
1

1

25% of silicon area for the T414, 16% for the T9000

A transputer is a VLSI component, consisting of a
processor, a memory and a communication system,
designed to be used in the construction of parallel
systems. INMOS introduced the first transputer, the
T414, in 1985. Since then a range of compatible 32-
bit and 16-bit transputers have been introduced and
these have been used in a wide range of applications.

The design of a transputer is undertaken on the
assumption that it is a component of a multiproces-
sor system[4]. Many of the design tradeoffs, there-
fore, differ from those made by the designers of con-
ventional microprocessors. These include devoting a
significant proportion of the silicon area to of a com-
munication system and choosing an instruction set
architecture tuned to the execution of concurrent pro-
grams, rather than sequential programs.

The T9000 is a new transputer[1]. It represents
an improvement on the existing generation of trans-
puter products in both capability and performance.
The T9000 extends the transputer architecture in a
number of ways. The most important of these is that
the T9000 transputer decouples the physical connec-
tivity of a system from its logical connectivity. Be-

tween any two directly connected T9000 transputers
there may be established an almost unlimited num-
ber of . The T9000 link system also
enables transputers to be connected via a network of
C104 packet routers which allows virtual channels to
be established from any transputer to any number of
other transputers. Other extensions of the architec-
ture include the enhancement of the process model
to provide per-process error handling facilities and
the ability to run programs under memory manage-
ment.

The T9000 has about ten times the performance of
a T805. This improvement derives from a variety of
sources including the use of caching, improvements
in semiconductor technology, and a highly pipelined,
superscalar processor.

The T9000 comprises a superscalar 32-bit pro-
cessor (CPU) with a 64-bit floating point unit (FPU),
a communications processor (VCP) together with 4
communication links (L), a control unit and its associ-
ated links (CU), an external memory interface (EMI)
and 16K bytes of on-chip memory (CACHE). The fi-
nal component of the T9000 is a crossbar switch (X-
BAR) which connects the other components together.

Figure 1 shows the structure of the T9000.

The key to the T9000 transputer’s performance is
in the memory architecture and internal interconnec-
tion structure of the device. This is important be-
cause of the enormous memory bandwidth that the

David May, Roger Shepherd and Peter Thompson
Inmos Limited

1000 Aztec West
Almondsbury

Bristol BS12 4SQ, UK

The T9000 Transputer

The T9000 transputer integrates a complete com-
puter in a single VLSI chip of over 2 million transis-
tors. It contains 3 major subsysytems: a pipelined
superscalar processor, a communications processor
and a 16kbyte fully associative cache. In this paper
we discuss some of the issues arising in the design
of the T9000.

virtual channels

Abstract

1 Introduction

2 Overview

3 Interconnection and memory struc-
ture



2

3

2

3

a smaller line typically generates lower external bandwidth

both a larger line and a larger cache typically generate a higher
hit rate

CACHE CPU CACHE

EMI

X-BAR

CU FPU VCP L

Figure 1: Block structure of the T9000

T9000’s subsystems demand. The majority of the
bandwidth is demanded by the processor and the
communication system. The T9000 processor, run-
ning at 50 Mhz, executes at about 10 times the speed
of a T805 processor running at 20 Mhz. This means
that the T9000 processor makes 4 times as many
memory accesses per cycle as the T805 processor.
A similar situation exists with the communication sys-
tem. The four links of the T805 provide a maxi-
mum bi-directional data bandwidth of 11.2 Mbyte/s,
whereas the four links of the T9000 provide a max-
imum bi-directional data bandwidth of 70 Mbyte/s.
This means that the T9000 communciation system
makes 2.5 times as many data accesses per cycle.
In fact, even more bandwidth than this is required as
the memory holds data structures which support the
virtual channel system.

Fortunately, a large proportion of the memory ac-
cesses made within a transputer are very structured
and thus caching can be used to reduce the demand
on the external memory system. The T9000 uses two
levels of caching. The first level exists within the pro-
cessor and provides caching of data in the workspace
of the currently executing process. This has a signif-
icant effect as typically over 1/3rd of all access made
by the processor are to the workspace. The sec-
ond level of caching sits between the major functional
blocks and the external memory system. Ultimately,
however, accesses must be made to external mem-
ory and the memory interface of the T9000 provides
64-bit wide access, giving a maximum data rate from
external memory of 200 Mbyte/s.

