed on-chip. If it were vital that cprog1.bin was on-chip, it
must be brought to the head of the link list. To force cprog1.bin to the head
of the link list, the /q (EOP1) directive would be included in the linker
control specification for building all.c8x.

This is dearly a trivial example, but the methodology is applicable to any
size of problem. You can make programs execute faster. What a great plan!
I’m excited to be a part of it! Let’s do it!!!

7.7 Hints and tips

This section includes a few tips on how to get the best out of the D705B
toolset. These sections are also relevant to any other toolset platform.
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7.7.1 Library usage guidelines

These notes address some library usage issues.

• Many complete EOPs can be put into a library, and access to all of
them is available with only one #USE directive. However, the makefile
generator tool imakef will generate incorrect makefiles if it finds a
.lbb library build file for non-Occam material. This is because it will
assume occam source exists for everything, which is not true for EOPs.

• It is not possible to mix source and object code in the same file. A
consequence of this is that files of occam source VAL declarations and
PROTOCOL specifications cannot be put into a library. Rather, they
must be filed separately and accessed by #INCLUDE, with a recom-
mended filename extension of .inc.

• Object hex output from the scientific-language compilers cannot be
placed in libraries. Convert it to binary using the scientific-language
linker, and then put this in a D705B library.

• Separately compiled functions I procedures belonging to an EOP can
be placed in a library. The object fragments of an EOP cannot be
linked until all the component binary objects are available.

• Use of the generic processor classes in libraries allows compact libraries
to be created from occam source that support a range of processors.
If it is necessary to produce a library supporting all 32-bit processor
types, then attempt to compile for a processor class TA. If this is not
possible due to the nature of the code, then class TB and T8 together,
or class TC and T4 together, cover all processor types. Failing this,
the library must contain T4, T5, and T8 compilation units to offer the
same support.

Remember though, that use of generic processor classes causes restric-
tions in the instructions that can be used. For example, TA cannot do
floating point.

• Careful use of the occam compiler’s error modes can contribute to-
wards compact libraries. In totally occam systems, the HALT mode
is advised for testing and debugging purposes. If a routine is known
to be correct, or has severe performance contraints, the UNIVERSAL
error mode in a library allows any type of compilation unit to access
the routine. A corollary of this item and the previous one is that .tax
compilation units can be used by the greatest range of processor types
and error modes.
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• Most libraries are built from compiled .t%% components. In situations
where it is required to reduce the number of entry-points to a library, or
the number of unresolved external references, linked .c%% components
could be used as an alternative to inserting the other necessary .t%%
files.

If occam source to be placed in a library uses only textual references to
other occam files (using #INCLUDE), then there are no external refer-
ences from the compiled unit. Therefore, the compiled output (.t%%)
would be placed in a library.

If occam source references compiled items with #USE or #IMPORT, then
this means that the compilation unit .t%% possesses unresolved exter-
nal references. If the .t%% file were inserted to a library, any programs
using the library would also have to use the libraries that satisfy the
external references of this one. To remove this condition, the com-
pilation unit can be linked to resolve its external references, and the
resultant .c%% unit placed in the library. This makes the unit more
”portable”, in the sense that it can now be used without the other
libraries. An equivalent approach would involve inserting the other
.t%% units in the same library, and not using linked .c%% units at all
- this is the approach used to build the D705B toolset libraries.

One cannot place compiled occam that references object code with the
#SC directive in a library,

• Don’t use the occam compiler’s #SC directive) It is only supported for
compatibility reasons with the TDS compiler. The restrictions with
#SC on linking position and the impossibility of inclusion in a library
are easily avoided. Instead, use the VISE directive and compile as
normal. This makes the compiler treat the item as a library. Remem-
ber that a library can be a single object file, so it is simply a case of
changing occurrences of #SC to #USE, for advantage to be taken of the
library features available. The advantages of using the #USE directive
over the #SC are numerous, and include selective loading, arbitrary
placement opportunity at link-time, and only one copy of the code is
linked in no matter how often it is #USEd (on one processor).

7.7.2 General usage guidelines

This section contains generally useful advice for using the D705B toolset.

• In general, don’t explicitly specify absolute or relative directory loca-
tions in occam directives to access other files. This compromizes the
occam source-level portability amongst the other toolset platforms.
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The ISEARCH path mechanism should be used instead, as it essen-
tially offers a machine independent ”logical naming” facility as in the
INMOS TDS. If it is necessary to use a machine dependent form of
file specification, then stick firmly to either relative directories or ab-
solute directories - don’t mix or your source becomes very confusing
and non-portable.

• Because the linker cannot create directly a bootable file, there is the
overhead of having to store a .c%% file which represents the entire pro-
cess for the transputer, but which is not bootable. If you are running
low on disk space, and building large applications, you can delete the
auxiliary symbol maps for each linked compilation unit (.s%%) and
also the .c%% files after adding the bootstrap. This is because the
.c%% files are no longer required (unless you ask the debugger for a
code/memory comparison). Don’t delete any .t%% and .m%% files be-
cause the debugger uses these. Better still, use the linkers’ /s symbol
table disable option.

