


1/106

32 BIT MICROPROCESSOR
ENGINEERING DATA

FEATURES

■ Enhanced 32-bit CPU

• 0 to 40 MHz processor clock

• 32 MIPS at 40 MHz

• fast integer/bit operations

■ 16 Kbytes on-chip SRAM

• 160 Mbytes/s maximum bandwidth

■ Programmable memory interface

• 4 separately configurable regions

• 8/16/32-bits wide

• support for mixed memory

• 2 cycle external access

• support for page mode DRAM

■ Serial communications

• 4 OS-Links

• 5/10/20 Mbits/s Link0, 10/20 Mbits/s Link1-3

• Event channel

■ Vectored interrupt subsystem

• Fully prioritized interrupts

• 8 levels of preemption

• 500 ns response time

■ Power management

• low power operation

• power down mode

■ Professional toolset support

• ANSI C compiler and libraries

• INQUEST advanced debugging tools

■ Technology

• 0 to 40 MHz processor clock

• 0.5 micron process technology

• 3 V operation (3 V outputs/bi-directionals,
5 V inputs)

■ 208 pin PQFP package

■ Test Access Port

ST20450

The information in this datasheet is subject to change

42 1626 04September 1995

APPLICATIONS
■ Global positioning by satellite (GPS) receivers

■ ISDN terminals
■ ATM networks

■ Set top terminals
■ Industrial control

■ Imaging systems

S
T

20
B

us

32-bit
Processor

Interrupt

.

..

Interrupt

Interrupt

System
Services

Timers

External
Memory
Interface

16 Kbytes
SRAM

OS-Link

OS-Link

OS-Link

OS-Link

Event

ST20450 bug list

2/106


Trap enables word
This register contains the word which encodes the trap enable and global interrupt masks. This should be ANDed with
the existing masks to allow the trap handler to disable various events while it runs. However, currently the trap enables
word overwrites the existing enables.

With this implementation a trap must disable all other trap groups to ensure correct execution, this increases the difficulty
of writing nested trap handlers.

Analysing high priority processes
If the machine is running a high priority process before being analysed and the device is wired to boot from link, not
ROM, then the machine will resume execution of that high priority process as soon as it is released from analyse. The
Wptr will also be set back to MemStart .

This will cause the machine to crash, there is no workaround.

Disable external micro-interrupt requests
There are four possible combinations of enable/disable for high and low priority micro-interrupts, however only three are
supported. It is not recommended to disable high priority micro-interrupts with low priority interrupts enabled.

With this combination it is possible for high priority external events that are apparently disabled to be accepted as low
priority transactions.

Timer scheduler traps always run high priority handler
When a scheduler trap is set, the priority of the scheduler event is stored in the scheduler trap priority fieldof the Status
register. For Timer scheduler traps the priority is always recorded as high.

This results in the wrong trap handler being executed, which is fatal if there is no high priority scheduler trap installed.

Incorrect order of boundary-scan chain
Due to an error in the boundary-scan logic, EventWaiting effectively does not have a boundary-scan cell.

The consequence being that EXTEST will no longer function correctly for the EventWaiting pin. Revised boundary scan
description language (BSDL) is available.

Illegal configuration for strobes
If any strobe is configured with edge times of: e1time = 0, e2time = (castime*2) - 1 phases, that strobe will behave
erroneously when back to back accesses occur.

Erroneous address during RAS time for 16/8 bit accesses
An erroneous address may appear during the first cycle of RAS time whenever a multi-access transaction includes an
excursion into a precharge state, for example, if a series of 8-bit accesses are interrupted by a refresh.

The solution is to program the ShiftAmount for all banks with the same value. Memory banks consisting of SRAM only
will not be affected by the ShiftAmount value as it is not used unless RAS time is non zero anyway.

Divide and remainder instruction errors
The div (divide) and rem (remainder) instructions do not work correctly in some situations if the dividend is negative.

The compiler works around this by replacing each div and rem instruction with a code sequence which first checks the
sign of the dividend and, if it is negative, flips the sign, performs the operation and then flips the sign of the result.

Where these instructions are used explicitly in other toolset software, e.g. libraries, the workarounds have been hard
coded. Unlike compiler generated workarounds, it is not possible to disable such hard coded workarounds.

Contents

3/106


1 Introduction . 7

2 Architecture . 8

3 Central Processing Unit . 11

3.1 Registers .. 11

3.2 Processes and concurrency .. 12

3.3 Priority .. 14

3.4 Process communications ... 14

3.5 Timers .. 15

3.6 Traps and exceptions .. 16

3.6.1 Trap groups ... 16
3.6.2 Events that can cause traps .. 18
3.6.3 Trap handlers .. 19
3.6.4 Trap instructions .. 20
3.6.5 Restrictions on trap handlers ... 20

4 Interrupt controller . 21

4.1 Interrupt vector table .. 22

4.2 Interrupt handlers ... 22

4.3 Interrupt latency ... 23

4.4 Pre-emption and interrupt priority .. 23

4.5 Restrictions on interrupt handlers .. 24

4.6 Interrupt configuration registers ... 24

4.6.1 HandlerWptr0-7 registers .. 24
4.6.2 TriggerMode0-7 registers .. 24
4.6.3 Mask register ... 25
4.6.4 Pending register .. 26
4.6.5 Exec register ... 27

5 Instruction set . 28

5.1 Instruction cycles ... 28

5.2 Instruction characteristics .. 29

5.3 Instruction set tables .. 30

6 Memory map . 38

6.1 System memory use .. 38

6.1.1 Subsystem channels memory ... 38
6.1.2 Trap handlers memory .. 38

6.2 Boot ROM .. 39

6.3 Internal peripheral space ... 39

Contents

4/106


7 Memory subsystem . 41

7.1 SRAM .. 41

8 External memory interface . 42

8.1 Pin functions .. 43

8.2 External bus cycles .. 46

8.2.1 Refresh .. 48
8.2.2 Wait ... 49

8.3 EMI Configuration .. 50

8.3.1 ConfigCommand register .. 51
8.3.2 ConfigStatus register ... 52
8.3.3 ConfigDataField0-3 registers ... 52
8.3.4 Format of the data registers for transfers to/from register bank 0 54
8.3.5 Format of the data registers for transfers to/from register bank 1 57
8.3.6 Format of the data registers for transfers to/from register bank 2 58
8.3.7 Format of the data registers for transfers to/from register bank 3 59
8.3.8 Format of the data registers for transfers to/from PadDrive register 61

8.4 EMI initialization ... 62

8.4.1 Reset ... 62
8.4.2 Bootstrap ... 62
8.4.3 Initializing DRAM banks .. 62

9 System services . 64

9.1 Reset, initialization and debug ... 64

9.1.1 Reset ... 64
9.1.2 CPUAnalyse .. 64
9.1.3 Errors ... 64

9.2 Bootstrap ... 65

9.2.1 Booting from ROM ... 65
9.2.2 Booting from link .. 65
9.2.3 Peek and poke .. 65

10 Test Access Port . 67

11 Clocks and low power operation . 68

11.1 Clocks .. 68

11.1.1 Processor speed select ... 68
11.2 Low power control .. 68

11.2.1 Low power configuration registers ... 69
11.3 Wakeup times and power consumption during standby .. 70

11.4 Clocking sources ... 71

12 Serial link interface (OS-Link) . 72

12.1 OS-Link protocol .. 72

Contents

5/106


12.2 OS-Link speed ... 73

12.3 OS-Link connections .. 74

12.4 Event .. 75

13 Software development . 76

13.1 ST20 toolset ... 76

13.1.1 Debugging and profiling software .. 76

14 Configuration register addresses . 77

15 Electrical specifications . 79

15.1 Absolute maximum ratings .. 79

15.2 Operating conditions .. 79

15.3 DC specifications ... 80

16 Timing specifications . 81

16.1 EMI timings .. 81

16.2 Link timings .. 85

16.3 Reset and Analyse timings .. 86

16.4 Event timings ... 87

16.5 Clock timings ... 88

16.5.1 ClockIn and LinkClockIn timings ... 88
16.5.2 ProcClkOut timings .. 89

16.6 TAP timings ... 90

17 Pin designations . 91

18 Package specifications . 94

18.1 ST20450 package pinout ... 94

18.2 ST20450 208 pin PQFP package dimensions ... 95

18.3 ST20450 208 pin PQFP package thermal data ... 97

19 Ordering information . 98

A Boundary scan description language (BSDL) file . 99

Contents

6/106


ST20450

7/106



1 Introduction
The ST20 micro core family has been developed by SGS-THOMSON Microelectronics to provide
the tools and building blocks to enable the development of highly integrated, application specific
32-bit micros at the lowest cost and fastest time to market. The ST20 macrocell library includes the
ST20 family of 32-bit micro cores, embedded memory, standard peripherals, I/O, controllers and
customer specified ASICs.

Using ST20 macrocell technology SGS-THOMSON’s world-wide technology partners in markets
such as set top boxes, digital cellular handsets, hard disk drives and laser printers, are able to
specify optimized 32-bit microcontrollers for their applications. Using ST20 technology SGS-
THOMSON is able to develop these low cost application specific micros, from paper specification
to silicon in less than six months.

The ST20 family of 32-bit micro cores has been designed for applications ranging from deeply
embedded low cost portable systems to high performance applications requiring DSP type
performance. At the heart of each ST20 core is a highly efficient 32-bit RISC processor, running at
frequencies up to 40 MHz on 0.5 micron technology, and achieving up to 32 MIPS performance.
The ST20 RISC CPU has a very efficient instruction set and achieves ultra high code density
minimizing system ROM requirements and reducing system cost. The first member of the core
family, the ST20C4, is a high performance core incorporating the ST20 RISC CPU, the ST20 in-
core microkernel and the ST20 high performance arithmetic accelerator. The arithmetic accelerator
contains a dedicated hardware multiplier providing two cycle 32-bit multiply and a hardware barrel
shifter providing single cycle bit shift. The ST20 in-core microkernel is the highest performance
micro-kernel of any 32-bit core, directly supporting multi tasking, I/O, DMA, interrupts, trap handling
and timers. It combines the flexibility of a software RTOS with the performance of a microcoded
scheduler, achieving context switch and interrupt response times of less than 500ns. It also
provides a platform for the efficient por ting of industry standard run-time kernels and operating
systems (RTOS), making the ST20 ideal for interrupt driven real-time applications that require high
data throughput, combined with high performance data processing.

The first product developed using the ST20 macrocell library is the ST20450, incorporating the
ST20C4 core, 16 Kbytes of on-chip memory for fast access to local code, a vectored interrupt
controller, serial I/O links, and a multi-bank external memory controller supporting SRAM, DRAM,
ROM and memory mapped peripherals. The ST20450 has been designed for a class of
applications that require high CPU performance and real time execution coupled with low power
operation, including ISDN terminals, ATM networks and industrial control systems. Furthermore,
the ST20450 acts as a reference platform for all future ST20 application specific designs .

To support the fast turnaround development of ST20 application specific micros an integrated
software and hardware development environment has been developed to enable efficient, high
performance code to be written and debugged, and system hardware to be simulated, developed
and tested. This includes a complete professional ANSI-C software toolset, and the INQUEST
window based debugging tools supporting PC and UNIX hosts.

ST20450

8/106



2 Architecture
Figure 2.1 shows the subsystem modules that comprise the ST20450. These modules are outlined
below and more detailed information is given in the following chapters of this datasheet.

Figure 2.1 ST20450 architectural block diagram

The modules are connected via the ST20 Bus. The ST20 Bus is based on two buses, the memory
bus and the command bus. The memory bus is used to access all memory in an ST20450 system,
both internal and external. It supports single cycle pipelined accesses with two cycle latency. The

OS-Link
Communications

Subsystem

Memory Bus

Command (PI-Bus)

External
Memory
Interface

Interrupt Sub-
system

External
Memory
Bus

Command
Controller

System
Services

Memory
Controller

Internal
SRAM

CPU
Subsystem

External
interrupts

OS-Links

Reset
Analyse
Error
Test access port
Clock

Event

ST20 Bus

ST20450

9/106



command bus is used for interfacing to standard peripherals and sending control information
between ST20450 subsystems. The command bus supports point to point message passing using
channel communications, and supports the PI-Bus protocol whereby a subsystem can directly
access a memory mapped peripheral.

CPU

The Central Processing Unit (CPU) on the ST20450 is the ST20 32-bit processor core. It contains
instruction processing logic, instruction and data pointers, and an operand register. It directly
accesses the high speed on-chip memory, which can store data or programs. Where larger
amounts of memory are required, the processor can access memory via the External Memory
Interface (EMI).

Memory subsystem

The ST20450 on-chip memory system provides 200 Mbytes/s internal data bandwidth, supporting
pipelined 2-cycle internal memory access at 25 ns cycle times. The ST20450 memory system
consists of SRAM and an external memory interface (EMI). The first ST20450 product has 16
Kbytes of on-chip SRAM.

ST20450 derivative products will have a minimum of 4 Kbytes of on-chip SRAM. The advantage of
this is the ability to store time critical code on chip, for instance interrupt routines, software kernels
or device drivers, and even frequently used data. Furthermore small systems could place all code
and data on-chip, increasing performance and reducing system cost.

The ST20450 External Memory Interface (EMI) controls the movement of data between the
ST20450 and off-chip memory. It is designed to support memory subsystems with minimal (often
zero) external support logic and is programmable to support a wide range of memory types.

The ST20450 EMI can access a 4 Gbyte physical address space, and provides sustained transfer
rates of up to 100 Mbytes/s for SRAM, up to 89 Mbytes/s using page-mode DRAM.

Communications subsystem

The ST20450 has an OS-Link based serial communications subsystem. OS-Links use an
asynchronous bit-serial (byte-stream) protocol, each bit received is sampled five times, hence the
term oversampled links (OS-Links). Each OS-Link provides a pair of channels, one input and one
output channel.

There are four OS-Links (Link0-3) on the ST20450 which act as individual DMA engines
independent of the CPU. The OS-Links have programmable unidirectional data rates of 10 Mbits/s
or 20 Mbits/s, giving a bi-directional bandwidth of 3 Mbytes/s. Link0 can also be run at 5 Mbits/s.
The links are used for:

• interfacing to external peripherals

• bootstrapping

• debugging

Interrupt subsystem

The ST20450 interrupt subsystem supports eight prioritized interrupts. This allows nested pre-
emptive interrupts for real-time system design.

System services module

The ST20450 system services module includes:

• reset, initialization and error port.

ST20450

10/106



• phase locked loop (PLL) - accepts 5 MHz input and generates all the internal high fre-
quency clocks needed for the CPU and the OS-Links.

• test access port.

ST20450

11/106



3 Central Processing Unit
The Central Processing Unit (CPU) is the ST20 32-bit processor core. It contains instruction
processing logic, instruction and data pointers, and an operand register. It can directly access the
high speed on-chip memory, which can store data or programs. Where larger amounts of memory
are required, the processor can access memory via the External Memory Interface (EMI).

The processor provides high performance:

• Fast integer multiply - 3 cycle multiply

• Fast bit shift - single cycle barrel shifter

• Byte and part-word handling

• Scheduling and interrupt support

• 64-bit integer arithmetic support

The scheduler provides a single level of pre-emption. In addition, multi-level pre-emption is
provided by the interrupt subsystem, see Chapter 4 for details. Additionally, there is a per-priority
trap handler to improve the support for arithmetic errors and illegal instructions, refer to section 3.6.

3.1 Registers

The CPU contains six registers which are used in the execution of a sequential integer process.
The six registers are:

• The workspace pointer (Wptr) which points to an area of store where local data is kept.

• The instruction pointer (IptrReg) which points to the next instruction to be executed.

• The status register (StatusReg).

• The Areg , Breg and Creg registers which form an evaluation stack.

The Areg , Breg and Creg registers are the sources and destinations for most arithmetic and
logical operations. Loading a value into the stack pushes Breg into Creg , and Areg into Breg ,
before loading Areg . Storing a value from Areg , pops Breg into Areg and Creg into Breg . Creg is
left undefined.

Figure 3.1 Registers used in sequential integer processes

Areg

Breg

Creg

Wptr

IptrReg

Local data ProgramRegisters

ST20450

12/106



Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For
example, the add instruction adds the top two values in the stack and places the result on the top of
the stack. The use of a stack removes the need for instructions to explicitly specify the location of
their operands. No hardware mechanism is provided to detect that more than three values have
been loaded onto the stack; it is easy for the compiler to ensure that this never happens.

Note that a location in memory can be accessed relative to the workspace pointer, enabling the
workspace to be of any size.

The use of shadow registers provides fast, simple and clean context switching.

3.2 Processes and concurrency

The following section describes ‘default’ behavior of the CPU and it should be noted that the user
can alter this behavior, for example, by disabling timeslicing, installing a user scheduler, etc.

A process starts, performs a number of actions, and then either stops without completing or
terminates complete. Typically, a process is a sequence of instructions. The CPU can run several
processes in parallel (concurrently). Processes may be assigned either high or low priority, and
there may be any number of each.

The processor has a microcoded scheduler which enables any number of concurrent processes to
be executed together, sharing the processor time. This removes the need for a software kernel,
although kernels can still be written if desired.

At any time, a process may be

active - being executed
- interrupted by a higher priority process
- on a list waiting to be executed

inactive - waiting to input
- waiting to output
- waiting until a specified time

The scheduler operates in such a way that inactive processes do not consume any processor time.
Each active high priority process executes until it becomes inactive. The scheduler allocates a
portion of the processor’s time to each active low priority process in turn (see Section 3.3 on
page 14). Active processes waiting to be executed are held in two linked lists of process
workspaces, one of high priority processes and one of low priority processes. Each list is
implemented using two registers, one of which points to the first process in the list, the other to the
last. In the linked process list shown in Figure 3.2, process S is executing and P, Q and R are
active, awaiting execution. Only the low priority process queue registers are shown; the high
priority process ones behave in a similar manner.

ST20450

13/106



Figure 3.2 Linked process list

Table 3.1 Priority queue control registers

Each process runs until it has completed its action or is descheduled. In order for several
processes to operate in parallel, a low priority process is only permitted to execute for a maximum
of two timeslice periods. After this, the machine deschedules the current process at the next
timeslicing point, adds it to the end of the low priority scheduling list and instead executes the next
active process. The timeslice period is 1ms.

There are only certain instructions at which a process may be descheduled. These are known as
descheduling points. A process may only be timesliced at certain descheduling points. These are
known as timeslicing points and are defined in such a way that the operand stack is always empty.
This removes the need for saving the operand stack when timeslicing. As a result, an expression
evaluation can be guaranteed to execute without the process being timesliced part way through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace
and the next process taken from the list.