Even though caching reduces the requirement for
external memory bandwith there remains the matter
of providing the processor and VCP with sufficient
bandwidth to the cache. The T9000 adopts the clas-
sic solution of multibanking the memory system. The
internal memory is divided into four banks, each bank

caching one quarter of the address space. When an
address is presented to the memory system the ac-
cess request is routed through the cross-bar to the
appropriate bank of memory. There are 9 ports onto
the cross-bar, 1 for the PMI, 4 for the processor, 3
for the VCP and 1 shared between the scheduler
and control unit. Each bank of the cache can pro-
vide access to one word every cycle and thus the
total on-chip memory bandwidth is 800 Mbyte/s.

The T9000 has 16k bytes of on-chip cache. The
cache is write-back and allocates when writes miss
the cache. One advantage of this structure is that all
accesses made to external memory are of complete
cache lines. This removes the need to provide mech-
anisms to access individual bytes of external mem-
ory, even though the machine is byte addressed. (In
fact, this is only partly true as it is necessary to pro-
vide for access to uncached regions of memory).

The cache is organised as 4 banks, each contain-
ing 4k bytes of fully associative memory arranged
as 256 lines of 4 words. The banks are interleaved
on address bits 4 and 5. This may seem strange
as the obvious choice would be to interleave on bits
2 and 3. However, that choice is incompatible with
having multi-word cache lines containing contiguous
addresses. The choice of four word cache lines rep-
resents a tradeoff between minimising the external
bandwidth generated by cache misses , maximising
the hit-rate , and choosing an implementation archi-
tecture which is consistant with the chip area avail-
able. The practical choices for the T9000 were 2
words-per-line or 4 words-per-line. With a 64-bit wide
memory interface the extra external bandwith of a 4
words-per-line cache, as compared with a 2 words-
per-line cache is acceptable. The lower overhead
(tag store) of the 4 words-per-line cache is attractive;
if is probable that if a 2 word-per-line cache had been
used then only 8k bytes of cache could have been
implemented and this would have nullified any per-
formance benefits that might otherwise have derived
from the smaller line size.

Each bank of the cache is fully associative. Ev-
ery 4 word line has associated with it a CAM which

4 Cache



contains the 26 undetermined bits of address (2 bits
are determined by byte within word, 2 bits by word
within line and 2 bits by bank within cache). There
are a number of benefits from using a fully associa-
tive cache as compared with a direct mapped or set
associative cache. The first is that any address may
be mapped into any line of the cache and so the
cache hit-rate does not collapse when operating on
data structures which “beat” with the cache size. A
second advantage of using a CAM is that it is more
power-efficient than a set associative cache. When a
read is made from an N-way set associative cache,
N lines are accessed, and for each line one word
and the tag are read; the word from the line with
the matching tag is then chosen. When a read is
made from a fully associative cache only the single
matching word need be read; this represents approx-
imately a factor of N saving in power consumption. A
further advantage of using a CAM is that a write can
be made to the cache in a single cycle, rather than
requiring first an access to the tag store and then
a write to the data store. A novel feature of the the
T9000 cache, which is made possible by the use of a
CAM, is that the one line is always kept empty, to be
allocated when the next miss occurs. In this way the
latency caused by a miss can be reduced as it is not
necessary to first write back a (dirty) line before the
cache line can be filled. The holding of this spare line
is possible because any line can be used to cache
any address. In an N-way set associative cache a
similar mechanism would require keeping 1/N’th of
the cache empty.

Thus far the internal memory has been described
as a cache, however, it is possible to configure the
memory so that it operates as pure RAM or as a mix-
ture of 50% RAM, 50% cache. This is a useful facility
for a number of purposes. One is that the T9000 can
be used as a stand-alone computer with no external
memory attached, a second is that it is possible to
lock key areas of code and data into memory, either
with a view to increasing performance, or with a view
to improving predicability of execution time.

The T9000 was designed to provide a very fast im-
plementation of an existing instruction set. Although
the T9000 extends this instruction set, both to provide
enhancements to the process model and to improve
performance, to a first approximation the instruction
set of the T9000 is the same as the instruction set of

the T805. Each instruction consists of a single byte
arranged as a 4-bit function and a four-bit operand.
The instructions are chosen to achieve compact pro-
gram representation, although a relatively large num-
ber of instructions are used.