• The D705B linker attempts to resolve external references unless given
a /u option to disable this. It also requires that an entry point for the
binary object be provided. The practical implication of this is that
using the D705B linker, non-Occam code can only be pre-linked as a
complete entity, with the compiled occam interface code included in
the specification of files to be linked (such as procent%.t%%).

• Because each #IMPORTed EOP has always been linked with the same
standard occam interface code, then a means of speeding up system
re-generation time is possible (assuming that the occam interface code
is not altered). If changes have been made to non-Occam components
in a system, but not to occam components, then it is not strictly
necessary to recompile any occam. It is, however, necessary to link
and bootstrap the code as before.

The imakef tool would arrange for an occam recompilation if it de-
tected the linked .c%% file referenced in a #IMPORT were more recent
than the occam source referencing it. To prevent this, it is necessary
to tweak the system makefile. Manually remove the dependency in-
formation for the occam concerning the #IMPORTed .c%% files. Then,
arrange that the makefile for the non occam parts will delete the .cab
files which comprize the compiled occam and the #IMPORTed stuff.
This ensures that once the non-Occam parts have been rebuilt as nec-
essary, the occam compiler will not be invoked on account of the pro-
cent interfacing routines - but it will still be invoked if any occam has
changed. Remember, it is always necessary to re-link and bootstrap
the application following an editing change.
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• If the debugger’s Network Dump option is used with a single trans-
puter system, then if the application happened to use the free.memory
buffer (for run-time stack and heap storage, or for other occam buffer
allocations), this memory will not be saved to disk. Only memory
allocated from within the occam harnesses is stored in this case.

• To use the debugger with a (single transputer) application which uses
free.memory, then to ensure the used portion of this memory is core-
dumped for the debugger to use, two approaches can be taken. Either
set IBOARDSIZE smaller than it is (to 200000 bytes, say, instead of
ten times that). This means that used memory is lower down in the
memory map, so a single core-dump of reasonable size can be taken.
Alternatively, use the core-dump tool to dump several blocks of mem-
ory. The idump can accommodate a list of up to ten start Isize byte
pairs.

8 Some useful checklists

8.1 Setting things up for the D705B

There are a few things to set up before you proceed:

• Ensure the D705B toolset search path ISEARCH is set up for the
toolset and non-occam compiler directories, and ensure it has trailing
backslashes for each component path.

Reminder: With MS-DOS, spaces in setting up environment variables
are significant. It is very easy (and not obvious what’s happened if you
do it) to set up an environment variable called ”space”-ISEARCH!

• Ensure that the DOS environment variable IBOARDSIZE is set to the
size of the transputer board, eg, #200000 for a 2 Mbyte board. If
you think you’ve set up this environment variable, and the iserver
terminates with a fatal error, then you may have set up an environment
variable called ”space”-IBOARDSIZE (which is not useful).

• The ITERMt environment variable is used by the debugger, and must
point to a valid .ITM file, such as IBMPC.ITM in the appropriate
directory.

• The CONFIG.SYS file must install the ANSI.SYS device driver, oth-
erwise the debugger and simulator will not correctly draw the screen.

• You may need to increase the number of FILES and BUFFERS in
your CONFIG.SYS file, to some thing like 20 or 30. This requirement
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may arise if a tool making use of a lot of files / buffers (such as imakef)
is unable to proceed for any obvious reason (like disk space exhausted,
file write-protected, file doesn’t exist, search paths not correct etc).

8.2 What to do if a multiple EOP system won’t run (on one
transputer)

This section is a checklist for when a multiple EOP system doesn’t execute
correctly. It assumes that the multi-EOP system compiles,links, and loads
OK, but won’t run. The checklist is applicable to any multi-process D705B
application, and is listed in order of check-ability.

• Ensure that each EOP has been linked with the correct type of occam
interface code. Generally, there will be one type 2 EOP and the re-
mainder will be Type 3 EOPs. Remember the interfaces are different
depending on the language of implementation of the EOP.

• Check that the (Type 2) root EOP has been linked with the full run-
time library. All other (Type 3) EOPs should be linked with the
standalone libraries (unless they use the Type 3 stub interface).

• Are the message-passing functions being given the correct type of argu-
ments? In particular, note that the C functions _inmess and _outmess
take addresses as the second parameter! (Not constants).

• Ensure the EOP occam harness has the correct LOAD.INPUT.CHANNEL
and LOAD.OUTPUT.CHANNEL commands, and isn’t using any of
the reserved scientific-language communications channels. In sum-
mary, elements 0 and 1 of both channel vectors in and out are reserved
for an EOP using the full run-time libraries, and element 0 of both
vectors is reserved for an EOP linked with the standalone run-time
library.

• Has sufficient workspace been reserved in the occam instantiation of
each EOP?

If an EOP uses two workspaces (flag is 0), then a minimum of 400
words for ws1 stack, and 4000 words for ws2 heap is recommended.

If an EOP uses one workspaces (flag is 1), then a minimum of 4000
words for ws1 (all workspace) is recommended. In this case, ws2 can
be of size 1.