The processor core provides a number of special instructions to support the process model,
including startp (start process) and endp (end process). When a main process executes a parallel
construct, startp is used to create the necessary additional concurrent processes. A startp
instruction creates a new process by adding a new workspace to the end of the scheduling list,
enabling the new concurrent process to be executed together with the ones already being
executed. When a process is made active it is always added to the end of the list, and thus cannot
pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the endp instruction. This uses
a data structure that includes a counter of the parallel construct components which have still to

Function High priority Low priority

Pointer to front of active process list FptrReg0 FptrReg1

Pointer to back of active process list BptrReg0 BptrReg1

P

Q

R

S

FptrReg1

Local DataRegisters Program

BptrReg1

Iptr.s
Link.s

Iptr.s
Link.s

Iptr.s

Wptr

IptrReg

Areg

Breg

Creg

ST20450

14/106



terminate. The counter is initialized to the number of components before the processes are started.
Each component ends with an endp instruction which decrements and tests the counter. For all but
the last component, the counter is non zero and the component is descheduled. For the last
component, the counter is zero and the main process continues.

3.3 Priority

The following section describes ‘default’ behavior of the CPU and it should be noted that the user
can alter this behavior, for example, by disabling timeslicing and priority interrupts.

The processor can execute processes at one of two priority levels, one level for urgent (high
priority) processes, one for less urgent (low priority) processes. A high priority process will always
execute in preference to a low priority process if both are able to do so.

High priority processes are expected to execute for a short time. If one or more high priority
processes are active, then the first on the queue is selected and executes until it has to wait for a
communication, a timer input, or until it completes processing.

If no process at high priority is active, but one or more processes at low priority are active, then one
is selected. Low priority processes are periodically timesliced to provide an even distribution of
processor time between computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority
process becomes active to the time when it starts processing is the order of 2n timeslice periods. It
is then able to execute for between one and two timeslice periods, less any time taken by high
priority processes. This assumes that no process monopolizes the CPU’s time; i.e. it has frequent
timeslicing points.

The specific condition for a high priority process to start execution is that the CPU is idle or running
at low priority and the high priority queue is non-empty.

If a high priority process becomes able to run whilst a low priority process is executing, the low
priority process is temporarily stopped and the high priority process is executed. The state of the
low priority process is saved into ‘shadow’ registers and the high priority process is executed.
When no further high priority processes are able to run, the state of the interrupted low priority
process is re-loaded from the shadow registers and the interrupted low priority process continues
executing. Instructions are provided on the processor core to allow a high priority process to store
the shadow registers to memory and to load them from memory. Instructions are also provided to
allow a process to exchange an alternative process queue for either priority process queue (see
Table 5.21 on page 36). These instructions allow extensions to be made to the scheduler for
custom runtime kernels.

A low priority process may be interrupted after it has completed execution of any instruction. In
addition, to minimize the time taken for an interrupting high priority process to start executing, the
potentially time consuming instructions are interruptible. Also some instructions are abortable and
are restarted when the process next becomes active (refer to the Instruction Set chapter).

3.4 Process communications

Communication between processes takes place over channels, and is implemented in hardware.
Communication is point-to-point, synchronized and unbuffered. As a result, a channel needs no
process queue, no message queue and no message buffer.

ST20450

15/106



A channel between two processes executing on the same CPU is implemented by a single word in
memory; a channel between processes executing on different processors is implemented by point-
to-point links. The processor provides a number of operations to support message passing, the
most important being in (input message) and out (output message).

The in and out instructions use the address of the channel to determine whether the channel is
internal or external. This means that the same instruction sequence can be used for both hard and
soft channels, allowing a process to be written and compiled without knowledge of where its
channels are implemented.

Communication takes place when both the inputting and outputting processes are ready.
Consequently, the process which first becomes ready must wait until the second one is also ready.
The inputting and outputting processes only become active when the communication has
completed.

A process performs an input or output by loading the evaluation stack with, a pointer to a message,
the address of a channel, and a count of the number of bytes to be transferred, and then executing
an in or out instruction.

3.5 Timers

There are two 32-bit hardware timer clocks which ‘tick’ periodically. These are independent of any
on-chip peripheral real time clock. The timers provide accurate process timing, allowing processes
to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond,
cycling completely in approximately 4295 seconds. The other is accessible only to low priority
processes and is incremented every 64 microseconds, giving 15625 ticks in one second. It has a
full period of approximately 76 hours. All times are approximate due to the clock rate.

Table 3.2 Timer registers

The current value of the processor clock can be read by executing a ldtimer (load timer) instruction.
A process can arrange to perform a tin (timer input), in which case it will become ready to execute
after a specified time has been reached. The tin instruction requires a time to be specified. If this
time is in the ‘past’ then the instruction has no effect. If the time is in the ‘future’ then the process is
descheduled. When the specified time is reached the process becomes active. In addition, the
ldclock (load clock), stclock (store clock) instructions allow total control over the clock value and the
clockenb (clock enable), clockdis (clock disable) instructions allow each clock to be individually
stopped and re-started.

Figure 3.3 shows two processes waiting on the timer queue, one waiting for time 21, the other for
time 31.

Register Function

ClockReg0 Current value of high priority (level 0) process clock

ClockReg1 Current value of low priority (level 1) process clock

TnextReg0 Indicates time of earliest event on high priority (level 0) timer queue

TnextReg1 Indicates time of earliest event on low priority (level 1) timer queue

TptrReg0 High priority timer queue

TptrReg1 Low priority timer queue

ST20450

16/106



Note, these timers stop counting when power-down mode (see Chapter 11) is invoked.

Figure 3.3 Timer registers

3.6 Traps and exceptions

A software error, such as arithmetic overflow or array bounds violation, can cause an error flag to
be set in the CPU. The flag is directly connected to the ErrorOut pin. Both the flag and the pin can
be ignored, or the CPU stopped. Stopping the CPU on an error means that the error cannot cause
further corruption. As well as containing the error in this way it is possible to determine the state of
the CPU and its memory at the time the error occurred. This is particularly useful for postmortem
debugging where the debugger can be used to examine the state and history of the processor
leading up to and causing the error condition.

In addition, if a trap handler process is installed, a variety of traps/exceptions can be trapped and
handled by software. A user supplied trap handler routine can be provided for each high/low
process priority level. The handler is started when a trap occurs and is given the reason for the
trap. The trap handler is not re-entrant and must not cause a trap itself within the same group. All
traps are individually maskable.

3.6.1 Trap groups

The trap mechanism is arranged on a per priority basis. For each priority there is a handler for each
group of traps, as shown in Figure 3.4.

ClockReg0

TnextReg0

TptrReg0

Workspaces
Program

5

21

31

Empty

comparator

Alarm 21

ST20450

17/106



Figure 3.4 Trap arrangement

There are four groups of traps, as detailed below.

• Breakpoint

This group consists of the Breakpoint trap. The breakpoint instruction (j0) calls the break-
point routine via the trap mechanism.

• Errors

The traps in this group are IntegerError and Overflow. Overflow represents arithmetic over-
flow, such as arithmetic results which do not fit in the result word. IntegerError represents
errors caused when data is erroneous, for example when a range checking instruction finds
that data is out of range.

• System operations

This group consists of the LoadTrap, StoreTrap and IllegalOpcode traps. The IllegalOpcode
trap is signalled when an attempt is made to execute an illegal instruction. The LoadTrap
and StoreTrap traps allow a kernel to intercept attempts by a monitored process to change
or examine trap handlers or trapped process information. It enables a user program to sig-
nal to a kernel that it wishes to install a new trap handler.

• Scheduler

The scheduler trap group consists of the ExternalChannel, InternalChannel, Timer, TimeS-
lice, Run, Signal, ProcessInterrupt and QueueEmpty traps. The ProcessInterrupt trap sig-
nals that the machine has performed a priority interrupt from low to high. The QueueEmpty
trap indicates that there is no further executablework to perform. The other traps in this
group indicate that the hardware scheduler wants to schedule a process on a process
queue, with the different traps enabling the different sources of this to be monitored.

The scheduler traps enable a software scheduler kernel to use the hardware scheduler to
implement a multi-priority software scheduler.

Note that scheduler traps are different from other traps as they are caused by the micro-
scheduler rather than by an executing process.

Low priority traps High priority traps

Breakpoint
trap handler

Error
trap handler

System operations
trap handler

Scheduler
trap handler

Breakpoint
trap handler

Error
trap handler

System operations
trap handler

Scheduler
trap handler

ST20450

18/106



Trap groups encoding is shown in Table 3.3 below. These codes are used to identify trap groups to
various instructions.

Table 3.3 Trap group codes

In addition to the trap groups mentioned above, the CauseError flag in the Status register is used
to signal when a trap condition has been activated by the causeerror instruction. It can be used to
indicate when trap conditions have occurred due to the user setting them, rather than by the
system.

3.6.2 Events that can cause traps

Table 3.4 summarizes the events that can cause traps and gives the encoding of bits in the trap
Status and Enable words.

Table 3.4 Trap causes and Status /Enable codes

Trap group Code

Breakpoint 0

CPU Errors 1

System operations 2

Scheduler 3

Trap cause Status/Enable
codes

Trap
group

Comments

Breakpoint 0 0 When a process executes the breakpoint instruction (j0) then it traps
to its trap handler.

IntegerError 1 1 Integer error other than integer overflow - e.g. explicitly checked or
explicitly set error.

Overflow 2 1 Integer overflow or integer division by zero.

IllegalOpcode 3 2 Attempt to execute an illegal instruction. This is signalled when opr
is executed with an invalid operand.

LoadTrap 4 2 When the trap descriptor is read with the ldtraph instruction or when
the trapped process status is read with the ldtrapped instruction.

StoreTrap 5 2 When the trap descriptor is written with the sttraph instruction or when
the trapped process status is written with the sttrapped instruction.

InternalChannel 6 3 Scheduler trap from internal channel.

ExternalChannel 7 3 Scheduler trap from external channel.

Timer 8 3 Scheduler trap from timer alarm.

Timeslice 9 3 Scheduler trap from timeslice.

Run 10 3 Scheduler trap from runp (run process) or startp (start process).

Signal 11 3 Scheduler trap from signal.

ProcessInterrupt 12 3 Start executing a process at a new priority level.

QueueEmpty 13 3 Caused by no process active at a priority level.

CauseError 15 (Status only) Any,
encoded

0-3

Signals that the causeerror instruction set the trap flag.

ST20450

19/106



3.6.3 Trap handlers

For each trap handler there is a trap handler structure and a trapped process structure. Both the
trap handler structure and the trapped process structure are in memory and can be accessed via
instructions, see Section 3.6.4.

The trap handler structure specifies what should happen when a trap condition is present, see
Table 3.5.

Table 3.5 Trap handler structure

The trapped process structure saves some of the state of the process that was running when the
trap was taken, see Table 3.6.

Table 3.6 Trapped process structure

In addition, for each priority, there is an Enables register and a Status register. The Enables
register contains flags to enab le each cause of trap. The Status register contains flags to indicate
which trap conditions have been detected. The Enables and Status register bit encodings are
given in Table 3.4.

A trap will be taken at an interruptible point if a trap is set and the corresponding trap enable bit is
set in the Enables register. If the trap is not enabled then nothing is done with the trap condition. If
the trap is enabled then the corresponding bit is set in the Status register to indicate the trap
condition has occurred.

When a process takes a trap the processor saves the existing Iptr , Wptr , Status and Enables in
the trapped process structure. It then loads Iptr , Wptr and Status from the equivalent trap handler
structure and ANDs the value in Enables with the value in the structure. This allows the user to
disable various events while in the handler, in particular a trap handler must disable all the traps of
its trap group to avoid the possibility of a handler trapping to itself.

The trap handler then executes. The values in the trapped process structure can be examined
using the ldtrapped instruction (see Section 3.6.4). When the trap handler has completed its
operation it returns to the trapped process via the tret (trap return) instruction. This reloads the
values saved in the trapped process structure and clears the trap flag in Status .

Note that when a trap handler is started, Areg , Breg and Creg are not saved. The trap handler
must save the Areg , Breg , Creg registers using stl (store local).

Comments

Iptr Iptr of trap handler process. Base + 3

Wptr Wptr of trap handler process. A null Wptr indicates that a trap handler has not been installed. Base + 2

Status Contains the Status register that the trap handler starts with. Base + 1

Enables Contains a word which encodes the trap enable and global interrupt masks which will be
ANDed with the existing masks to allow the trap handler to disable various events while it
runs.

Base + 0

Comments

Iptr Points to the instruction after the one that caused the trap condition. Base + 3

Wptr Wptr of the process that was running when the trap was taken. Base + 2

Status The relevant trap bit is set, see Table 3.4 for trap codes. Base + 1

Enables Interrupt enables. Base + 0

ST20450

20/106



3.6.4 Trap instructions

Trap handlers and trapped processes can be set up and examined via the ldtraph, sttraph,
ldtrapped and sttrapped instructions. Table 3.7 describes the instructions that may be used when
dealing with traps.

Table 3.7 Instructions which may be used when dealing with traps

The first four instructions transfer data to/from the trap handler structures or trapped process
structures from/to an area in memory. In these instructions Areg contains the trap group code (see
Table 3.3) and Breg points to the 4 word area of memory used as the source or destination of the
transfer. In addition Creg contains the priority of the handler to be installed/examined in the case of
ldtraph or sttraph. ldtrapped and sttrapped apply only to the current priority.

If the LoadTrap trap is enabled then ldtraph and ldtrapped do not perform the transfer but set the
LoadTrap trap flag. If the StoreTrap trap is enabled then sttraph and sttrapped do not perform the
transfer but set the StoreTrap trap flag.

The trap enable masks are encoded by an array of bits (see Table 3.4) which are set to indicate
which traps are enabled. This array of bits is stored in the lower half-word of the Enables register.
There is an Enables register for each priority. Traps are enabled or disabled by loading a mask into
Areg with bits set to indicate which traps are to be affected and the priority to affect in Breg .
Executing trapenb ORs the mask supplied in Areg with the trap enables mask in the Enables
register for the priority in Breg . Executing trapdis negates the mask supplied in Areg and ANDs it
with the trap enables mask in the Enables register for the priority in Breg . Both instructions return
the previous value of the trap enables mask in Areg .

3.6.5 Restrictions on trap handlers

There are various restrictions that must be placed on trap handlers to ensure that they work
correctly.

1 Trap handlers must not deschedule or timeslice. Trap handlers alter the Enables masks,
therefore they must not allow other processes to execute until they have completed.

2 Trap handlers must have their Enable masks set to mask all traps in their trap group to
avoid the possibility of a trap handler trapping to itself.

3 Trap handlers must terminate via the tret (trap return) instruction. The only exception to this
is that a scheduler kernel may use restart to return to a previously shadowed process.

Instruction Meaning Use

ldtraph load trap handler load the trap handler from memory to the trap handler descriptor

sttraph store trap handler store an existing trap handler descriptor to memory

ldtrapped load trapped load replacement trapped process status from memory

sttrapped store trapped store trapped process status to memory

trapenb trap enable enable traps

trapdis trap disable disable traps

tret trap return used to return from a trap handler

causeerror cause error program can simulate the occurrence of an error

ST20450

21/106



4 Interrupt controller
The ST20450 supports external interrupts, enabling an on-chip subsystem or external interrupt pin
to interrupt the currently running process in order to run an interrupt handling process.

The ST20450 interrupt subsystem supports eight prioritized interrupts. This allows nested pre-
emptive interrupts for real-time system design.

All interrupts have a higher priority than the high priority process queue. Each interrupt level has a
higher priority than the previous (interrupt 7 is the highest priority, interrupt 0 is lowest priority) and
each level supports only one software handler process.

Figure 4.1 Interrupt priority

Interrupts on the ST20450 are implemented via an on-chip interrupt controller peripheral. An
interrupt can be signalled to the controller by one of the following:

• a signal on an external Interrupt0-7 pin

• software asserting an interrupt in a bit mask

Interrupt 7

Interrupt 1

Interrupt 0

High priority

Low priority

Increasing
pre-emption

.

...

process

process

ST20450

22/106



4.1 Interrupt vector table

Each interrupt level has an external Interrupt pin to trigger it and a vector table used to associate a
software handler with the interrupt level.

The interrupt controller contains a table of pointers to interrupt handlers. Each interrupt handler is
represented by its workspace pointer (Wptr). The table contains a workspace pointer for each level
of interrupt.

The Wptr gives access to the code, data and interrupt save space of the interrupt handler. The
position of the Wptr in the interrupt table implies the priority of the interrupt.

Run-time library support is provided for setting and programming the vector table.

4.2 Interrupt handlers

At any interruptible point in its execution the CPU can receive an interrupt request from the
interrupt controller. The CPU immediately acknowledges the request.

In response to receiving an interrupt the CPU performs a procedure call to the process in the
vector table. The state of the interrupted process is stored in the workspace of the interrupt handler
as shown in Figure 4.2. Each interrupt level has its own workspace.

Figure 4.2 State of interrupted process

The interrupt routine is initialized with space below Wptr . The Iptr and Status word for the routine
are stored there permanently.This should be programmed before the Wptr is written into the vector
table. The behavior of the interrupt differs depending on the priority of the CPU when the interrupt
occurs.

Handler Status

Before interrupt

Wptr

Handler Iptr

Areg

Breg

Creg

Interrupting high priority

Wptr

Wptr

Iptr

Status

Wptr

Null Status

process
Interrupting low priority

process or CPU idle

Handler Status

Handler Iptr

Handler Status

Handler Iptr

ST20450

23/106



When an interrupt occurs when the CPU was running at high priority, the CPU saves the current
process state (Areg , Breg , Creg , Wptr , Iptr and Status) into the workspace of the interrupt
handler. The value HandlerWptr , which is stored in the interrupt controller, points to the top of this
workspace. The values of Iptr and Status to be used by the interrupt handler are loaded from this
workspace and starts executing the handler. The value of Wptr is then set to the bottom of this
save area.

When an interrupt occurs when the CPU was idle or running at low priority, the Status is saved.
This indicates that no valid process is running (Null Status). The interrupted processes (low priority
process) state is stored in shadow registers. This state can be accessed via the ldshadow and
stshadow instructions. The interrupt handler is then run at high priority.

When the interrupt routine has completed it must adjust Wptr to the value at the start of the
handler code and then execute the iret (interrupt return) instruction. This restores the interrupted
state from the interrupt handler structure and signals to the interrupt controller that the interrupt has
completed. The processor will then continue from where it was before being interrupted.

4.3 Interrupt latency

The interrupt latency is dependant on the data being accessed and the position of the interrupt
handler and the interrupted process. This allows systems to be designed with the best trade-off use
of fast internal memory and interrupt latency.

4.4 Pre-emption and interrupt priority

Each interrupt channel has an implied priority fixed by its place in the interrupt vector table. All
interrupts will cause scheduled processes of any priority to be suspended and the interrupt handler
started. Once an interrupt has been sent from the controller to the CPU the controller keeps a
record of the current executing interrupt priority. This is only cleared when the interrupt handler
executes a return from interrupt (iret) instruction. Interrupts of a lower priority arriving will be
blocked by the interrupt controller until the interrupt priority has descended to such a level that the
routine will execute. An interrupt of a higher priority than the currently executing handler will be
passed to the CPU and cause the current handler to be suspended until the higher priority interrupt
is serviced.

In this way interrupts can be nested and a higher priority interrupt will always pre-empt a lower
priority one. Deep nesting and placing frequent interrupts at high priority can result in a system
where low priority interrupts are never serviced or the controller and CPU time are consumed in
nesting interrupt priorities and not executing the interrupt handlers.