The most important part of a fast implementation
of the transputer instruction set is the provision of
very fast access to local variables. In the transputer
these reside in memory, whereas in a register ma-
chine a compiler attempts to keep them in registers.
This puts the transputer at a potential disadvantage
in two ways. The first is that access time to mem-
ory is slower than to registers, the second is that the
transputer may require more memory bandwidth than
a register machine.

These problems are overcome in the T9000 pro-
cessor by using a workspace cache which can cache
the first 32 locations of the workspace. This cache
can be accessed essentially as fast as registers in a
register machine, and can be used to supply data for
all instructions which access the first 32 words of the
workspace. The cache is operated as a write-through
cache, that is, whenever a write is made to the
workspace the write is made both to the workspace
cache and to memory. In this way memory always
contains a correct image of the workspace.

Another issue in implementing a fast transputer is
achieving a fast execution rate. The conventional
approach to speeding the execution of instructions
is to use pipelining. However, the semantic content
of many transputer instructions is low. This makes
pipelining difficult as there is not enough work to do
in these transputer instructions to warrent execution
on a pipeline. To overcome this the T9000
several dependant instructions together and then ex-
ecutes the resulting group on a pipeline. In this way
the T9000 can execute up to 8 instructions per cycle
on a pipeline.

The T9000 pipeline has seven readily identifiable
stages:

The and stages of the
pipeline prefetch and then group instruc-
tions. The groups are then executed on the
remaining 5 stages of the pipeline.

The stage is capable of performing
two or instructions

�

�

groups

fetch decode/group

local
load local load constant

5 Processor



each cycle. As the workspace cache is triple
ported, with two read and one write port, it
is able to support two instructions
executing at the same time. Note that a

instruction which references one
of the first 32 locations of the workspace
can be executed without having to compute
the address of the workspace location; the
operand of the instruction can be used to
directly address the workspace cache.

The stage can perform two three-
operand address calculations per cycle.
These addresses may be used either in the

stage to read from memory, or in
the stage to write to memory. Note
that for (unlike for )
the address of the workspace location ref-
erenced has to be computed since a store
will be made to memory as well as to the
workspace cache.

The stage allows up to two reads
at a time to be made from memory. Pro-
vided that the data reside in different banks
of the cache the two reads can be made in
the same cycle. No attempt is made to ser-
vice these reads from the workspace cache;
there is no need as the memory is kept con-
sistent with the cache.

The stage is where arithmetic
and floating point operations are performed.
This stage contains hardware to perform
shifts in 1 cycle, multiplication in 2 to 5 cy-
cles, and normalisation in 2 or 3 cycles. The
FPU is capable of performing single pre-
cision addition and multiplication in 2 cy-
cles, and double precision multiplication in
3 cycles[3].

Finally, writes are made in the stage
of the pipeline. Typically, the address will
have been computed earlier, in the ad-
dress stage, and the value to be stored
will have been computed in the ALU/FPU
stage. All addresses written to are checked
to see whether they lie within the workspace
cache, and if they do the workspace cache
is updated, ensuring that it remains consis-
tant with the memory.

The T9000 processor uses pipeline parallelism in

a fat (multiple execution unit) pipeline to achieve fast
execution of the transputer instruction set. The max-
imum size of group the pipeline can accept is deter-
mined by the instruction fetcher and grouper examin-
ing upto 8 bytes at once. The pipeline can accept 1
group per cycle (peak), which gives a maximum ex-
ecution rate of 8 instructions per cycle. However, as
the T9000 can fetch only 4 bytes per cycle, the peak
sustainable instruction execution rate of the T9000 is
only 4 instructions per cycle (200 MIPS).

The external communications of the T9000 are
managed by a communications processor called the
VCP. The main function of this subsystem is to
accept high-level communications commands from
the processor and translate them into sequences of
packet exchanges on the serial links obeying a strict
protocol.

The VCP multiplexes simultaneous communica-
tions on an arbitrary number of virtual channels. It
does this by keeping information relating to each vir-
tual channel in a data structure in memory called
a VLCB. Each time a packet relating to a particu-
lar channel is to be sent, the VCP adds the corre-
sponding VLCB to a linked list. As each VLCB is
taken from the head of a list, the VCP sets up a DMA
transfer directly from the workspace of the commu-
nicating process to one of the four (100 Mbit/s, full-
duplex) serial links. Every packet starts with a header
taken from the VLCB and contains at most 32 bytes
of data, giving a effective bi-directional data rate of
upto 17.6 Mbytes/s per serial link. Accesses to the
VLCBs require a further memory bandwidth of around
20 Mbytes/s, giving a total bandwidth requirement of
the order of 100 Mbytes/s which is met by three ports
on to the cross-bar.