• Do the channels used within the EOP source actually correspond to
the ones the programmer has used in the occam used to interconnect
the channels? In other words, does the EOP harness expect a C EOP
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to send data on channel out (2J, but the C source sends the data on
a different channel?

• Ensure that the EOP source does not explicitly attempt to use hard
link addresses with the message passing functions. C EOPs must use
the elements of the in and out vectors passed as arguments to main(),
rather than using #define to place channels onto the hardware.

• Ensure that each channel communication pair send and receive the
same number of bytes, otherwise partner will jam.

What do you mean it still won’t run? ......

DON’T PANIC !!!

8.3 What to do if a multiple EOP system won’t run (on
many transputers)

Clearly, the first stage is to get the system to run on a single transputer
first. Don’t be too ambitious initially and dive into a multi-processor imple-
mentation - make it work with one transputer first.

If you have a system that works on one transputer, but fails to run when
configured for several, then following checklist is useful:

• The first thing to check is that all the channels are correctly PLACEd
onto the hard links.

• Have you declared the root processor first in the configuration descrip-
tion file?

• Is it necessary to establish link connections before booting the appli-
cation (for example, by using the Module Motherboard Software to
set up the INMOS C004 link switch on a B008 motherboard).

• Are your processor types in correspondance with those declared in the
configuration file?

• Do you have enough memory on each processor node? (Check this by
getting the configures to produce a boot map for you. This also lists
the code requirements for each processor.

• Are all the link speeds compatible between adjacent processors? Check
the DIP switches on your motherboards.

• Check that all processors are being correctly reset, especially where a
hierarchical reset control strategy is being employed, eg, one involving
the Subsystem ports.
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8.4 A summary of performance maximization techniques

This section lists the main three areas for increasing a system’s performance,
without going into total detail of how to drive all the tools to achieve this.

• Use the tools effectively.

• Use the on-chip RAM effectively.

• Write your software correctly.

There is some obvious overlap between these categories.

Examples of all three categories follow:

• Use the tools effectively

The C / Pascal / FORTRAN compiler’s /PCn option allows the pro-
grammer to change the number of bytes allocated for a call to an
extern function, which is to be patched by the linker. The default is
to save 6 bytes, allowing a maximum code image of 16 MBytes. Often,
values like /PC4 (giving 64KBytes) and /PC5 (giving 1 MByte) can
be used to make code smaller and execute faster. The linker will warn
if too small a patch size is used, and also informs the programmer of
the maximum patch size it used. Legal values are /PC2 to /PC8.

The C compiler’s /S option can be used to prevent the C compiler
converting all floating point operations to double precision before eval-
uating expressions. This is not recommended for applications where
high numerical accuracy is required, but is faster.

The D705B toolset linker ilink can also be used effectively to minimize
code size by sharing occam code, even between parallel EOP processes
running on the same processor.

The linker can also assist with the effective use of on-chip RAM for
critical parts of the code.

• Use the on-chip RAM effectively

Ensure that the stack space of compute-intensive parts of the applica-
tion is placed on-chip.

Use the linker correctly to ensure that the most frequently used func-
tions are loaded on-chip (if possible) - the linker provides maps showing
the loading order of component binaries in the final executable image
- use them to find out where the code is loaded, allowing for Mem-
stast (#70 bytes (decimal 112) on T800 and T425; #48 (decimal 72) on
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T414), the occam workspace (convert to bytes!), and around 20 bytes
of reserved configuration info, preceeding the code.

It is possible to use KERNEL.RUN techniques in association with
those discussed previously to guarantee certain code will reside on-
chip. This is discussed in another technical note.

• Write your software ”correctly”

Distribute compute-intensive parts across multiple processors.

Always overlap slow I/O (such as communication to the server) with
computation.

Use lots of buffers to decouple communication and computation - es-
pecially software talking to inter-processor links.

Communicate in one large ”chunks” at a time, rather than in several
smaller quantities. Don’t use arithmetic that is explicitly not 32-bit
(on the 32-bit transputers). For example, in occam, the INT16 data
type is manipulated much more slowly that 32-bit INTS (especially
when part of a vector). Pay the storage penalty and reap the benefits
of performance! Try to use machine native-wordlength computation.

What more can I say? Contact Central Applications group with your per-
sonal favourites.

9 Summary and Conclusions

This document has described some issues connected with developing trans-
puter software using the INMOS scientific-language development systems
and the D705B occam toolset. Most of the examples shown can be copied
verbatim and used as templates in the reader’s own projects5, using any
occam toolset on any supported platform.

In addition to fulfilling the requirements of new projects, in any language,
these development systems allow existing applications to be ported to trans-
puters.

The development systems are thorough and flexible. All support a range
of transputers. The D705B offers multiple programmer support, and ap-
plication compatibility at source and binary levels across a range of devel-
opment platforms. Transputer software is fast, incrementally upgradable,

5Some small print: A set of unsupported example programs discussed in this Technical
Note, are available from INMOS by contacting a Field Applications Engineer. Send a disk
and we’ll send you the examples.

102



and portable. Can you afford to be without it? Inject some life into your
application I Use the Toolset.

TOOLSET : No sweat!
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