ST20450

24/106



4.5 Restrictions on interrupt handlers

There are various restrictions that must be placed on interrupt handlers to ensure that they interact
correctly with the rest of the process model implemented in the CPU.

1 Interrupt handlers must not deschedule.

2 Interrupt handlers must not execute communication instructions. However they may com-
municate with other processes through shared variables using the semaphore signal to
synchronize.

3 Interrupt handlers must not perform block move instructions.

4 Interrupt handlers must not cause program traps. However they may be trapped by a
scheduler trap.

4.6 Interrupt configuration register s

The interrupt controller is allocated a 4k block of memory in the internal peripheral address space.
Information on interrupts is stored in registers as detailed in the following section. The registers can
be examined and set by the devlw (device load word) and devsw (device store word) instructions.
Note, they can not be accessed using memory instructions.

4.6.1 HandlerWptr0-7 registers

The HandlerWptr0-7 registers (1 per interrupt) contain a pointer to the workspace of the interrupt
handler.

Note, before the interrupt is enabled, by writing a 1 in the Mask register, the user (or toolset) must
ensure that there is a valid Wptr in the register.

4.6.2 TriggerMode0-7 registers

Each interrupt channel can be programmed to trigger on rising/falling edges or high/low levels on
the external Interrupt pin.

HandlerWptr0-7 #20000000 to #2000001C Read/Write

Bit Bit field Function

31:2 HandlerWptr Pointer to the workspace of the interrupt handler.

1:0 Reserved. Write 0.

Table 4.1 Bit fields in the HandlerWptr0-7 registers - one register per interrupt

ST20450

25/106



Table 4.2 Bit fields in the TriggerMode0-7 registers - one register per interrupt

Note, level triggering is different to edge triggering in that if the input is held at the triggering level, a
continuous stream of interrupts is generated.

4.6.3 Mask register

An interrupt mask register is provided in the interrupt controller to selectively enable or disable
external interrupts. This mask register also includes a global interrupt disable bit to disable all
external interrupts whatever the state of the individual interrupt mask bits.

To complement this the interrupt controller also includes an interrupt pending register which
contains a pending flag for each interrupt channel. The Mask register performs a masking function
on the Pending register to give control over what is allowed to interrupt the CPU while retaining the
ability to continually monitor external interrupts.

On start-up, the Mask register is initialized to zero’s, thus all interrupts are disabled, both globally
and individually. When a 1 is written to the GlobalEnable bit, the individual interrupt bits are still
disabled and must also have a 1 individually written to them to enable them.

Table 4.3 Bit fields in the Mask register

TriggerMode0-7 #20000040 to #2000005C Read/Write

Bit Bit field Function

2:0 Trigger Control the triggering condition of the Interrupt pin, as follows:
Trigger2:0 Interrupt triggers on

000 no trigger mode
001 High level - triggered while input high
010 Low level - triggered while input low
011 Rising edge - low to high transition
100 Falling edge - high to low transition
101 Any edge - triggered on rising and falling edges
110 no trigger mode
111 no trigger mode

Mask #200000C0 Read/Write

Bit Bit field Function

0 Interrupt0Enable When set to 1, interrupt 0 enabled. When 0, interrupt 0 disabled.

1 Interrupt1Enable When set to 1, interrupt 1 enabled. When 0, interrupt 1 disabled.

2 Interrupt2Enable When set to 1, interrupt 2 enabled. When 0, interrupt 2 disabled.

3 Interrupt3Enable When set to 1, interrupt 3 enabled. When 0, interrupt 3 disabled.

4 Interrupt4Enable When set to 1, interrupt 4 enabled. When 0, interrupt 4 disabled.

5 Interrupt5Enable When set to 1, interrupt 5 enabled. When 0, interrupt 5 disabled.

6 Interrupt6Enable When set to 1, interrupt 6 enabled. When 0, interrupt 6 disabled.

7 Interrupt7Enable When set to 1, interrupt 7 enabled. When 0, interrupt 7 disabled.

16 GlobalEnable When set to 1, the setting of the interrupt is determined by the specific InterruptEn-
able bit. When 0, all interrupts are disabled.

15:8 RESERVED. Write 0.

ST20450

26/106



The Mask register is mapped onto two additional addresses so that bits can be set or cleared
individually.

Set-Mask (address #200000C4) allows bits to be set individually. Writing a ‘1’ in this register sets
the corresponding bit in the Mask register, a ‘0’ leaves the bit unchanged.

Clear-Mask (address #200000C8) allows bits to be cleared individually. Writing a ‘1’ in this register
resets the corresponding bit in the Mask register, a ‘0’ leaves the bit unchanged.

4.6.4 Pending register

The Pending register is an 8 bit register with each bit controlled by the corresponding interrupt pin.
A read can be used to examine the state of the interrupt controller while a write can be used to
explicitly trigger an interrupt.

A bit is set when the triggering condition for an interrupt is met. All bits are independent so that
several bits can be set in the same cycle. Once a bit is set, a further triggering condition will have
no effect. The triggering condition is independent of the Mask register.

The highest priority interrupt bit is reset once the interrupt controller has made an interrupt request
to the CPU.

The interrupt controller receives external interrupt requests and makes an interrupt request to the
CPU when it has a pending interrupt request of higher priority than the currently executing interrupt
handler.

The Pending register is mapped onto two additional addresses so that bits can be set or cleared
individually.

Set-Pending (address #20000084) allows bits to be set individually. Writing a ‘1’ in this register
sets the corresponding bit in the Pending register, a ‘0’ leaves the bit unchanged.

Clear-Pending (address #20000088) allows bits to be cleared individually. Writing a ‘1’ in this
register resets the corresponding bit in the Pending register, a ‘0’ leaves the bit unchanged.

Note, if the CPU wants to write or clear some bits of the Pending register, the interrupts should be
masked (by writing or clearing the Mask register) before writing or clearing the Pending register.
The interrupts can then be unmasked.

Pending #20000080 Read/Write

Bit Bit field Function

0 PendingInt0 Interrupt 0 pending bit.

1 PendingInt1 Interrupt 1 pending bit.

2 PendingInt2 Interrupt 2 pending bit.

3 PendingInt3 Interrupt 3 pending bit.

4 PendingInt4 Interrupt 4 pending bit.

5 PendingInt5 Interrupt 5 pending bit.

6 PendingInt6 Interrupt 6 pending bit.

7 PendingInt7 Interrupt 7 pending bit.

Table 4.4 Bit fields in the Pending register

ST20450

27/106



4.6.5 Exec register

The Exec register is an 8 bit register which keeps track of the currently executing and pre-empted
interrupts. A bit is set when the CPU starts running code for that interrupt. The highest priority
interrupt bit is reset once the interrupt handler executes a return from interrupt (iret).

Table 4.5 Bit fields in the Exec register

The Exec register is mapped onto two additional addresses so that bits can be set or cleared
individually.

Set-Exec (address #20000104) allows bits to be set individually. Writing a ‘1’ in this register sets
the corresponding bit in the Exec register, a ‘0’ leaves the bit unchanged.

Clear-Exec (address #20000108) allows bits to be cleared individually. Writing a ‘1’ in this register
resets the corresponding bit in the Exec register, a ‘0’ leaves the bit unchanged.

Exec #20000100 Read/Write

Bit Bit field Function

0 Interrupt0Exec Set to 1 when the CPU starts running code for interrupt 0.

1 Interrupt1Exec Set to 1 when the CPU starts running code for interrupt 1.

2 Interrupt2Exec Set to 1 when the CPU starts running code for interrupt 2.

3 Interrupt3Exec Set to 1 when the CPU starts running code for interrupt 3.

4 Interrupt4Exec Set to 1 when the CPU starts running code for interrupt 4.

5 Interrupt5Exec Set to 1 when the CPU starts running code for interrupt 5.

6 Interrupt6Exec Set to 1 when the CPU starts running code for interrupt 6.

7 Interrupt7Exec Set to 1 when the CPU starts running code for interrupt 7.

ST20450

28/106



5 Instruction set
This chapter provides information on the instruction set. It contains tables listing all the instructions,
and where applicable provides details of the number of processor cycles taken by an instruction.

The instruction set has been designed for simple and efficient compilation of high-level languages.
All instructions have the same format, designed to give a compact representation of the operations
occurring most frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits
(MSB) of the byte are a function code and the four least significant bits (LSB) are a data value, as
shown in Figure 5.1.

Figure 5.1 Instruction format

For further information on the instruction set refer to the ST20 Instruction Set Manual (document
number 72-TRN-273-00).

5.1 Instruction cycles

Timing information is available for some instructions. However, it should be noted that many
instructions have ranges of timings which are data dependent.

Where included, timing information is based on the number of clock cycles assuming any memory
accesses are to 2 cycle internal memory and no other subsystem is using memory. Actual time will
be dependent on the speed of external memory and memory bus availability.

Note that the actual time can be increased by:

1 the instruction requiring a value on the register stack from the final memor y read in the pre-
vious instruction – the current instruction will stall until the value becomes available.

2 the first memor y operation in the current instruction can be delayed while a preceding
memory operation completes - any two memory operations can be in progress at any time,
any further operation will stall until the first completes .

3 memory operations in current instructions can be delayed by access by instruction fetch or
subsystems to the memory interface.

4 there can be a delay between instructions while the instruction fetch unit fetches and par-
tially decodes the next instruction – this will be the case wheneveran instruction causes the
instruction flow to jump.

Note that the instruction timings given refer to ‘standard’ behavior and may be different if, for
example, traps are set by the instruction.

Function Data

7 4 3 0

ST20450

29/106



5.2 Instruction characteristics

The Primary Instructions Table 5.3 gives the basic function code. Where the operand is less than
16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative
the first prefix instr uction will be nfix. Examples of pfix and nfix coding are given in Table 5.1.

Table 5.1 Prefix coding

Any instruction which is not in the instruction set tables is an invalid instruction and is flagged
illegal, returning an error code to the trap handler, if loaded and enabled.

The Notes column of the tables indicates the descheduling and error features of an instruction as
described in Table 5.2.

Table 5.2 Instruction features

Mnemonic Function code Memory code

ldc #3 #4 #43

ldc #35

is coded as

pfix #3 #2 #23

ldc #5 #4 #45

ldc #987

is coded as

pfix #9 #2 #29

pfix #8 #2 #28

ldc #7 #4 #47

ldc -31 (ldc #FFFFFFE1)

is coded as

nfix #1 #6 #61

ldc #1 #4 #41

Ident Feature

E Instruction can set an IntegerError trap

L Instruction can cause a LoadTrap trap

S Instruction can cause a StoreTrap trap

O Instruction can cause an Overflow trap

I Interruptible instruction

A Instruction can be aborted and later restarted.

D Instruction can deschedule

T Instruction can timeslice

ST20450

30/106



5.3 Instruction set tables

Function
code

Memory
code

Mnemonic Processor
cycles

Name Notes

0 0X j 7 jump D, T

1 1X ldlp 1 load local pointer

2 2X pfix 0 to 3 prefix

3 3X ldnl 1 load non-local

4 4X ldc 1 load constant

5 5X ldnlp 1 load non-local pointer

6 6X nfix 0 to 3 negative prefix

7 7X ldl 1 load local

8 8X adc 2 to 3 add constant O

9 9X call 8 call

A AX cj 1 or 7 conditional jump

B BX ajw 2 adjust workspace

C CX eqc 1 equals constant

D DX stl 1 store local

E EX stnl 2 store non-local

F FX opr 0 operate

Table 5.3 Primary functions

Memory
code

Mnemonic Processor
cycles

Name Notes

22FA testpranal 1 test processor analyzing

23FE saveh 3 save high priority queue registers

23FD savel 3 save low priority queue registers

21F8 sthf 1 store high priority front pointer

25F0 sthb 1 store high priority back pointer

21FC stlf 1 store low priority front pointer

21F7 stlb 1 store low priority back pointer

25F4 sttimer 2 store timer

2127FC lddevid 1 load device identity

27FE ldmemstartval 1 load value of MemStart address

Table 5.4 Processor initialization operation codes

ST20450

31/106



Memory
code

Mnemonic Processor
cycles

Name Notes

24F6 and 1 and

24FB or 1 or

23F3 xor 1 exclusive or

23F2 not 1 bitwise not

24F1 shl 1 shift left

24F0 shr 1 shift right

F5 add 2 add A, O

FC sub 2 subtract A, O

25F3 mul 3 multiply A, O

27F2 fmul 5 fractional multiply A, O

22FC div 4 to 35 divide A, O

21FF rem 3 to 35 remainder A, O

F9 gt 2 greater than A

25FF gtu 2 greater than unsigned A

F4 diff 1 difference

25F2 sum 1 sum

F8 prod 3 product A

26F8 satadd 2 to 3 saturating add A

26F9 satsub 2 to 3 saturating subtract A

26FA satmul 4 saturating multiply A

Table 5.5 Arithmetic/logical operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

21F6 ladd 2 long add A, O

23F8 lsub 2 long subtract A, O

23F7 lsum 1 long sum

24FF ldiff 1 long diff

23F1 lmul 4 long multiply A

21FA ldiv 3 to 35 long divide A, O

23F6 lshl 2 long shift left A

23F5 lshr 2 long shift right A

21F9 norm 3 normalize A

26F4 slmul 4 signed long multiply A, O

26F5 sulmul 4 signed times unsigned long multiply A, O

Table 5.6 Long arithmetic operation codes

ST20450

32/106



Memory
code

Mnemonic Processor
cycles

Name Notes

F0 rev 1 reverse

23FA xword 3 extend to word A

25F6 cword 2 to 3 check word A, E

21FD xdble 1 extend to double

24FC csngl 2 check single A, E

24F2 mint 1 minimum integer

25FA dup 1 duplicate top of stack

27F9 pop 1 pop processor stack

68FD reboot 2 reboot

Table 5.7 General operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

F2 bsub 1 byte subscript

FA wsub 1 word subscript

28F1 wsubdb 1 form double word subscript

23F4 bcnt 1 byte count

23FF wcnt 1 word count

F1 lb 1 load byte

23FB sb 2 store byte

24FA move move message I

Table 5.8 Indexing/array operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

22F2 ldtimer 1 load timer

22FB tin timer input I

24FE talt 3 timer alt start

25F1 taltwt timer alt wait D, I

24F7 enbt 1 to 7 enable timer

22FE dist disable timer I

Table 5.9 Timer handling operation codes

ST20450

33/106



Memory
code

Mnemonic Processor
cycles

Name Notes

F7 in input message D

FB out output message D

FF outword output word D

FE outbyte output byte D

24F3 alt 2 alt start

24F4 altwt 3 to 6 alt wait D

24F5 altend 8 alt end

24F9 enbs 1 to 2 enable skip

23F0 diss 1 disable skip

21F2 resetch 3 reset channel

24F8 enbc 1 to 4 enable channel

22FF disc 1 to 6 disable channel

Table 5.10 Input and output operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

22F0 ret 2 return

21FB ldpi 1 load pointer to instruction

23FC gajw 2 to 3 general adjust workspace

F6 gcall 6 general call

22F1 lend 4 to 5 loop end T

Table 5.11 Control operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

FD startp 5 to 6 start process

F3 endp 4 to 6 end process D

23F9 runp 3 run process

21F5 stopp 2 stop process

21FE ldpri 1 load current priority

Table 5.12 Scheduling operation codes

ST20450

34/106



Memory
code

Mnemonic Processor
cycles

Name Notes

21F3 csub0 2 check subscript from 0 A, E

24FD ccnt1 2 check count from 1 A, E

22F9 testerr 1 test error false and clear

21F0 seterr 1 set error

25F5 stoperr 1 to 3 stop on error (no error) D

25F7 clrhalterr 2 clear halt-on-error

25F8 sethalterr 1 set halt-on-error

25F9 testhalterr 1 test halt-on-error

Table 5.13 Error handling operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

25FB move2dinit 1 initialize data for 2D block move

25FC move2dall 2D block copy I

25FD move2dnonzero 2D block copy non-zero bytes I

25FE move2dzero 2D block copy zero bytes I

Table 5.14 2D block move operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

27F4 crcword 34 calculate crc on word A

27F5 crcbyte 10 calculate crc on byte A

27F6 bitcnt 3 count bits set in word A

27F7 bitrevword 1 reverse bits in word

27F8 bitrevnbits 2 reverse bottom n bits in word A

Table 5.15 CRC and bit operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

27F3 cflerr 2 check floating point error E

29FC fptesterr 1 load value true (FPU not present)

26F3 unpacksn 4 unpack single length floatingpoint number A

26FD roundsn 7 round single length floating point number A

26FC postnormsn 7 to 8 post-normalize correction of single length float-
ing point number

A

27F1 ldinf load single length infinity

Table 5.16 Floating point support operation codes

ST20450

35/106



Memory
code

Mnemonic Processor
cycles

Name Notes

2CF7 cir 2 to 4 check in range A, E

2CFC ciru 2 to 4 check in range unsigned A, E

2BFA cb 2 to 3 check byte A, E

2BFB cbu 2 to 3 check byte unsigned A, E

2FFA cs 2 to 3 check sixteen A, E

2FFB csu 2 to 3 check sixteen unsigned A, E

2FF8 xsword 2 sign extend sixteen to word A

2BF8 xbword 3 sign extend byte to word A

Table 5.17 Range checking and conversion instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

2CF1 ssub 1 sixteen subscript

2CFA ls 1 load sixteen

2CF8 ss 2 store sixteen

2BF9 lbx 1 load byte and sign extend

2FF9 lsx 1 load sixteen and sign extend

Table 5.18 Indexing/array instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

2FF0 devlb 3 device load byte A

2FF2 devls 3 device load sixteen A

2FF4 devlw 3 device load word A

62F4 devmove device move I

2FF1 devsb 3 device store byte A

2FF3 devss 3 device store sixteen A

2FF5 devsw 3 device store word A

Table 5.19 Device access instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

60F5 wait 4 to 10 wait D

60F4 signal 6 to 10 signal

Table 5.20 Semaphore instructions

ST20450

36/106



Memory
code

Mnemonic Processor
cycles

Name Notes

60F0 swapqueue 3 swap scheduler queue

60F1 swaptimer 5 swap timer queue

60F2 insertqueue 1 to 2 insert at front of scheduler queue

60F3 timeslice 3 to 4 timeslice

60FC ldshadow 6 to 23 load shadow registers A

60FD stshadow 5 to 17 store shadow registers A

62FE restart 19 restart

62FF causeerror 2 cause error

61FF iret 3 to 9 interrupt return

2BF0 settimeslice 1 set timeslicing status

2CF4 intdis 1 interrupt disable

2CF5 intenb 2 interrupt enable

2CFD gintdis 2 global interrupt disable

2CFE gintenb 2 global interrupt enable

Table 5.21 Scheduling support instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

26FE ldtraph 11 load trap handler L

2CF6 ldtrapped 11 load trapped process status L

2CFB sttrapped 11 store trapped process status S

26FF sttraph 11 store trap handler S

60F7 trapenb 2 trap enable

60F6 trapdis 2 trap disable

60FB tret 9 trap return

Table 5.22 Trap handler instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

68FC ldprodid 1 load product identity

63F0 nop 1 no operation

Table 5.23 Processor initialization and no operation instructions

ST20450

37/106



Memory
code

Mnemonic Processor
cycles

Name Notes

64FF clockenb 2 clock enable

64FE clockdis 2 clock disable

64FD ldclock 1 load clock

64FC stclock 2 store clock

Table 5.24 Clock instructions

ST20450

38/106



6 Memory map
The ST20450 processor memory has a 32-bit signed address range. Words are addressed by 30-
bit word addresses and a 2-bit byte-selector identifies the bytes in the word. Memory is divided into
4 banks which can each have different memory characteristics and can be used for different
purposes. In addition, on-chip peripherals can be accessed via the device access instructions (see
Table 5.19).