The VCP consists mainly of two DMA controllers
and three large state machines, implemented as mi-
crocoded datapaths. The first state machine accepts
high-level commands from the CPU and performs
corresponding operations on the VLCBs, adding
them to linked lists as required. The second state
machine removes VLCBs from the linked lists and
programs the output DMA controller to transmit the
required packets. The third state machine decodes
incoming packets, programs the input DMA controller
to store data directly into the workspaces of the com-
municating processes, updates the corresponding

�

�

�

�

load local

load local

address

non-local
write

store local load local

non-local

ALU/FPU

write

6 Communication System



VLCBs and puts them back on linked lists if more
packets need to be sent. The behaviour of each mi-
crocoded machine is highly conditional, and so the
microcode ROMs were designed so that conditions
stable as little as 6 ns before the end of a cycle de-
termine the state on the next cycle.

The three main state machines operate concur-
rently and asynchronously, to deliver high sustained
performance when many channels are active at once.
This necessitates several interlocks to ensure con-
sistent behaviour; for example, the first packet of a
message may arrive either before, after, or simulta-
neously with the command from the CPU which de-
termines the correct destination for the message. To
prevent unnecessary performance degradation, most
interlocks operate on a per-channel basis, using the
virtual channel number as input to a comparator.

The input DMA controller includes a cache-line
buffer. Whenever this buffer is completely filled
by data in an incoming packet, the DMA controller
makes a special access to the cache, so that if a miss
occurs the line is allocated in the cache but not filled
from external memory, thus saving external memory
bandwidth. The output DMA controller is pipelined
in three stages, which are parameter set-up, packet
transmission and possible rescheduling of the pro-
cess sending the message. This pipelining ensures
that packets are sent continuously as long as there
is a non-empty queue.

The four serial links, called DS-Links, transmit at
a finely-programmable speed upto 100 Mbits/s using
a novel two-wire encoding which requires a maxi-
mum frequency of only 50 Mhz on each wire. One
wire carries the digital signal and the other wire (the
‘strobe’) changes state only when the data does not.
In this way only one wire is changing state at a given
moment. This encoding is decoded with self-timed
logic which has only to discriminate the order in which
edges occur on the two wires, giving a whole bit-time
of skew tolerance. The self-timed decoding circuitry
enables a DS-Link to receive data at any rate, re-
gardless of its transmission speed. DS-Links trans-
mit each byte of data as a 10-bit sequence, which in-
cludes a parity check bit and a flag to distinguish con-
trol sequences. These control sequences are used
to deliniate the ends of packets, and to implement
a strict byte-level flow-control mechanism which en-
sures that data is never overwritten.

The T9000 transputer has high performance pro-
cessor. This has been achieved by extensive use of
caching and a novel processor implementation. The
processor uses a fat pipeline and dispatches sev-
eral dependent instructions into the pipeline each cy-
cle. The resulting processor is able to saturate a
25 MFLOP floating point unit. The processor is sup-
ported by a communications system which supports
communications at high speed and low latency. The
close integration of the processor, communications
system and cache takes full advantage of the capa-
bilities of VLSI technology, enabling a high degree of
concurrent operation.

The development of the T9000 transputer was
supported by the CEC within the ESPRIT pro-
gramme.

[1] INMOS Limited,
, INMOS Limited, 1991

[2] INMOS Limited,
, Prentice Hall, 1988

[3] Simon Knowles,
, ASPAAI-2, SPIE San

Diego, July 1991

[4] D May, R Shepherd:
, proceedings of the Sec-

ond International Conference on Fifth Genera-
tion Computers, Tokyo 1985

The T9000 transputer products
overview manual

Transputer Instruction Set - a
compiler writer’s guide

Arithmetic Processor Design
for the T9000 Transputer

The Transputer Imple-
mentation of occam

7 Summary

8 Acknowledgements

References


	The T9000 Transputer
	Abstract
	1 Introduction
	2 Overview
	3 Interconnection and memory structure
	4 Cache
	5 Processor
	6 Communication System
	7 Summary
	8 Acknowledgements
	References