Various memory locations at the bottom and top of memory are reserved for special system
purposes. There is also a default allocation of memory banks to different uses.

6.1 System memory use

The ST20450 has a signed address space where the address ranges from MinInt (#80000000) at
the bottom to MaxInt (#7FFFFFFF) at the top. The ST20450 has an area of 16 Kbytes of RAM at
the bottom of the address space provided by on chip memory. The bottom of this area is used to
store various items of system state. These addresses should not be accessed directly but via the
appropriate instructions.

Near the bottom of the address space there is a special address MemStart . Memory above this
address is for use by user programs while addresses below it are for private use by the processor
and used for subsystem channels and trap handlers. The address of MemStart can be obtained
via the ldmemstartval instruction.

6.1.1 Subsystem channels memory

Each DMA channel between the processor and a subsystem is allocated a word of storage below
MemStart . This is used by the processor to store information about the state of the channel. This
information should not normally be examined directly, although debugging kernels may need to do
so.

Boot channels

The subsystem channel which is a link input channel is identified as a ‘boot channel’. When the
processor is reset, and is set to boot from link, it waits for boot commands on one of these
channels.

6.1.2 Trap handlers memory

The area of memory reserved for trap handlers is broken down hierarchically. Full details on trap
handlers is given in see Section 3.6 on page 16.

• Each high/low process priority has a set of trap handlers.

• Each set of trap handlers has a handler for each of the four trap groups (refer to Section
3.6.1).

• Each trap group handler has a trap handler structure and a trapped process structure.

• Each of the structures contains four words, as detailed in Section 3.6.3.

The contents of these addresses can be accessed via ldtraph, sttraph, ldtrapped and sttrapped
instructions.

ST20450

39/106



6.2 Boot ROM

When the processor boots from ROM, it jumps to a boot program held in ROM with an entry point 2
bytes from the top of memory at #7FFFFFFE. These 2 bytes are used to encode a negative jump
of up to 256 bytes down in the ROM program. For large ROM programs it may then be necessary
to encode a longer negative jump to reach the start of the routine.

6.3 Internal peripheral space

On-chip peripherals are mapped to addresses in the top half of memory bank 2 (address range
#20000000 to #3FFFFFFF). They can only be accessed by the device access instructions (see
Table 5.19). When used with addresses in this range, the device instructions access the on-chip
peripherals rather than external memory. For all other addresses the device instructions access
memory. Standard load/store instructions to these addresses will access external memory.

This area of memory is allocated to peripherals in 4K blocks, see the following memory map.

ADDRESS USE

BootEntry #7FFFFFFE Boot entry point
↑ User code/Data/Stack and Boot ROM

#40000000
↑ Other on-chip peripherals (registers accessed via CPU device

#20004000 accesses)
↑ Diagnostic controller peripheral (registers accessed via CPU device

#20003000 accesses)
↑ EMI controller peripheral (registers accessed via CPU device

#20002000 accesses)
↑ Low-power controller peripheral (registers accessed via CPU device

#20001000 accesses)
↑ Interrupt controller peripheral (registers accessed via CPU device

#20000000 accesses)
↑ External peripherals

#00000000
↑ User code/Data/Stack

MemStart #80000140
#80000130 Low priority Scheduler trapped process
#80000120 Low priority Scheduler trap handler
#80000110 Low priority SystemOperations trapped process
#80000100 Low priority SystemOperations trap handler
#800000F0 Low priority Error trapped process
#800000E0 Low priority Error trap handler
#800000D0 Low priority Breakpoint trapped process
#800000C0 Low priority Breakpoint trap handler
#800000B0 High priority Scheduler trapped process
#800000A0 High priority Scheduler trap handler
#80000090 High priority SystemOperations trapped process
#80000080 High priority SystemOperations trap handler
#80000070 High priority Error trapped process
#80000060 High priority Error trap handler

Figure 6.1 ST20450 memory map

ST20450

40/106



#80000050 High priority Breakpoint trapped process
TrapBase #80000040 High priority Breakpoint trap handler

#8000003C RESERVED
#80000038
#80000034
#80000030
#8000002C
#80000028
#80000024
#80000020 Event channel
#8000001C Link3 (boot) input channel
#80000018 Link2 (boot) input channel
#80000014 Link1 (boot) input channel
#80000010 Link0 (boot) input channel
#8000000C Link3 output channel
#80000008 Link2 output channel
#80000004 Link1 output channel

MinInt #80000000 Link0 output channel

ADDRESS USE

Figure 6.1 ST20450 memory map

ST20450

41/106



7 Memory subsystem
The memory system consists of SRAM and an external memory interface (EMI). The specific
details on the operation of the EMI are described separately in Chapter 8.

7.1 SRAM

There is an internal memory module of 16 Kbytes of SRAM. The internal SRAM is mapped into the
base of the memory space from MinInt (#80000000) extending upwards, as shown in Figure 7.1.

This memory can be used to store on-chip data, stack or code for time critical routines.

Figure 7.1 SRAM mapping

Where internal memory overlays external memory, internal memory is accessed in preference.

An external control (DisableRAM) is provided which can be used to disable internal RAM.

MinInt #80000000

External
memory

SRAM

#80004000

ST20450

42/106



8 External memory interface
The External Memory Interface (EMI) controls the movement of data between the ST20450 and
off-chip memory.

The EMI can access a 4 Gbyte physical address space, and provides sustained transfer rates of up
to 100 Mbytes/s for SRAM, and up to 89 Mbytes/s using page-mode DRAM. It is designed to
support memory subsystems with minimal (often zero) external support logic.

The interface can be configured for a wide variety of timing and decode functions through
configuration registers.

The external address space is partitioned into four banks, with each bank occupying one quarter of
the address space (see Figure 8.1). This allows the implementation of mixed memory systems,
with support for DRAM, SRAM, EPROM, VRAM and I/O. The timing of each of the four memory
banks can be selected separately, with a different device type being placed in each bank with no
external hardware support.

Figure 8.1 Memory allocation

On-chip internal SRAM is located at the bottom of memory. Internal SRAM is internally divided into
three regions. The first at the bottom is used for channel storage space, the second region is

00000000

7FFFFFFF

FFFFFFFF

80000000 Internal SRAM

BFFFFFFF
C0000000

3FFFFFFF
40000000

On-chip peripheral registers (including the EMI
configuration registers) are mapped into the upper half of
this bank.

B
an

k
0

Addresses shown are physical addresses.

On-chip peripheral

Subsystem
channels

Traps/
exceptions

Internal
SRAM

20000000
1FFFFFFF

B
an

k
1

B
an

k
2

B
an

k
3

registers

80000000

MemStart

80003FFF

ST20450

43/106



reserved for traps and exceptions, the third region is free for program use. The boundary between
the second and third region is called MemStart and is the lowest location in memory available for
general use.

As the banks are of a fixed size and cover the whole address space, range checking of addresses
is not possible. This means that software tools must be aware of the physical external memory
capacity (this is possible with the configurer). Also, the current software tools cannot utilize
discontinuous memory (for example, 32K SRAM in bank 0 and 4M DRAM in bank 1), therefore if
mixed memory types must be placed contiguously in the memory map the division must be
decoded and handled off-chip.

Word addressing is used. Support for byte and part-word addressing is provided.

In this chapter a cycle is one processor clock cycle and a phase is one half of the duration of one
processor clock cycle.

8.1 Pin functions

The following section describes the functions of the external memory interface pins. Note that a
signal name prefixed by not indicates active low.

MemData0-31

The data bus transfers 32, 16 or 8-bit data items depending on the bus width configuration. The
least significant bit of the data bus is always MemData0 . The most significant bit varies with bus
width, MemData31 for 32-bit data items, MemData15 for 16-bit data items, and MemData7 for 8-
bit data items.

MemAddr2-31

The address bus may be operated in both multiplexed and non-multiplexed modes. When a bank is
configured to contain DRAM, or other multiplexed memory, then the internally generated 32-bit
address is multiplexed as row and column addresses through the external address bus.

notMemBE0-3

The ST20450 uses word addressing and four byte-enable strobes are provided. Use of the byte-
enable pins depends on the bus width.

• 32-bit wide memory is defined as an array of 4 byte words with MemAddr2-31 selecting a 4
byte word. Each byte of this array is addressable with the byte enable pins notMemBE0-3
selecting a byte within a word.

• 16-bit wide memory is defined as an array of 2 byte words with 31 address bits selecting a
2 byte word and notMemBE0-1 selecting a byte within the word.

• 8-bit wide memory is defined as an array of 1 byte words with 32 address bits selecting a
word.

For 16-bit and 8-bit wide memory, the lower order address bits (A1 and A0) are multiplexed onto
the unused byte-enable pins to give an address bus 31 or 32-bits wide respectively.

notMemBE0 addresses the least significant byte of a word. Both strobes have the same timing and
may be configured to be active on read and or write cycles.

The function of the byte enables notMemBE0-3 for different bank size configurations is given in
Table 8.1 below. Note that other bus masters must not drive the same data pins during a write.

ST20450

44/106



Table 8.1 notMemBE0-3 pins

notMemRAS0-3

One programmable RAS strobe is allocated to each of the four banks which are decoded on chip. If
a bank is programmed to contain DRAM, or other multiplexed memory, then the associated
notMemRAS pin acts as its RAS strobe by default. For banks which do not contain DRAM the
notMemRAS pin is available as a general purpose programmable strobe.

notMemCAS0-3

One programmable CAS strobe is allocated to each of the four banks which are decoded on chip. If
a bank is programmed to contain DRAM, or other multiplexed memory, then the associated notMem-
CAS pin acts as its CAS strobe by default. For banks which do not contain DRAM the notMemCAS
pin is available as a general purpose programmable strobe.

notMemPS0-3

These additional general purpose programmable strobes (one per bank) may be programmed in
the same way as the notMemCAS0-3 strobes.

MemWait

Wait states can be generated by taking MemWait high. MemWait is sampled during RASTime and
CASTime . MemWait retains the state of any strobe during the cycle in which MemWait was
asserted. MemWait suspends the cycle counter and the strobe generation logic until deasserted.
When MemWait is de-asserted cycles continue as programmed by the configuration interface.

MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by driving the asynchronous MemReq
signal high. The address and data buses are tristated after the current memory access or refresh
cycle terminates.

Strobes are left inactive during the DMA transfer. If a DMA is active for longer than one
programmed refresh interval then external logic is responsible for providing refresh.

The MemGranted signal follows the timing of the bus being tristated and can be used to signal to
the device requesting the DMA that it has control of the bus.

External port size

32-bit 16-bit 8-bit

notMemBE3 enables
MemData24-31

becomes
A1

becomes
A1

notMemBE2 enables
MemData16-23

undefined becomes
A0

notMemBE1 enables
MemData8-15

enables
MemData8-15

undefined

notMemBE0 enables
MemData0-7

enables
MemData0-7

enables
MemData0-7

ST20450

45/106



Table 8.2 lists the processor pin state while MemGranted is asserted.

Table 8.2 Pin states while MemGranted is asserted

MemRefPend

If any of the four banks are configured to contain DRAM, then the MemRefPend pin indicates to
external logic that the programmed refresh interval is complete and requests the external buses in
order to perform a refresh cycle.

The MemRefPend signal is held high until external memory is relinquished by the DMA agent. Once
MemReq has been taken low, only one refresh transaction will be performed, even if several refresh
intervals haveelapsed betweenthe assertionof MemRefPend and the removalof MemReq . Refresh
transactions will resume once the next refresh interval is complete.

MemRefPend may be configured to signal all pending EMI activity or just pending refresh transac-
tions.

notMemRd

The notMemRd signal indicates that the current cycle is a read cycle. It is asserted low at the
beginning of the read cycle and deasserted high at the end of the read cycle.

notMemRf

The notMemRf signal indicates that the current cycle is a refresh cycle. It is asserted low at the
beginning of the refresh cycle and deasserted high at the end of the refresh cycle.

ProcClkOut

Reference signal for external bus cycles. ProcClkOut oscillates at the processor clock frequency.

BootSrce0-1

The BootSrce0-1 pins determine whether the ST20450 will boot from link or from ROM. When the
BootSrce0-1 pins are both held low the ST20450 will boot from its link. If either or both pins are
high the ST20450 will boot from ROM, as shown in Table 8.3. Boot code is run from a slow external
ROM placed in bank 3 (at the top of memory). The BootSrce0-1 pins also encode the size of bank
3. This overrides the value in the configuration registers for the PortSize for bank 3.

When booting from the link, the port size of bank 3 must be configured as with any other EMI
parameter, otherwise the PortSize field in the ConfigDataField1 register for bank 3 (see Section
8.3) will be overridden by the value on the BootSrce0-1 pins.

MemGranted asserted

Pin name Pin state

MemAddr2-31 floating

MemData0-31 floating

notMemBE0-3 inactive

notMemRAS0-3 inactive

notMemCAS0-3 inactive

notMemPS0-3 inactive

notMemRf inactive

notMemRd inactive

MemRefPend active

ST20450

46/106



If the ST20450 is set to boot from link, the bootstrap must execute from internal memory until the
EMI has been configured. If this is not possib le then the EMI must be completely configured using
poke commands down a link before loading the bootstrap into external memory and executing it.

Table 8.3 BootSrce0-1 pins

DisableRAM

Internal SRAM can be disabled by setting the DisableRAM pin high, enabling systems to operate
in external memory only.

When the DisableRAM pin is low, i.e. internal SRAM is active, all addresses between MinInt and
MinInt+16K are directed to internal SRAM and external memory at these addresses is never
accessed.

8.2 External bus cycles

The external memory interface is designed to provide efficient suppor t for dynamic memory without
compromising support for other devices, such as static memory and IO devices. This flexibility is
provided by allowing the required waveforms to be programmed via configuration registers (see
Section 8.3).

Memory is byte addressed, with words aligned on four-byte boundaries for 32-bit devices and on
two-byte boundaries for 16-bit devices.

During read cycles byte level addressing is performed internally by the ST20450. The EMI can
read bytes, half-words or words. It always reads the size of the bank.

During read or write cycles the ST20450 uses the notMemBE0-3 strobes to perform addressing of
bytes. If a particular byte is not to be written then the corresponding data outputs are tristated.
Writes can be less than the size of the bank.

The internally generated address is indicated on pins MemAddr2-31 , however the low order
address bits A0 and A1 have different functions depending on the size of the external data bus,
see Table 8.1. The least significant bit of the data bus is always MemData0 . The most significant bit
can be adjusted dynamically to suit the required external bus size.

Note that data pins which are not used during a write access are tristated, for example, for an 8-bit
bus pins MemData8-31 are tristated.

A generic memory interface cycle consists of a number of defined per iods, or times, as shown in
Figure 8.2. This generic memory cycle uses DRAM terminology to clarify the use of the interface in
the most complex situations, but can be programmed to provide waveforms for a wide range of
other device types. The timing of each of the four memory banks can be programmed separately,
with a different device type being placed in each bank with no external hardware support.

The RASTime and CASTime are consecutive. The CASTime can be followed by concurrent
Precharge and BusRelease times. Thus, for DRAM, the times are used for RAS, CAS, and

BootSrce1:0 Function

0:0 Boot from link. The ST20450 loads bootstrap down the link and executes from MemStart .

0:1 Boot from ROM. Port size of bank 3 hardwired to 32-bits.

1:0 Boot from ROM. Port size of bank 3 hardwired to 16-bits.

1:1 Boot from ROM. Port size of bank 3 hardwired to 8-bits.

ST20450

47/106



precharge respectively. For non-multiplexed addressed memory the RASTime can be programmed
to be zero.

If the RASTime is programmed to be non-zero, and page-mode memory is programmed in a bank,
the RASTime will only occur if consecutive accesses are not in the same page. The RASTime will
not commence until the PrechargeTime for a previous access to the same bank has completed.
During the RASTime a transition can be programmed on the RAS and programmable strobes, but
not on the CAS or byte enable strobes.

Figure 8.2 Generic memory cycle

During the CASTime the programmable strobes and byte-enable strobes are active. The address
is output on the address bus without being shifted. Write data is valid during CASTime . Read data
is latched into the interface at the end of CASTime .

The PrechargeTime and BusReleaseTime commence concurrently at the end of the CASTime .
A PrechargeTime will occur to the current bank if:

• the next access is to the same bank but to a different row address.

• the next cycle is to a different bank.

The BusReleaseTime runs concurrently with the PrechargeTime and will occur if:

• the current cycle is a read and the next cycle is a write.

• the current cycle is a read and the next cycle is a read to a different bank.

The BusReleaseTime is provided to allow slow devices to float to a high impedance state.

BusRelease Time

Start of cycle

RASTime CASTime PrechargeTime

data in

data out

internal data
latch

Address bus

Data bus (read)

Data bus (write)

notMemRAS0-3

notMemCAS0-3

notMemBE0-3
or

E2Time

E1Time

E1Time

E2Time

RASedgeTime

notMemPS0-3
or

DataDriveDelay

row column

ST20450

48/106



8.2.1 Refresh

Configuration fields are provided which specify the banks which require refreshing and the interval
between successive refreshes.

The EMI ensures that notMemCAS and notMemRAS are both high for the required time before
every refresh cycle by inserting a PrechargeTime in the last bank being accessed and ensuring all
PrechargeTimes are complete.

The behaviour of the notMemCAS strobes during a refresh cycle is dependent on the
programming of the byte mode configuration field.

The notMemCAS strobe is taken low at the beginning of the refresh time. The position of the RAS
falling edge (RASedge) and the time before notMemRAS and notMemCAS can be taken high
again (RefreshTime) are programmable. Each of these actions occurs in sequence for each bank.
A cycle is inserted between each bank in order to spread current peaks. If no DRAM has been
programmed for a bank then no transitions occur on the RAS or CAS strobes.

Note, no refreshes take place unless a DRAMinitialize command in the ConfigCommand register
(see Section 8.3.1 on page 51) is performed.

Figure 8.3 Refresh

RefreshTime

notMemRAS0

notMemRAS1

notMemRAS2

notMemCAS3

Start of Precharge
Time3

notMemCAS0

notMemCAS1

notMemCAS2

notMemRAS3

RASedge

Start of Precharge
Time0

ST20450

49/106



8.2.2 Wait

MemWait is provided so that external cycles can be extended to enable variable access times (for
example, shared memory access). MemWait is sampled on a rising clock edge before being
passed into the EMI. It is only effective when the EMI is in the RAS or CAS times and has the effect
of holding the RAS and CAS counter values for the duration of the cycles in which it was sampled
high. Any strobe transitions occurring on the sampling edge or the falling edge immediately after
will not be inhibited, but transitions on the rising and falling edges of the cycle after will not occur.
Figure 8.4 and Figure 8.5 show the extension of the external memory cycle and the delaying of
strobe transitions.

Figure 8.4 Strobe activity without MemWait

Figure 8.5 Strobe activity with MemWait

ProcClkOut

MemWait

Strobe1

Strobe2

Strobe3

ProcClkOut

MemWait
asserted

wait
cycle

MemWait

Strobe1

Strobe2

Strobe3

ST20450

50/106



8.3 EMI Configuration

The EMI configuration is held in memory-mapped registers. The function of the registers is to elim-
inate external decode and timing logic. Each EMI bank has several parameters which can be con-
figured. The parameters define the structure of the external address space and how it is allocated
to the four banks and the timing of the strobe edges for the four banks.

The EMI has four banks of four32-bit configurationregisters to set up the four EMI banks. In addition
there is another register to set the pad drive strength. For safe configuration each of the four banks
must be configured in a single operation in cooperation with the EMI control logic. To enable this,
there is a bank of four temporary registers (ConfigDataField0-3) inside the EMI configuration logic
which can be filled with an entire bank before being transferred in a single operation to the EMI. The
data is only transferred when the EMI is able to receive it. This single operation is the WriteConfig
command in the ConfigCommand register. A typical configuration sequence is to program each
individual temporary register (ConfigDataField0-3) followed by a write to the WriteConfig address
to transfer the data to the EMI.

The configuration logic contains six registers which are used to transfer data to and from the EMI
configuration registers, as listed in Table 8.4. The registers can be examined and set by the devlw
(device load word) and devsw (device store word) instructions. Note, they can not be accessed using
memory instructions. These registers may be accessed independently of EMI activity, unless the
configuration controller is processing a previous command, for example a WriteConfig .

The base address for the EMI configuration registers are given in the ST20450 memory map, see
Figure 6.1 on page 39.

Note : The EMI configuration registers can not be accessed directly, they can only be accessed via
the temporary registers in the configuration logic.

ST20450

51/106



Table 8.4 EMI configuration register addresses

8.3.1 ConfigCommand register

The ConfigCommand register is a write only register. When a write is performed to this register,
plus the associated data byte, various operations are performed as detailed in Table 8.5.

To avoid further EMI activity occurring between successive update requests, all parameters for a
bank must be changed in a single operation by performing a WriteConfig command.

The timing information for DRAM refresh is distributed amongst access timing information in the
ConfigDataField0-3 registers. DRAM is initialized by performing a DRAMinitialize command. The
DRAMinitialize command also enables refreshes to take place. If no DRAMinitialize command is
performed no refreshes will take place.

Note, the DRAMinitialize command should only be written when there is DRAM in the system.

Register Address Data byte Read/Write Command

ConfigCommand EMI base address + #10 #00 Write ReadConfig bank 0

#04 Write ReadConfig bank 1

#08 Write ReadConfig bank 2

#0C Write ReadConfig bank 3

#10 Write ReadConfig PadDriveReg

#20 Write DRAMinitialize

#40 Write WriteConfig bank 0

#44 Write WriteConfig bank 1

#48 Write WriteConfig bank 2

#4C Write WriteConfig bank 3

#50 Write WriteConfig PadDriveReg

#60 Write LockConfig

ConfigDataField0 EMI base address + #00 - Read/Write

ConfigDataField1 EMI base address + #04 - Read/Write

ConfigDataField2 EMI base address + #08 - Read/Write

ConfigDataField3 EMI base address + #0C - Read/Write

ConfigStatus EMI base address + #20 - Read

ST20450

52/106



Table 8.5 ConfigCommand register

8.3.2 ConfigStatus register

The ConfigStatus register is a read only register and contains information on whether the
ConfigDataField0-3 registers havebeen write lockedand showswhich EMI banks havebeen written.

Table 8.6 ConfigStatus register

8.3.3 ConfigDataField0-3 register s

The bit format and functionality of the ConfigDataField0-3 registers for transfers to/from each of
the register banks are described in the following sections.

The ConfigDataField0-3 registers are grouped, with one group of four registers containing all the
information necessary to program an external bank. The format of bits in the registers depends on
which EMI bank is being configured, see Figure 8.6.

ConfigCommand EMI base address + #10 Write only

Data byte Bit field Function

01000000 for bank 0
01000100 for bank 1
01001000 for bank 2
01001100 for bank 3
01010000 for PadDrive

WriteConfig Transfers the contents of the ConfigDataField0-3 into the specified bank
in the EMI configuration registers. All parameters for a specified bank are
changed in one atomic action, to avoid further EMI activity occurring be-
tween successive update requests.

00000000 for bank 0
00000100 for bank 1
00001000 for bank 2
00001100 for bank 3
00010000 for PadDrive

ReadConfig Copies the contents of the specified bank in the EMI configur ation regis-
ters into ConfigDataField0-3 .

00100000 DRAMinitialize Initialize any DRAM in the system.

01100000 LockConfig Disables the WriteConfig and DRAMinitialize commands and locks the
ConfigDataField0-3 to prevent further writes.

ConfigStatus EMI base address + #20 Read only

Bit Bit field Function

0 WrittenBank0 Bank 0 has been configured by the WriteConfig command.

1 WrittenBank1 Bank 1 has been configured by the WriteConfig command.

2 WrittenBank2 Bank 2 has been configured by the WriteConfig command.

3 WrittenBank3 Bank 3 has been configured by the WriteConfig command.

4 WrittenPadDriveReg The PadDrive register has been written by the WriteConfig command.

5 WriteLock ConfigDataField0-3 registers are write locked.

31:5 Reserved

ST20450

53/106



Figure 8.6 ConfigDataField0-3 registers

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31C
on

fig
D

at
aF

ie
ld

0
-

ba
nk

s
0,

1,
2

an
d

3

B
E

e1
B

E
e1

LS
B

D
D 0

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31C
on

fig
D

at
aF

ie
ld

2
-

ba
nk

s
0,

1,
2

an
d

3

B
E

e2
B

E
e2

LS
B

D
D 1

P
S

e1
P

S
e1

LS
B

P
S

e2
P

S
e2

LS
B

R
A

S
ed

ge
T

im
e

R
A

S
e

1L
S

B
R

A
S

e1
R

A
S

e
2L

S
B

R
A

S
e2

R
A

S
ed

ge
C

A
S

e1
C

A
S

e
1L

S
B

C
A

S
e

2L
S

B
C

A
S

e2

P
ag

e
R

A
S

bi
ts

31
:2

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31C
on

fig
D

at
aF

ie
ld

3
-

ba
nk

s
0,

1,
2

an
d

3

B
E

e1
tim

eM
S

B
B

E
e2

tim
eM

S
B

P
S

e1
tim

eM
S

B
P

S
e2

tim
eM

S
B

R
A

S
e1

tim
eM

S
B

R
A

S
e2

tim
eM

S
B

C
A

S
e1

tim
eM

S
B

C
A

S
e2

tim
eM

S
B

C
on

fig
D

at
aF

ie
ld

1

P
or

t0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

S
hi

ftA
m

ou
nt

R
A

S
t=

0
P

re
ch

ar
ge

T
im

e
D

R
A

M
3:

0
R

A
S

tim
e

B
us

R
el

ea
se

T
im

e
C

A
S

tim
e

S
iz

e
P

T =
0

W
ai

t
en

R
ef

r
T

0
C

P
m

as
k

P
or

t
S

hi
ftA

m
ou

nt
P

re
ch

ar
ge

T
im

e
R

ef
re

sh
R

A
S

ed
ge

T
im

e
R

A
S

tim
e

B
us

R
el

ea
se

T
im

e
C

A
S

tim
e

S
iz

e
R

ef
r

T
1

P
or

t
P

re
ch

ar
ge

T
im

e
R

ef
re

sh
In

te
rv

al
5:

0
B

us
R

el
ea

se
T

im
e

C
A

S
tim

e
S

iz
e

R
ef

r
T

2

P
or

t
S

hi
ftA

m
ou

nt
P

re
ch

ar
ge

T
im

e
R

ef
re

sh
In

te
rv

al
11

:6
R

A
S

tim
e

B
us

R
el

ea
se

T
im

e
C

A
S

tim
e

S
iz

e
R

ef
r

T
3

B
R

M
ax

0

ba
nk

0

ba
nk

1

ba
nk

2

ba
nk

3

M
od

e

ac
tiv

e
ac

tiv
e

ac
tiv

e
ac

tiv
e

ac
tiv

e
ac

tiv
e

ac
tiv

e
ac

tiv
e

R
A

S
t=

0
P

T =
0

W
ai

t
en W
ai

t
en

B
R

M
ax

1
R

A
S

t=
0

P
T =
0

W
ai

t
en

ac
tiv

e
B

yt
e

M
od

e

R
A

S
tim

e
P

T
=

0
R

A
S

t=
0

S
hi

ftA
m

ou
nt

ST20450

54/106



8.3.4 Format of the data registers for transfers to/from register bank 0

This section givesthe format of theConfigDataField0-3 registers fortransfers to/from register bank 0.

ConfigDataField0 format for transfers to/from register bank 0

The ConfigDataField0 register is a 32 bit register which can be set to read only via theConfigCom-
mand register.

The RASbits31:2 field is a 30 bit address mask which defines which address bits are compared to
determine whether a page hit has occurred. Generally it will be loaded with a field of 1’s padded out
by 0’s.

For example, if bank 0 contained 4 Mbyte DRAM, organized as four 4 Mbit x 8 devices for a 32-bit
wide interface, there would be 1 MWords of DRAM, with 1024 pages each containing 1024 words.
It is necessary for RASbits31:30 to be set to ‘11’ to enable bank switches to be detected. The
RASbits field for bank 0 would be:

RASbits31:2 111111111111111111110000000000

For example, for a 16-bit wide interface, the RASbits field for bank 0 would be:

RASbits31:2 111111111111111111111000000000

Table 8.7 ConfigDataField0 format for transfers to/from register bank 0

ConfigDataField0 EMI base address + #00 Read/Write

Bit Bit field Function

1 PageMode Page mode valid

31:2 RASbits31:2 Defines the RAS bits in the address which should be compared to the last access
to the same bank to determine whether a page hit has occurred.

0 Reserved

ST20450

55/106



ConfigDataField1 format for transfers to/from register bank 0

The ConfigDataField1 register is a 32 bit register which can be set to read only via theConfigCom-
mand register.

Table 8.8 ConfigDataField1 format for transfers to/from register bank 0

ConfigDataField1 EMI base address + #04 Read/Write

Bit Bit field Function Units

1:0 PortSize Bit width of the bank (8,16, or 32-bits).
PortSize1:0 Bank width

00 Invalid
01 32-bits
10 16-bits
11 8-bits

6:2 ShiftAmount Defines how many bits to shift the bank address in order to convert it to
a row address for multiplexed-addressed memory during RAStime. It is
irrelevant at all other times.

8 MemWaitEnable Enables the MemWait pin.

9 RAStimeEqZero No RAS cycle will occur. The bank is considered to be an SRAM bank.

10 PrechargeTimeEqZero No Precharge Time will occur.

11 RefreshTime0 Refresh time 0. The refresh time is a 4-bit value. RefreshTime bits 1,
2 and 3 are specifiedin ConfigDataField1 for transfers to/from register
banks 1, 2 and 3 respectively.

Cycles

15:12 PrechargeTime Duration of precharge time. Cycles

17 CyclePendingMask Masks the memory access cycle. Determines whether MemRefPend
indicates pending refresh cycles or pending memory access during
DMA.

21:18 DRAM3:0 Defines which banks require refresh.

23:22 RAStime Duration of RAS sub-cycle. Cycles

27:24 BusReleaseTime Duration of bus release time. Cycles

31:28 CAStime Duration of CAS sub-cycle. Cycles

16, 7 Reserved

ST20450

56/106



ConfigDataField2 format for transfers to/from register bank 0

The ConfigDataField2 register is a 32 bit register which can be set to read only via theConfigCom-
mand register.

Table 8.9 ConfigDataField2 format for transfers to/from register bank 0

Each of the strobes (notMemRAS , notMemCAS , notMemPS , notMemBE) edges may be config-
ured to be active during reads and/or writes, or to be inactive. The coding of the active bits is given
in Table 8.10.

ConfigDataField2 EMI base address + #08 Read/Write

Bit Bit field Function Units

1:0 BEe1active Cycle type in which falling (E1) edge of notMemBE is active.

2 BEe1LSB Specifies the phase when the falling (E1) edge of notMemBE will occur.

3 DataDriveDelay0 This is a 2-bit value (DataDriveDelay1 is in bit 7). It is the drive delay of
the data bus, as follows:

DataDriveDelay1:0 Drive delay of data bus
00 0 phases
01 1 phase
10 2 phases
11 3 phases

Phases

5:4 BEe2active Cycle type in which notMemBE rising (E2) edge is active.

6 BEe2LSB Specifies the phase when the r ising (E2) edge of notMemBE will occur.

7 DataDriveDelay1 This is a 2-bit value (DataDriveDelay0 is in bit 3). It is the drive delay of
the data bus.

Phases

9:8 PSe1active Cycle type in which falling (E1) edge of notMemPS is active.

10 PSe1LSB Specifies the phase when the falling (E1) edge of notMemPS will occur.

13:12 PSe2active Cycle type in which rising (E2) edge of notMemPS is active.

14 PSe2LSB Specifies the phase when the r ising (E2) edge of notMemPS will occur.

17:15 RASedgeTime Delay from start of RAS sub-cycle to falling edge of RAS strobe. Phases

18 RASe1LSB Specifies the phase when the falling (E1) edge of notMemRAS will oc-
cur.

20:19 RASe1active Cycle type in which falling (E1) edge of notMemRAS is active.

21 RASe2LSB Specifies the phase when the r ising (E2) edge of notMemRAS will occur.

23:22 RASe2active Cycle type in which rising (E2) edge of notMemRAS is active.

25:24 RASedgeActive Cycle type in which an edge of notMemRAS is active.

27:26 CASe1active Cycle type in which falling (E1) edge of notMemCAS is active.

28 CASe1LSB Specifies the phase when the falling (E1) edge of notMemCAS will oc-
cur.

29 CASe2LSB Specifies the phase when the r ising (E2) edge of notMemCAS will occur.

31:30 CASe2active Cycle type in which rising (E2) edge of notMemCAS is active.

11 Reserved

ST20450

57/106



ConfigDataField3 format for transfers to/from register bank 0

The ConfigDataField3 register is a 32 bit register which can be set to read only via theConfigCom-
mand register.

Table 8.11 ConfigDataField3 format for transfers to/from register bank 0

8.3.5 Format of the data registers for transfers to/from register bank 1

This section givesthe format of theConfigDataField0-3 registers fortransfers to/from register bank 1.

ConfigDataField0/2/3 format for transfers to/from register bank 1

The ConfigDataField0 , ConfigDataField2 and ConfigDataField3 registers have the same format
for transfers to/from register bank 1 as those given for transfers to/from register bank 0, see Table
8.7, Table 8.9 and Table 8.11 in Section 8.3.4.

Active bit settings Strobe activity

00 Inactive

01 Active during read only

10 Active during write only

11 Active during read and write

Table 8.10 Active bit settings

ConfigDataField3 EMI base address + #0C Read/Write

Bit Bit field Function Units

3:0 BEe1timeMSB The number of complete cycles from CASTime start to notMemBE
falling (E1) edge.

Cycles

7:4 BEe2timeMSB The number of complete cycles from CASTime start to notMemBE
rising (E2) edge.

Cycles

11:8 PSe1timeMSB The number of complete cycles from CASTime start to notMemPS
falling (E1) edge.

Cycles

15:12 PSe2timeMSB The number of complete cycles from CASTime start to notMemPS
rising (E2) edge.

Cycles

19:16 RASe1timeMSB The number of complete cycles from CASTime start to notMemRAS
falling (E1) edge.

Cycles

23:20 RASe2timeMSB The number of complete cycles from CASTime start to notMemRAS
rising (E2) edge.

Cycles

27:24 CASe1timeMSB The number of complete cycles from CASTime start to notMemCAS
falling (E1) edge.

Cycles

31:28 CASe2timeMSB The number of complete cycles from CASTime start to notMemCAS
rising (E2) edge.

Cycles

ST20450

58/106



ConfigDataField1 format for transfers to/from register bank 1

This register contains refresh information.

Table 8.12 ConfigDataField1 format for transfers to/from register bank 1

8.3.6 Format of the data registers for transfers to/from register bank 2

This section givesthe format of theConfigDataField0-3 registers fortransfers to/from register bank 2.

ConfigDataField0/2/3 format for transfers to/from register bank 2

The ConfigDataField0 , ConfigDataField2 and ConfigDataField3 registers have the same format
for transfers to/from register bank 2 as those given for transfers to/from register bank 0, see tables
8.7, 8.9 and 8.11 in Section 8.3.4 on page 54.

ConfigDataField1 format for transfers to/from register bank 2

This register contains refresh information.

The 12-bit refresh interval is spread across two register fields, see Table 8.14.

ConfigDataField1 EMI base address + #04 Read/Write

Bit Bit field Function Units

1:0 PortSize Bit width of the bank (8,16, or 32-bits).
PortSize1:0 Bank width

00 Invalid
01 32-bits
10 16-bits
11 8-bits

6:2 ShiftAmount Defines how many bits to shift the bank address in order to convert it
to a row address for multiplexed-addressed memory during RAStime.
It is irrelevant at all other times.

8 MemWaitEnable Enables the MemWait pin.

9 RAStimeEqZero No RAS cycle will occur. The bank is considered to be an SRAM bank.

10 PrechargeTimeEqZe-
ro

No Precharge Time will occur.

11 RefreshTime1 Refresh time 1. The refresh time is a 4-bit value. RefreshTime bits 0,
2 and 3 are specified in ConfigDataField1 for transfers to/from register
banks 0, 2 and 3 respectively.

Cycles

15:12 PrechargeTime Duration of precharge time. Cycles

21:17 RefreshRASedgeTime Refresh RAS falling edge. Phases

23:22 RAStime Duration of RAS sub-cycle. Cycles

27:24 BusReleaseTime Duration of bus release time. Cycles

31:28 CAStime Duration of CAS sub-cycle. Cycles

16, 7 Reserved

ST20450

59/106



Table 8.13 ConfigDataField1 format for transfers to/from register bank 2

8.3.7 Format of the data registers for transfers to/from register bank 3

This section givesthe format of theConfigDataField0-3 registers fortransfers to/from register bank 3.

ConfigDataField0/2/3 format for transfers to/from register bank 3

The ConfigDataField0 , ConfigDataField2 and ConfigDataField3 registers have the same format
for transfers to/from register bank 3 as those given for transfers to/from register bank 0, see Table
8.7, Table 8.9 and Table 8.11 in Section 8.3.4.

ConfigDataField1 EMI base address + #04 Read/Write

Bit Bit field Function Units

1:0 PortSize Bit width of the bank (8/16/32-bits).
PortSize1:0 Bank width

00 Invalid
01 32-bits
10 16-bits
11 8-bits

6:2 ShiftAmount Defines how many bits to shift the bank address in order to convert it to
a row address for multiplexed-addressed memory during RAStime. It is
irrelevant at all other times.

7 BusRelMax0 This is a 2-bit value (BusRelMax1 is bit 7 of ConfigDataField1 for bank
3, refer Table 8.14) which encodes a pointer to the EMI bank with the
greatest BusRelease time. This BusRelease time will be inserted when
the EMI is coming out of a DMA transaction. The encodings are as
follows:

BusRelMax1:0 Greatest BusRelease time
00 Bank 0
01 Bank 1
10 Bank 2
11 Bank 3

8 MemWaitEnable Enables the MemWait pin.

9 RAStimeEqZero No RAS cycle will occur. The bank is considered to be an SRAM bank.

10 PrechargeTimeEqZero No Precharge Time will occur.

11 RefreshTime2 Refresh time 2. The refresh time is a 4-bit value. RefreshTime bits 0,
1 and 3 are specifiedin ConfigDataField1 for transfers to/from register
banks 0, 1 and 3 respectively.

Cycles

15:12 PrechargeTime Duration of precharge time. Cycles

21:16 RefreshInterval5:0 This is a 12-bit value (RefreshInterval11:6 is bits 21:16 of
ConfigDataField1 forbank 3, refer Table8.14) which definesthe DRAM
refresh interval between successive refreshes.

Cycles

23:22 RAStime Duration of RAS sub-cycle. Cycles

27:24 BusReleaseTime Duration of bus release time. Cycles

31:28 CAStime Duration of CAS sub-cycle. Cycles

ST20450

60/106



ConfigDataField1 format for transfers to/from register bank 3

This register contains refresh information. The 12-bit refresh interval value is spread across two
register fields.

Table 8.14 ConfigDataField1 format for transfers to/from register bank 3

ConfigDataField1 EMI base address + #04 Read/Write

Bit Bit field Function Units

1:0 PortSize Bit width of the bank (8,16, or 32-bits).
PortSize1:0 Bank width

00 Invalid
01 32-bits
10 16-bits
11 8-bits

6:2 ShiftAmount Defines how many bits to shift the bank address in order to convert it to
a row address for multiplexed-addressed memory during RAStime. It is
irrelevant at all other times.

7 BusRelMax1 This is a 2-bit value (BusRelMax0 is bit 7 of ConfigDataField1 for bank
2, refer Table 8.13) which encodes a pointer to the EMI bank with the
greatest BusRelease time. This BusRelease time will be inserted when
the EMI is coming out of a DMA transaction. The encodings are as
follows:

BusRelMax1:0 Greatest BusRelease time
00 Bank 0
01 Bank 1
10 Bank 2
11 Bank 3

8 MemWaitEnable Enables the MemWait pin.

9 RAStimeEqZero No RAS cycle will occur. The bank is considered to be an SRAM bank.

10 PrechargeTimeEqZero No Precharge Time will occur.

11 RefreshTime3 Refresh time 3. The refresh time is a 4-bit value. RefreshTime bits 0,
1 and 2 are specifiedin ConfigDataField1 for transfers to/from register
banks 0, 1 and 2 respectively.

Cycles

15:12 PrechargeTime Duration of precharge time. Cycles

21:16 RefreshInterval11:6 This is a 12-bit value (RefreshInterval5:0 is bits 21:16 of
ConfigDataField1 forbank 2, refer Table8.13) which definesthe DRAM
refresh interval between successive refreshes.

Cycles

23:22 RAStime Duration of RAS sub-cycle. Cycles

27:24 BusReleaseTime Duration of bus release time. Cycles

31:28 CAStime Duration of CAS sub-cycle. Cycles

ST20450

61/106



8.3.8 Format of the data registers for transfers to/from PadDrive register

This final group of registers consists of just one register. The ConfigDataField0-2 registers are
reserved. The ConfigDataField3 register is used for the pad drive strength (PadDrive) register.

This register sets the drive strength of the EMI pads. Once locked the strength is static. Each of the
address, data and strobe pads has four possible drive strengths which may be configured as given
in Table 8.15.

The PadDrive register has fields which apply to groups of pads so that the edge rates may be tuned
to reduce electrical noise or optimize speed. Also the ProcClkOut pin can be disabled in order to
reduce power, this is the default on reset.

Table 8.16 ConfigDataField3 format for transfers to/from PadDrive register

Drive bit settings Drive strength level Drive strength

00 level 0 Weakest

01 level 1 ↓
10 level 2 ↓
11 level 3 Strongest

Table 8.15 Drive bit settings

ConfigDataField3 EMI base address + #0C Read/Write

Bit Bit field Function

1:0 RCP0 Drive strength of pads notMemRAS0 , notMemCAS0 , notMemPS0

3:2 RCP1 Drive strength of pads notMemRAS1 , notMemCAS1 , notMemPS1

5:4 RCP2 Drive strength of pads notMemRAS2 , notMemCAS2 , notMemPS2

7:6 RCP3 Drive strength of pads notMemRAS3 , notMemCAS3 , notMemPS3

9:8 BE1 Drive strength of pads notMemBE1

11:10 BE2 Drive strength of pads notMemBE2

13:12 A2-8 Drive strength of pads MemAddr2-8 , notMemBE0 , notMemBE3

15:14 A9-12 Drive strength of pads MemAddr9-12

17:16 A13-16 Drive strength of pads MemAddr13-16

19:18 A17-20 Drive strength of pads MemAddr17-20

21:20 A21-24 Drive strength of pads MemAddr21-24

23:22 A25-31 Drive strength of pads MemAddr25-31

25:24 D0-7 Drive strength of pads MemData0-7

27:26 D8-15 Drive strength of pads MemData8-15

29:28 D16-31 Drive strength of pads MemData16-31

31 ProcClkEnable When 1, ProcClkOut pin enabled. When 0 (default state on reset), the ProcClkOut
pin is disabled, thus reducing power.

30 Reserved

ST20450

62/106



8.4 EMI initialization

8.4.1 Reset

When the EMI is reset, the configuration register file loads a default set of parameters suitable for
running boot code from a slow external ROM placed in bank 3 (at the top of memory). The refresh
interval is reset to zero and no refresh requests are generated until this parameter is changed and
the DRAMinitialize command is issued to the configuration logic.

The WriteLock bit in the ConfigStatus register is cleared to enablenew parameters to be configured
by software.

8.4.2 Bootstrap

When external reset is removed, the ST20450 will start to execute bootstrap code from the area of
memory determined by the setting of the BootSrce0-1 pins (see Table 8.3 on page 46).

If the ST20450 is set to boot from a link, the bootstrap must execute from internal memory until the
EMI has been configured. If this is not possib le, the EMI must be completely configured using poke
operations (see Section 9.2.3 on page 65) down the link before loading the bootstrap into external
memory and executing it.

8.4.3 Initializing DRAM banks

The timing information for DRAM refresh is spread over the configuration registers
(ConfigDataField0-3). DRAM initialization is performed by an explicit command (DRAMinitialize
command in the ConfigCommand register) once the configurationis loaded. This command causes
8 consecutive refresh transactions to occur.

Default configuration

The default configuration is loaded into all four banks on reset. The parameters shown in Table 8.18
are also set in the configuration registers.

Table 8.17 Timing of default access

MemAddr2-31

12 cycles

notMemCAS3

MemData

11 cycles1 cycle

ST20450

63/106



Table 8.18 Default parameters

Parameter Default value

RASbits31:2 #0 (all banks)

PageMode Cleared (all banks)

PortSize Value on BootSrce0-1 pin

ShiftAmount 0 (all banks)

BusReleaseMax1:0 3

MemWaitEnable Set (all banks)

RAStimeEqZero Set (all banks)

PrechargeTimeEqZero Set (all banks)

RefreshTime0,1,2,3 Cleared

PrechargeTime 0 (all banks)

CyclePendingMask Cleared

DRAM3:0 All cleared

RefreshRASedgeTime 0

RefreshInterval 0

RAStime 0 (all banks)

BusReleaseTime 3 cycles (all banks)

CAStime 12 cycles (all banks)

RAS, BE strobes Inactive (all banks)

CAS, PS e1 and e2 active Only on reads (all banks)

CASe1 time 2 phases

CASe2 time 24 phases

PSe1 time 0 phases

PSe2 time 24 phases

DataDriveDelay1:0 2 phases (all banks)

PadDriveStrength All 0, weakest drive strength

ProcClkEnable ProcClkOut pin disabled

ST20450

64/106



9 System services
The system services module includes the control system, the PLL, test access port and power
control. System services include all the necessary logic to initialize and sustain operation of the
device and also includes error handling and analysis facilities.

9.1 Reset, initialization and debug

The ST20450 is controlled by a notRST pin which is a global power-on-reset. The CPU can also
be controlled by CPUReset and CPUAnalyse signals.

An additional control signal (LPIn) re-starts the ST20450 from low power mode (see Section 11.2
on page 68 for further details on low power operation).

9.1.1 Reset

notRST initializes the device and causes it to enter its boot sequence which can either be in off-
chip ROM or can be received down a link (see Section 9.2 on bootstrap). notRST must be
asserted at power-on.

When notRST is asserted low, all modules are forced into their power-on reset condition. The
clocks are stopped. The rising edge of notRST is internally synchronized and delayed until the
clocks are stable before starting the initialization sequence.

CPUReset is provided as a functional reset which is quicker to reboot as the PLL is not reset. In
other respects the effect is the same as notRST. CPUReset can be used in conjunction with
CPUAnalyse .

The ResetRespOut signal provides additional information with regard to the progress of internal
reset activities and generally as a CPU running signal. The ResetRespOut signal when low
signals that the CPU has halted following a halt-on-error or a CPUAnalyse .

9.1.2 CPUAnalyse

If CPUAnalyse is taken high when the ST20450 is running, the ST20450 will halt at the next
descheduling point. CPUReset may then be asserted. When CPUReset comes low again the
ST20450 will be in its reset state, and information on the state of the machine when it was halted
by the assertion of CPUAnalyse , is maintained permitting analysis of the halted machine.

An input link will continue with outstanding transfers. An output link will not make another access to
memory for data but will transmit only those bytes already in the link buffer. Providing there is no
delay in link acknowledgement, the link will be inactive within a few microseconds of the ST20450
halting.

If CPUAnalyse is taken low without CPUReset going high the processor state and operation are
undefined.

9.1.3 Errors

Software errors, such as arithmetic overflow or array bounds violation, can cause an error flag to be
set. This flag is directly connected to the ErrorOut pin. The ST20450 can be set to ignore the error
flag in order to optimize the performance of a proven program. If error checks are removed any
unexpected error then occurring will have an arbitrary undefined effect. The ST20450 can

ST20450

65/106



alternatively be set to halt-on-error to prevent further corruption and allow postmortem debugging.
The ST20450 also supports user defined trap handlers, see Section 4.6 on page 21 for details.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is
saved for the duration of the high priority process and restored at the conclusion of it. Status of both
flags is transmitted to the high priority process. Either flag can be altered in the process without
upsetting the error status of any complex operation being carried out by the pre-empted low priority
process.

In the event of a processor halting because of HaltOnError , the links will finish outstanding
transfers before shutting down. If CPUAnalyse is asserted then all inputs continue but outputs will
not make another access to memory for data. Memory refresh will continue to take place.

9.2 Bootstrap

The ST20450 can be bootstrapped from external ROM, internal ROM or from a link. This is
determined by the setting of the BootSrce0-1 pins, see Table 9.1 on page 51. If both BootSrce0-1
pins are held low it will boot from a link. If either or both pins are held high, it will boot from ROM.
This is sampled once only by the ST20450, before the first instruction is executed after reset.

9.2.1 Booting from ROM

When booting from ROM, the ST20450 starts to execute code from the top two bytes in external
memory, at address #7FFFFFFE which should contain a backward jump to a program in ROM.

9.2.2 Booting from link

When booting from a link, the ST20450 will wait for the first bootstrap message to arrive on the link.
The first byte received down the link is the control byte. If the control byte is greater than 1 (i.e. 2 to
255), it is taken as the length in bytes of the boot code to be loaded down the link. The bytes
following the control byte are then placed in internal memory starting at location MemStart .
Following reception of the last byte the ST20450 will start executing code at MemStart . The
memory space immediately above the loaded code is used as work space. A byte arriving on other
links after the control byte has been received, and on the bootstrapping link after the last bootstrap
byte, is retained and no acknowledge is sent until a process inputs from the link.

9.2.3 Peek and poke

Any location in internal or external memory can be interrogated and altered when the ST20450 is
waiting for a bootstrap from link.

When booting from link, if the first byte (the control byte) received down the link is greater than 1, it
is taken as the length in bytes of the boot code to be loaded down the link.

If the control byte is 0 then eight more bytes are expected on the link. The first four byte word is
taken as an internal or external memory address at which to poke (write) the second four byte
word.

If the control byte is 1 the next four bytes are used as the address from which to peek (read) a word
of data; the word is sent down the output channel of the link.

ST20450

66/106



Figure 9.1 Peek, poke and bootstrap

Note, peeks and pokes in the address range #20000000 to #3FFFFFFF access the internal
peripheral device registers. Therefore they can be used to configure the EMI before booting. Note
that addresses that overlap the internal peripheral addresses (#20000000 to 3FFFFFFF) can not
be accessed via the link.

Following a peek or poke, the ST20450 returns to its previously held state. Any number of
accesses may be made in this way until the control byte is greater than 1, when the ST20450 will
commence reading its bootstrap program. Any link can be used but addresses and data must be
transmitted via the same link as the control byte.

0 address data

1 address

data

n bootstrap

1 n

Poke

Peek

reply

Bootstrap

Control byte

where n is 2 to 255

ST20450

67/106



10 Test Access Port
The ST20450A conforms to IEEE standard 1149.1, with the exception of the EventWaiting pin, as
reported in the ST20450 bug list.

The Test Access Port (TAP) consists of five pins: TMS, TCK, TDI, TDO and notTRST. TDO can be
overdriven to the power rails, and TCK can be stopped in either logic state.

The instruction register is 5 bits long, with no parity, and the pattern “00001” is loaded into the
register during the Capture-IR state.

There are four defined pub lic instructions, see Table 10.1. All other instruction codes are reserved.

There are three test data registers; Bypass , Boundary-Scan and Identification . These registers
operate according to 1149.1. The operation of the Boundary-Scan register is defined in the BSDL
description, see Appendix A on page 99.

The identification code is 05000011, see Table 10.2.

a. MSB ... LSB; LSB closest to TDO.

a. Closest to TDO.
b. 0 indicates SGS-THOMSON part, 1 indicates customer part.
c. Defined as 1 in IEEE 1149.1 standard.

Instruction code a Instruction Selected register

0 0 0 0 0 EXTEST Boundary-Scan

0 0 0 0 1 IDCODE Identification

0 0 0 1 0 SAMPLE/PRELOAD Boundary-Scan

1 1 1 1 1 BYPASS Bypass

Table 10.1 Instruction codes

bit 31 bit 0 a

Mask
Rev

b ST20 family Variant SGS-THOMSON
manufacturers id

c

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 5 0 0 0 0 1 1

Table 10.2 Identification code

ST20450

68/106



11 Clocks and low power operation

11.1 Clocks

Two on-chip phase locked loops (PLL) generate all the internal high frequency clocks. The PLLs
are used to generate the internal clock frequencies needed for the CPU and the OS-Links.
Alternatively a direct clock input can provide the system clocks.

Internal clocks may be turned off (including PLLs) enabling power down mode.

There are two clock inputs, one for the system clock (ClockIn) and one for the link clock
(LinkClockIn). ClockIn must be in the range 3.2 to 10 MHz for PLL operation, see Table 11.1.
LinkClockIn must be 5 MHz during PLL operation for compatibility with the Development System
and other standard OS-Link products.

The ST20450 can be set to operate in TimesOneMode , which is when the PLL is bypassed.
During TimesOneMode for either clock the relevant input clock must be in the range 0 to 32 MHz
and should be nominally 50/50 mark space ratio.

11.1.1 Processor speed select

The speed of the internal processor clock is variable in discrete steps. The clock rate at which the
ST20450 runs at is determined by the logic levels applied on the three speed select lines
ProcSpeed0-2 as detailed in Table 11.1. The frequency of ClockIn for the processor speeds given
in the table is nominally 5 MHz.

Table 11.1 Processor speed selection

11.2 Low power control

The ST20450 is designed for 0.5 micron, 3.3V CMOS technology and runs at speeds of up to 40
MHz. 3.3V operation provides reduced power consumption internally and allows the use of low
power peripherals. In addition, to enhance the potential for battery operation further, a low power
power-down mode is available on the ST20450.

The different power levels of the ST20450 are listed below.

• Operating power - power consumed during functional operation.

ProcSpeed2 ProcSpeed1 ProcSpeed0 Processor
clock

speed MHz

Processor
cycle time

ns

Phase lock
loop factor

(PLLx)

Allowable
ClockIn

range MHz

0 0 0 TimesOneMode 0 - 32

0 0 1 RESERVED RESERVED

0 1 0 RESERVED RESERVED

0 1 1 30 33.3 6 5 - 8.3

1 0 0 40 25.0 8 4 - 6.25

1 0 1 RESERVED RESERVED

1 1 0 RESERVED RESERVED

1 1 1 RESERVED RESERVED

ST20450

69/106



• Standby power - power consumed during little or no activity. The CPU is idle but ready to
immediately respond to an interrupt/reschedule.

• Power-down - internal clocks are stopped and power consumption is significantly reduced.
Functional operation is stalled. Normal functional operation can be resumed from previous
state as soon as the clocks are stable as all internal logic is static no information is lost dur-
ing power-down.

The ST20450 enters power-down when:

• LPIn is high - irrespective of all other device activity.

The ST20450 exits power-down when:

• LPIn goes low.

In power-down mode the processor and all peripherals are stopped, including the external memory
controller and optionally the PLLs. Effectively the internal clock is stopped and functional operation
is stalled. On restart the clock is restarted and the chip resumes normal functional operation.

Low power operation can be achieved in one of two ways, as listed below.

• Availability of direct clock input - this allows external control of clocking directly and thus
direct control of power consumption. (Available in TimesOneMode only).

• Global system clock may be stopped, using the LPIn pin as described above. In this case
the external clock remains running. This mechanism allows any PLLs to be kept running (if
desired) so that wake-up from low power mode will be fast.

Note, DRAM refresh is not supported in power-down mode and DMA Request requires special
attention to work correctly.

11.2.1 Low power configuration register s

The low power controller is allocated a 4k block of memory in the internal peripheral address
space. Information on low power mode is stored in registers as detailed in the following section.
The registers can be examined and set by the devlw (device load word) and devsw (device store
word) instructions. Note, they can not be accessed using memory instructions.

LPSysPll

The LPSysPll register controls what happens to the System Clock in PLL operation when low
power mode is entered.

Table 11.2 Bit fields in the LPSysPll register

LPSysPll #20001420 Read/Write

Bit Bit field Function

1:0 LPSysPll Determines the system clock PLL when low power mode is entered, as follows:
LPSysPll1:0 System clock

00 PLL off
01 PLL reference on
10 PLL reference on
11 PLL on

ST20450

70/106



LPLinkPll

The LPLinkPll register controls what happens to the Link Clock PLL when low power mode is
entered.

Table 11.3 Bit fields in the LPLinkPll register

SysRatio

The SysRatio register is a read only register and gives the speed that the system PLL is running
at. It contains the relevant PLL multiply ratio when using a PLL, or contains the value ‘1’ when in
TimesOneMode for that PLL.

LinkRatio

The LinkRatio register is a read only register and gives the speed that the link PLL is running at. It
contains the relevant PLL multiply ratio when using a PLL, or contains the value ‘1’ when in
TimesOneMode for that PLL.

Note that for the OS-Links the clock speed is 2.5 times the data rate, thus a multiply ratio of 10 with
a 5 MHz input clock rate is equivalent to a link speed of 20 Mbits/s.

11.3 Wakeup times and power consumption during standby

In standby the system and link PLLs have a number of possible states, determined by the setting of
the LPSysPll and LPLinkPll registers, which allow a compromise between wakeup time and
power consumption during standby.

Notes

1 Leakage is 3.5 mW maximum at 125 °C die temperature.

Table 11.4 System PLL options

LPLinkPll #20001424 Read/Write

Bit Bit field Function

2:0 LPLinkPll Determines the link clock PLL when low power mode is entered, as follows:
LPLinkPll2:0 Link clock

000 PLL off
001 PLL reference on
010 PLL reference on
011 PLL on
100 RESERVED
101 RESERVED
110 RESERVED
111 PLL running and OS-Link inputs clocking during low power.

System PLL state during standby Approximate wakeup time Power in standby Notes

Running 3 LPC clocks + 6 system (CPU) clocks 20 mW

Standby 0.5 ms 2 mW + leakage 1

Off (default) 2 ms leakage 1

ST20450

71/106



Notes

1 Leakage is 3.5 mW maximum at 125 °C die temperature.

Table 11.5 Link PLL options

11.4 Clocking sources

The low power timer and alarm must be clocked at all times by the following clocking source:

• External clock input (LPClockIn) - this clock can be at any rate below 5 MHz provided it is
not more than one eighth of the system clock rate.

Link PLL state during standby Approximate wakeup time Power in standby Notes

Running and clocking OS-Link engine 0 40 mW

Running 3 LPC clocks + 6 system (CPU) clocks 20 mW

Standby 0.5 ms 2 mW + leakage 1

Off (default) 2 ms leakage 1

ST20450

72/106



12 Serial link interface (OS-Link)
The ST20450 has an OS-Link based serial communications subsystem. The OS-Link is used to
provide serial data transfer and its main function is for booting the device during software
development.

The OS-Link is a serial communications engine consisting of two signal wires, one in each
direction. OS-Links use an asynchronous bit-serial (byte-stream) protocol, each bit received is
sampled five times, hence the term oversampled links (OS-Links). The OS-Link provides a pair of
channels, one input and one output channel.

The OS-Link is used for the following purposes:

• Bootstrapping - the program which is executed at power up or after reset can reside in ROM
in the address space, or can be loaded via the OS-Link directly into memory.

• Diagnostics - diagnostic and debug software can be downloaded over the link connected to
a PC or other diagnostic equipment, and the system performance and functionality can be
monitored.

• Connection to external peripherals - interface devices are available that allow OS-Links to
be interfaced to standard peripherals and buses. A macrocell is also available to give
OS-Link to parallel interface conversion for use on external ASIC based peripherals.

• Multiprocessing - OS-Links allow the ST20450 to be directly connected in a multiprocessor
system with other OS-Link devices. Inter-processor communication is directly supported in
software.

12.1 OS-Link protocol

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed
by a one bit followed by eight data bits followed by a low stop bit (see Figure 12.1). The least
significant bit of data is transmitted first. After transmitting a data byte the sender waits for the
acknowledge, which consists of a high start bit followed by a zero bit. The acknowledge signifies
both that a process was able to receive the acknowledged data byte and that the receiving link is
able to receive another byte. The sending link reschedules the sending process only after the
acknowledge for the final byte of the message has been received. The link allows an acknowledge
to be sent before the data has been fully received.

Figure 12.1 OS-Link data and acknowledge formats

0 1 2 3 4 5 6 7

Data Ack

H H L LH

ST20450

73/106



12.2 OS-Link speed

The bandwidth of each link is selectable to 10 or 20 Mbits/s, Link0 can also be set to run at 5
Mbits/s if the Link0Special pin is set high, see Table 12.1. Links are not synchronized with the
input clock or the processor clock and are insensitive to their phases. Thus links from
independently clocked systems may communicate, providing only that the clocks are nominally
identical and within specification.

Table 12.1 Link speed settings

The links can be run at TimesOneMode , i.e. with the PLL bypassed. When the links are in
TimesOneMode they actually run at the speed of the link clock divided by 2.5. For example, with
the link clock at 50 MHz, Link1-3 run at 20 Mbits/s and Link0 runs at 10 or 20 Mbits/s depending
on the setting of the Link0Special pin, see Table 12.2.

Table 12.2 Link speeds when set to TimesOneMode with the link clock at 50 MHz

LinkSpeed1 LinkSpeed0 Link0Special Link1-3 speed Link0 speed

0 0 X TimesOneMode TimesOneMode

0 1 0 10 Mbits/s 10 Mbits/s

1 0 0 20 Mbits/s 20 Mbits/s

1 1 X RESERVED RESERVED

0 1 1 10 Mbits/s 5 Mbits/s

1 0 1 20 Mbits/s 10 Mbits/s

LinkSpeed1:0 Link0Special Link1-3 speed Link0 speed

00 0 20 Mbits/s 20 Mbits/s

00 1 20 Mbits/s 10 Mbits/s

ST20450

74/106



12.3 OS-Link connections

Links are TTL compatible and intended to be used in electrically quiet environments, between
devices on a single printed circuit board or between two boards via a backplane. Direct connection
may be made between devices separated by a distance of less than 300 mm. For longer distances
a matched 100 ohm transmission line should be used with series matching resistors (RM), see
Figure 12.3. When this is done the line delay should be less than 0.4 bit time to ensure that the
reflection returns before the next data bit is sent. Buffers may be used for very long transmissions,
see Figure 12.4. If so, their overall propagation delay should be stable within the skew tolerance of
the link, although the absolute value of the delay is immaterial.

Figure 12.2 OS-Links directly connected

Figure 12.3 OS-Links connected by transmission line

Figure 12.4 OS-Links connected by buffers

OSLinkOut

OSLinkIn

OSLinkIn

OSLinkOut

ST20450 ST20450

OSLinkOut

OSLinkIn

OSLinkIn

OSLinkOut

RM

RMZo=100 ohms

Zo=100 ohms

ST20450 ST20450

OSLinkOut

OSLinkIn

OSLinkIn

OSLinkOut

buffers

ST20450 ST20450

ST20450

75/106



12.4 Event

EventReq and EventAck provide an asynchronous handshake interface between an external
event and an internal process. Event channels provide process synchronization but cannot transfer
any data. When an external event takes EventReq high the external event channel (additional to
the external link channels) is made ready to communicate with a process. When both the event
channel and the process are ready the processor takes EventAck high and the process, if waiting,
is scheduled. EventAck is removed after EventReq goes low.

Figure 12.5 Event

EventWaiting is asserted high when a process executes an input on the event channel. Note, the
EventWaiting pin can only be asserted by executing an in instruction, it is not asserted high when
an enable channel (enbc) instruction is executed on the event channel. EventWaiting remains high
whilst the device is waiting for or servicing EventReq and is returned low when EventAck goes
high. The EventWaiting pin changes near the falling edge of ProcClockOut and can therefore be
sampled by the rising edge of ProcClockOut .

EventWaiting allows a process to control external logic; for example, to clock a number of inputs
into a memory mapped data latch so that the event request type can be determined.

Only one process may use the event channel at any given time. If no process requires an event to
occur EventAck will never be taken high. Although EventReq triggers the channel on a transition
from low to high, it must not be removed before EventAck is high. EventReq should be low during
Reset ; if not it will be ignored until it has gone low and returned high. EventAck is taken low when
Reset occurs.

If the process is a high priority one and no other high priority process is running, typical latency is
19 processor cycles, and maximum latency (assuming all memory accesses are internal) is 58
processor cycles.

Setting a high priority task to wait for an event input allows the user to interrupt a program running
at low priority. The time taken from asserting EventReq to the execution of the microcode interrupt
handler in the CPU is four cycles. The following functions take place during the four cycles:

Cycle 1 Sample EventReq at pad on the rising edge of ProcClockOut and synchronize.

Cycle 2 Edge detect the synchronized EventReq and form the interrupt request.

Cycle 3 Sample interrupt vector for microcode ROM in the CPU.

Cycle 4 Execute the interrupt routine for the event rather than the next instruction.

Event waiting for ProcessProcess waiting for Event

EventReq

EventAck

EventWaiting

External hardware asserts EventReq

ST20450 acknowledges event request

ST20450

76/106



13 Software development
Software development support for the ST20450 is provided by the ST20 Toolset which includes a
range of advanced debugging tools supporting a windows based graphical user interface (GUI) for
PC and UNIX machines.

13.1 ST20 toolset

The ST20 toolset provides a range of tools to support the developer including:

• Compiler - full ANSI validated optimizing C compiler, with support for assembly language
programming.

• Runtime libraries - full ANSI validated libraries.

• Compacting linker and Librarian - support for user, application and run-time libraries.

• Configurer - suppor ts the mapping of an application onto an ST20 processor.

• Mapping tool - conversion of symbolic to absolute addresses.

• ROM tool - support EPROM programming.

• Memory configuration tool - support for initializing the EMI.

Refer to the ST20 ANSI C Toolset Datasheet (document number 42 1669 00) for further details.

13.1.1 Debugging and profiling software

Debugging and profiling software includes an extended range of tools supporting a window based
GUI appropriate to the development host:

• Windows 3.1 for PC machines

• OSF Motif for UNIX machines

• Profiler - conventional profiling tool.

• Load monitor - profile of the CPU usage , hot/cold spots, computation loading, communica-
tions loading.

• INQUEST windowing debugger - providing source and assembler debugging with watch-
points, breakpoints, single stepping, stack trace and symbolic data inspection.

Further details can be found in the PC ST20 Inquest Datasheet (document number 42 1668 00)
and the Sun 4 ST20 Inquest Datasheet (document number 42 1667 00).

ST20450

77/106



14 Configuration register ad dresses
This chapter lists all the ST20450 configuration registers and gives the addresses of the registers.
The complete bit format of each of the registers and its functionality is given in the relevant chapter.

The registers can be examined and set by the devlw (device load word) and devsw (device store
word) instructions. Note, they can not be accessed using memory instructions.

Register Address Size Set Clear Read/Write Ref
page

HandlerWptr0 #20000000 30 R/W 24

HandlerWptr1 #20000004 30 R/W

HandlerWptr2 #20000008 30 R/W

HandlerWptr3 #2000000C 30 R/W

HandlerWptr4 #20000010 30 R/W

HandlerWptr5 #20000014 30 R/W

HandlerWptr6 #20000018 30 R/W

HandlerWptr7 #2000001C 30 R/W

TriggerMode0 #20000040 3 R/W 24

TriggerMode1 #20000044 3 R/W

TriggerMode2 #20000048 3 R/W

TriggerMode3 #2000004C 3 R/W

TriggerMode4 #20000050 3 R/W

TriggerMode5 #20000054 3 R/W

TriggerMode6 #20000058 3 R/W

TriggerMode7 #2000005C 3 R/W

Pending #20000080 8 Interrupt trigger Interrupt grant R/W 26

Set-Pending #20000084 W

Clear-Pending #20000088 W

Mask #200000C0 9 R/W 25

Set-Mask #200000C4 W

Clear-Mask #200000C8 W

Exec #20000100 8 Interrupt valid Interrupt done R/W 27

Set-Exec #20000104 W

Clear-Exec #20000108 W

LPSysPll #20001420 2 R/W 69

LPLinkPll #20001424 3 R/W 70

SysRatio #20001500 6 R 70

Table 14.1 ST20450 register addresses

ST20450

78/106



LinkRatio #20001504 6 R 70

ConfigDataField0 #20002000 32 R/W 52

ConfigDataField1 #20002004 32 R/W

ConfigDataField2 #20002008 32 R/W

ConfigDataField3 #2000200C 32 R/W

ConfigCommand #20002010 32 W 51

ConfigStatus #20002020 32 R 52

Register Address Size Set Clear Read/Write Ref
page

Table 14.1 ST20450 register addresses

ST20450

79/106



15 Electrical specifications

15.1 Absolute maximum ratings

Notes

1 Stresses greater than those listed under ‘Absolute maximum ratings’ may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operating sections of this specifi-
cation is not implied. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

Table 15.1 Absolute maximum ratings

15.2 Operating conditions

Notes

1 Excursions beyond the supplies are permitted but not recommended; see DC characteris-
tics.

2 Excluding LinkOut load capacitance and EMI pin load capacitance.

Table 15.2 Operating conditions

Symbol Parameter Min Max Units Notes

VDD DC supply voltage 3.6 V

VI Voltage on input pins GND-0.6 5.75 V

VO Voltage on bi-directional and output pins GND-0.6 VDD+0.6 V

IO DC output current 25 mA

TS Storage temperature (ambient) -55 125 °C

TA Temperature under bias (ambient) -55 125 °C

PDmax Power dissipation 1.98 W

Symbol Parameter Min Max Units Notes

VI, VO Input or output voltage 0 VDD V 1

CL Load capacitance per pin 60 pF 2

CLD Load capacitance per data pin 60 pF

CLA Load capacitance per address/strobe pin 100 pF

TA Operating temperature (ambient)
ST20450-S

0 70 °C

ST20450

80/106



15.3 DC specifications

Notes

1 0 ≤ VI ≤ VDD

2 Iload=2mA

Table 15.3 DC specifications

Symbol Parameter Min Typical Max Units Notes

VDD Positive supply voltage 3.0 3.3 3.6 V

VIH Input logic 1 voltage (bi-direc-
tional pins and LPClockIn pin)

2.0 VDD+0.5 V

Input logic 1 voltage (input
pins)

2.0 5.75 V

VIL Input logic 0 voltage -0.5 0.8 V

IIN Input current (input pin) ±10 µA 1

IOZ Off state digital output current ±50 µA 1

VOHDC Output logic 1 voltage 2.4 V 2

VOLDC Output logic 0 voltage 0.4 V 2

CIN Input capacitance (input pins) 7 pF

Input capacitance (bi-direc-
tional pins)

14 pF

COUT Output capacitance 15 pF

ST20450

81/106



16 Timing specifications

16.1 EMI timings

The timings are based on the following loading conditions: 50 pF load with the pad drive strengths
(see Table 8.15 on page 61 for details on the pad drive strength) as follows:

MemAddr2-31 drive strength at level 1

Strobe drive strength at level 1

MemData0-31 drive strength at level 3

Table 16.1 EMI cycle timings

Note, the ‘Reference Clock’ used in the EMI timings is a virtual clock and is defined as the point at
which all positively edged EMI strobe and address outputs are valid. This is designed to remove
process dependant skews from the datasheet description and highlight the dominant influence of
address and strobe timings on memory system design.

All timing measurements are taken using a threshold of 1.5 V.

Symbol No. Parameter Min Max Units Notes

tCHAV 1 Reference Clock high to Address valid -6.8 0.0 ns

tCLSV 2 Reference Clock low to Strobe valid -6.0 2.3 ns

tCHSV 3 Reference Clock high to Strobe valid -5.7 0.0 ns

tRDVCH 4 Read Data valid to Reference Clock high 12.8 ns

tCHRDX 5 Read Data hold after Reference Clock high -6.5 ns

tCLWDV 6 Reference Clock low to Write Data valid -7.3 2.9 ns

tCHWDV 7 Reference Clock high to Write Data valid -6.3 1.9 ns

tCHRSV 8 Reference Clock high to remaining Strobes valid -4.9 5.6 ns

tCHPH 9 Reference Clock high to ProcClkOut -6.1 0.7 ns

tWVCH 10 MemWait valid to Reference Clock high 12.4 ns

tCHWX 11 MemWait hold after Reference Clock high -6.5 ns

tRVCH 12 MemReq valid to Reference Clock high 12.4 ns

tCHRX 13 MemReq hold after Reference Clock high -6.5 ns

ST20450

82/106



Figure 16.1 EMI timings

MemAddr2-31

MemData0-31

tRDVCH4

ProcClkOut

(Read)

MemData0-31
(Wr i te on 0,1
clock)

MemData0-31
(Write on half
clock)

tCLWDV6

tCHWDV7

tCHSV3 tCLSV2

tCHAV1

tCHRDX5

notMemCAS0-3
notMemPS0-3

notMemRAS0-3

notMemBE0-3

tCHRSV8

notMemRf
MemGranted

notMemRd

MemRefPend

Reference clock

tCHPH9 tCHPH9

MemWait

tWVCH
tCHWX11

MemReq

tRVCH tCHRX

10

12 13

ST20450

83/106



Figure 16.2 Rise and fall times for MemData0-31 pins for different pad drive strengths

Figure 16.3 Rise and fall times for MemAddr2-31 and strobe pins for different pad drive strengths

5

10

20 50 80 100

00
01
10
11

150

Cload (pF)

Fall time (ns)

1

2

3

4

6

7

8

9

5

10

15

20 50 80 100 150

Rise time (ns)

Cload (pF)

11

10

01

00

1
2
3
4

6
7
8
9

11
12
13
14

Cload (pF)

Rise time (ns)

11
10

01

0015

10

5

1
2
3
4

6
7
8
9

11
12
13
14

20 40 60 80 100 120140160180200

15

10

5

1
2
3
4

6
7
8
9

11
12
13
14

20 40 60 80 100 120 140 160180200
Cload (pF)

Fall time (ns)

11
10
01

00

ST20450

84/106



Figure 16.4 Rise and fall times for ProcClkOut at pad drive strength level 3

All rise and fall times are measured at 10 - 90 %, on typical silicon at 3.3 V, 25°C.

5

10

20 50 80 100 150

Cload (pF)

Rise time (ns)

11

1

2

3
4

6

7

8

9

5

20 50 80 100

11

Fall time (ns)

150

Cload (pF)

1

2

3

4

6

ST20450

85/106



16.2 Link timings

Notes

1 This is the variation in the total delay through buffers, transmission lines, differential receiv-
ers etc, caused by such things as short term variation in supply voltages and differences in
delays for rising and falling edges.

Table 16.2 Link timings

Figure 16.5 Link timings

Symbol Parameter Min Nom Max Units Notes

tJQr LinkOut rise time 20 ns

tJQf LinkOut fall time 10 ns

tJDr LinkIn rise time 20 ns

tJDf LinkIn fall time 20 ns

tJQJD Buffered edge delay 0 ns

∆tJB Variation in tJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1

5 Mbits/s 30 ns 1

CLIZ LinkIn capacitance @ f=1MHz 10 pF

CLL LinkOut load capacitance 50 pF

tJQf

90%

10%
tJQr

tJDf

90%

10%
tJDr

LinkOut

LinkIn

ST20450

86/106



Figure 16.6 Buffered Link timings

16.3 Reset and Analyse timings

Notes

1 When ResetRespOut is high.

Table 16.3 Reset and Analyse timings

Figure 16.7 Reset and Analyse timings

Symbol Parameter Min Nom Max Units Notes

tRHRL notRST pulse width low 8 ClockIn

tRHRL CPUReset pulse width high 1 ClockIn

tAHRH CPUAnalyse setup before CPUReset 3 ms 1

tRLAL CPUAnalyse hold after CPUReset end 1 ClockIn

1.5 V

Latest tJQJD

LinkOut

LinkIn 1.5 V

∆tJB

Earliest tJQJD

CPUAnalyse

CPUReset

tRHRL tRHRL

tRLALtAHRH

notRST

tRSTHRSTL

ST20450

87/106



16.4 Event timings

Table 16.4 Event timings

Figure 16.8 Event timings

Symbol Parameter Min Max Units Notes

tVHKH EventReq response 0 ns

tKHVL EventReq hold 0 ns

tVLKL Delay before removal of EventAck 0 ns

tKLVH Delay before re-assertion of EventReq 0 ns

tKHEWL EventAck to end of EventWaiting 0 ns

EventAck

Event waiting for ProcessProcess waiting for Event

EventReq

EventWaiting

tVHKH

tKHEWL

tKHVL tKLVH

tVLKL

ST20450

88/106



16.5 Clock timings

16.5.1 ClockIn and LinkClockIn timings

Notes

1 Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 Clock transitions must be monotonic within the range VIH to VIL (see Electrical Specifica-
tions chapter).

Table 16.5 ClockIn and LinkClockIn timings

Figure 16.9 ClockIn and LinkClockIn timings

Symbol Parameter Min Nom Max Units Notes

tDCLDCH ClockIn and LinkClockIn pulse width low
for PLL operation 40 ns

tDCHDCL ClockIn and LinkClockIn pulse width high
for PLL operation 40 ns

tDCLDCL ClockIn and LinkClockIn period
for PLL operation 200 ns

1, 2

tDCr ClockIn and LinkClockIn rise time
for PLL operation 10 ns

3

tDCf ClockIn and LinkClockIn fall time
for PLL operation 8 ns

3

90%

10%
tDCr

2.0V

0.8V
1.5V

tDCLDCH tDCHDCL

tDCLDCL

tDCf

90%

10%

ST20450

89/106



16.5.2 ProcClkOut timings

Notes

1 Stability is the variation of cycle periods between two consecutive cycles, measured at cor-
responding points on the cycles.

Table 16.6 ProcClkOut timings

Figure 16.10 ProcClkOut timings

Symbol Parameter Min Max Units Notes

tPCLPCL ProcClkOut period 22.5 27.5 ns

tPCHPCL ProcClkOut pulse width high 10 15 ns

tPCLPCH ProcClkOut pulse width low 10 15 ns

tPCstab ProcClkOut stability 8 % 1

1.5V

tPCLPCH tPCHPCL

tPCLPCL

ST20450

90/106



16.6 TAP timings

The TAP will function at 5 MHz TCK, with Tsetup = 10ns and Thold = 10ns for all inputs, and Tprop =
50ns for all outputs. All other electrical characteristics of the TAP pins are as defined in Chapter 15
on page 79.

Figure 16.11 TAP timings

Symbol Parameter Min Nom Max Units Notes

Tsetup Set-up time 10 ns

Thold Hold time 10 ns

Tprop Propagation delay 50 ns

Table 16.7 TAP timings

Tprop

1.5V

Tsetup Thold

1.5V

1.5V

1.5V

TCK

input signal

TCK

output signal

ST20450

91/106



17 Pin designations
Signal names are prefixed by not if they are active low, otherwise they are active high.

Supplies

Table 17.1 ST20450 supply pins

Clocks

Table 17.2 ST20450 clocks and low power pins

System services

Table 17.3 ST20450 system services pins

CPU

Table 17.4 ST20450 CPU pins

Pin In/Out Function

VDD Power supply

GND Ground

Pin In/Out Function

ClockIn in System input clock - PLL or TimesOneMode

LinkClockIn in Link input clock - PLL or TimesOneMode

LPClockIn in Low power input clock

LPOsc in/out Low power clock oscillator

LPIn in Low power control

LPOut out Low power status

ProcClkOut out Processor clock

Pin In/Out Function

ProcSpeed0-2 in Processor speed selectors

ResetRespOut out Reset response output

notRST in Reset

CPUReset in System reset

CPUAnalyse in Error analysis

Pin In/Out Function

ErrorOut out Error indicator

ErrorIn in Error daisy-chain input

Debug0-7 out Debug output

DebugIn in Debug input

ST20450

92/106



Interrupts

Table 17.5 ST20450 interrupt pins

Memory

Table 17.6 ST20450 memory pins

Links

Table 17.7 ST20450 link pins

Event

Table 17.8 ST20450 event pins

Pin In/Out Function

Interrupt0-7 in Interrupt

Pin In/Out Function

MemAddr2-31 out Address bus

MemData0-31 in/out Data bus. Data0 is the least significant bit (LSB) and
Data31 is the most significant bit (MSB).

notMemRd out Read strobe

MemReq in Direct memory access request

MemGranted out Direct memory access granted

MemRefPend out Dynamic memory refresh cycle is pending

notMemRf out Dynamic memory refresh indicator

MemWait in Memory cycle extender

notMemCAS0-3 out CAS strobes - one per bank

notMemRAS0-3 out RAS strobes - one per bank

notMemPS0-3 out Programmable strobes - one per bank

notMemBE0-3 out Byte enable strobes - one per bank

BootSrce0-1 in Boot from ROM or from link

DisableRAM in Disables internal SRAM

Pin In/Out Function

LinkIn0-3 in Four serial data input channels

LinkOut0-3 out Four serial data output channels

Link0Special in Select special speed for Link 0

LinkSpeed0-1 in Link speed selectors

Pin In/Out Function

EventReq in Event request

EventAck out Event request acknowledge

EventWaiting out Event input requested by software

ST20450

93/106



Test Access Port (TAP)

Table 17.9 ST20450 TAP pins

Miscellaneous

Table 17.10 ST20450 miscellaneous pins

Pin In/Out Function

TDI in Test data input

TDO out Test data output

TMS in Test mode select

TCK in Test clock

notTRST in Test logic reset

Pin In/Out Function

MirrorADDEMI No Connect (this refers to unusedpins). Do not wire this pin.

Spare No Connect (this refers to unusedpins). Do not wire this pin.

ST20450

94/106



18 Package specifications
The ST20450 is available in a 208 pin plastic quad flat pack (PQFP) package.

18.1 ST20450 package pinout

Figure 18.1 ST20450 208 pin PQFP package pinout

ST20450

95/106



18.2 ST20450 208 pin PQFP package dimensions

Notes

1 Lead finish to be 85 Sn/15 Pb solder plate.

Table 18.1 208 pin PQFP package dimensions

REF. CONTROL DIM. mm ALTERNATIVE DIM. INCHES NOTES

MIN NOM MAX MIN NOM MAX

A - - 4.080 - - 0.161

A1 0.25 - 0.40 0.010 - 0.016

A2 3.240 3.600 3.740 0.127 0.142 0.147

B 0.190 - 0.380 0.007 - 0.015

C 0.120 - 0.180 0.005 - 0.007

D 30.350 - 30.850 1.195 - 1.215

D1 27.900 28.000 28.100 1.098 1.102 1.106

D3 - 25.500 - - 1.004 - REF

E 30.350 - 30.850 1.195 - 1.215

E1 27.900 28.000 28.100 1.098 1.102 1.106

E3 - 25.500 - - 1.004 - REF

e - 0.500 - - 0.020 - BSC

K 0 - 7 0 - 7

L 0.350 0.500 0.650 0.014 0.020 0.026

L1 - 1.300 - - 0.051 - TYP

Zd - 1.250 - - 0.049 - REF

Ze - 1.250 - - 0.049 - REF

ST20450

96/106



Figure 18.2 ST20450 208 pin PQFP package dimensions

ST20450

97/106



18.3 ST20450 208 pin PQFP package thermal data

Maximum, still air thermal resistance is 55°C/W for the die in a 208 PQFP, with copper leadframe.

Junction to case thermal resistance, measured to the centre of the upper side of the case, is 25°C/
W.

Given a maximum operating junction temperature of 100°C the following maximum power
conditions apply;

Still air at 35°C 2.5 W

Still air at 85°C 0.83 W

Case held at 85°C 1.85 W

Under certain operating conditions, the ST20450 device can dissipate up to 1.85 W. External
thermal management is recommended, to ensure optimum performance and reliability.

ST20450

98/106



19 Ordering information

For further information contact your local SGS-Thomson sales office.

Device Package

ST20450X40S 208 pin plastic quad flatpack (PQFP)

ST20450

99/106



Appendix A Boundary scan description
language (BSDL) file

--Version 0.2
--P J Dickinson, 30-08-95

entity ST20450A is

generic (PHYSICAL_PIN_MAP : string := ”PQFP208”);

port (VDD: linkage bit_vector (0 to 29);
GND: linkage bit_vector (0 to 31);

spare: linkage bit_vector (0 to 3);

ClockIn, LinkClockIn, LPClockIn: in bit;
LPClockOsc: linkage bit;

-- this inout is a clock, and therefore has no BS cell
LPIn: in bit;
LPOut, ProcClkOut: out bit;

ProcSpeed: in bit_vector (0 to 2);
ResetRespOut: out bit;
notRST, CPUReset, CPUAnalyse: in bit;

ErrorOut: out bit;
ErrorIn: in bit;
DebugOut: out bit_vector (0 to 7);
DebugIn: in bit;

Interrupt: in bit_vector (0 to 7);

MemAddr: out bit_vector (2 to 31);
MemData: inout bit_vector (0 to 31);
notMemRd: out bit;
MemReq: in bit;
MemGranted, MemRefPend, notMemRf: out bit;
MemWait: in bit;
notMemCAS, notMemRAS, notMemPS, notMemBE: out bit_vector (0 to 3);
BootSrce: in bit_vector (0 to 1);
DisableRAM: in bit;

LinkIn: in bit_vector (0 to 3);
LinkOut: out bit_vector (0 to 3);
Link0Special: in bit;
LinkSpeed: in bit_vector (0 to 1);

EventReq: in bit;
EventAck: out bit;
EventWaiting: linkage bit;

-- This output has no BS cell due to a bug

TDI: in bit;
TDO: out bit;
TMS, TCK, notTRST: in bit;

ST20450

100/106



MirrorADDEMI: in bit);

use STD_1149_1_1990.all;

attribute PIN_MAP of ST20450A : entity is PHYSICAL_PIN_MAP;

constant PQFP208: PIN_MAP_STRING :=

”memaddr:(3,4,5,8,9,10,13,14,15,18,19,20,23,24,25,29,30,31,34,35,36,39,40,41,44,45,46,
49,50,51),” &

”memdata:(54,55,56,57,59,60,61,62,64,65,66,67,69,70,71,72,74,75,76,77,80,81,82,83,85,8
6,87,88,90,91,92,93),” &

”debugout:(95,96,97,98,100,101,102,103),” &
”debugin:106,” &
”errorin:107,” &
”errorout:108,” &
”notrst:109,” &
”resetrespout:111,” &
”cpuanalyse:112,” &
”cpureset:113,” &
”bootsrce:(114,116),” &
”tdi:117,” &
”tms:118,” &
”tck:119,” &
”nottrst:121,” &
”tdo:122,” &
”interrupt:(123,124,126,127,128,129,132,133),” &
”lpclockosc:137,” &
”lpclockin:138,” &
”lpin:139,” &
”lpout:140,” &
”procspeed:(142,143,144),” &
”clockin:145,” &
”linkclockin:147,” &
”linkspeed:(148,149),” &
”link0special:150,” &
”eventreq:152,” &
”eventack:153,” &
”eventwaiting:154,” &
”linkin:(158,160,163,165),” &
”linkout:(159,161,164,166),” &
”mirroraddemi:169,” &
”disableram:170,” &
”notmemrd:171,” &
”memreq:173,” &
”memgranted:174,” &
”memrefpend:175,” &
”memwait:176,” &
”notmemrf:178,” &
”procclkout:180,” &
”notmembe:(184,185,186,187),” &
”notmemps:(190,191,192,195),” &
”notmemcas:(196,197,200,201),” &
”notmemras:(202,205,206,207),” &

ST20450

101/106



”vdd:(11,17,21,27,28,33,37,43,47,53,63,73,79,89,99,105,115,125,131,141,151,157,167,177
,179,183,189,193,199,203),” &

”gnd:(2,6,12,16,22,26,32,38,42,48,52,58,68,78,84,94,104,110,120,130,136,146,156,162,17
2,181,182,188,194,198,204,208),” &

”spare:(134,135,155,168)”;

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (10.0e6, BOTH);
attribute TAP_SCAN_RESET of notTRST: signal is true;

attribute INSTRUCTION_LENGTH of ST20450A : entity is 5;

attribute INSTRUCTION_OPCODE of ST20450A : entity is
”BYPASS (11111), ” &
”EXTEST (00000), ” &
”IDCODE (00001), ” &
”SAMPLE (00010) ” ;

attribute INSTRUCTION_CAPTURE of ST20450A : entity is ”00001”;

attribute IDCODE_REGISTER of ST20450A : entity is ”00000101000000000000000000010001”;

attribute BOUNDARY_LENGTH of ST20450A : entity is 181;

attribute BOUNDARY_REGISTER of ST20450A : entity is
-- num cell port function safe [ccell disval rslt]

” 0 (BC_1, notmemras(3) , output2, X),” &
” 1 (BC_1, notmemras(2) , output2, X),” &
” 2 (BC_1, notmemras(1) , output2, X),” &
” 3 (BC_1, notmemras(0) , output2, X),” &
” 4 (BC_1, notmemcas(3) , output2, X),” &
” 5 (BC_1, notmemcas(2) , output2, X),” &
” 6 (BC_1, notmemcas(1) , output2, X),” &
” 7 (BC_1, notmemcas(0) , output2, X),” &
” 8 (BC_1, notmemps(3) , output2, X),” &
” 9 (BC_1, notmemps(2) , output2, X),” &
” 10 (BC_1, notmemps(1) , output2, X),” &
” 11 (BC_1, notmemps(0) , output2, X),” &
” 12 (BC_1, notmembe(3) , output2, X),” &
” 13 (BC_1, notmembe(2) , output2, X),” &
” 14 (BC_1, notmembe(1) , output2, X),” &
” 15 (BC_1, notmembe(0) , output2, X),” &
” 16 (BC_1, procclkout , output2, X),” &
” 17 (BC_1, * , internal, X),” &
” 18 (BC_1, notmemrf , output2, X),” &
” 19 (BC_1, memwait , input, X),” &
” 20 (BC_1, * , internal, X),” &
” 21 (BC_1, * , internal, X),” &
” 22 (BC_1, memrefpend , output2, X),” &
” 23 (BC_1, * , internal, X),” &
” 24 (BC_1, memgranted , output2, X),” &
” 25 (BC_1, memreq , input, X),” &
” 26 (BC_1, * , internal, X),” &
” 27 (BC_1, * , internal, X),” &
” 28 (BC_1, notmemrd , output2, X),” &

ST20450

102/106



” 29 (BC_1, disableram , input, X),” &
” 30 (BC_1, * , internal, X),” &
” 31 (BC_1, mirroraddemi , input, X),” &
” 32 (BC_1, * , internal, X),” &
” 33 (BC_1, linkout(3) , output2, X),” &
” 34 (BC_1, linkin (3) , input, X),” &
” 35 (BC_1, linkout(2) , output2, X),” &
” 36 (BC_1, linkin (2) , input, X),” &
” 37 (BC_1, linkout(1) , output2, X),” &
” 38 (BC_1, linkin (1) , input, X),” &
” 39 (BC_1, linkout(0) , output2, X),” &
” 40 (BC_1, linkin (0) , input, X),” &

-- ” (BC_1, eventwaiting , output2, X),” &
-- no BS cell here due to bug

” 41 (BC_1, eventack , output2, X),” &
” 42 (BC_1, eventreq , input, X),” &
” 43 (BC_1, link0special , input, X),” &
” 44 (BC_1, linkspeed(1) , input, X),” &
” 45 (BC_1, linkspeed(0) , input, X),” &
” 46 (BC_1, linkclockin , input, X),” &
” 47 (BC_1, clockin , input, X),” &
” 48 (BC_1, procspeed(2) , input, X),” &
” 49 (BC_1, procspeed(1) , input, X),” &
” 50 (BC_1, procspeed(0) , input, X),” &
” 51 (BC_1, lpout , output2, X),” &
” 52 (BC_1, lpin , input, X),” &
” 53 (BC_1, lpclockin , input, X),” &
” 54 (BC_1, interrupt(7) , input, X),” &
” 55 (BC_1, interrupt(6) , input, X),” &
” 56 (BC_1, interrupt(5) , input, X),” &
” 57 (BC_1, interrupt(4) , input, X),” &
” 58 (BC_1, interrupt(3) , input, X),” &
” 59 (BC_1, interrupt(2) , input, X),” &
” 60 (BC_1, interrupt(1) , input, X),” &
” 61 (BC_1, interrupt(0) , input, X),” &
” 62 (BC_1, bootsrce(0) , input, X),” &
” 63 (BC_1, bootsrce(1) , input, X),” &
” 64 (BC_1, cpureset , input, X),” &
” 65 (BC_1, cpuanalyse , input, X),” &
” 66 (BC_1, resetrespout , output2, X),” &
” 67 (BC_1, notrst , input, X),” &
” 68 (BC_1, errorout , output2, X),” &
” 69 (BC_1, errorin , input, X),” &
” 70 (BC_1, debugin , input, X),” &
” 71 (BC_1, debugout(7) , output2, X),” &
” 72 (BC_1, debugout(6) , output2, X),” &
” 73 (BC_1, debugout(5) , output2, X),” &
” 74 (BC_1, debugout(4) , output2, X),” &
” 75 (BC_1, debugout(3) , output2, X),” &
” 76 (BC_1, debugout(2) , output2, X),” &
” 77 (BC_1, debugout(1) , output2, X),” &
” 78 (BC_1, debugout(0) , output2, X),” &
” 79 (BC_1, memdata(0) , input, X),” &
” 80 (BC_1, memdata(0) , output3, X, 87, 0, Z),” &
” 81 (BC_1, memdata(1) , input, X),” &
” 82 (BC_1, memdata(1) , output3, X, 87, 0, Z),” &
” 83 (BC_1, memdata(2) , input, X),” &
” 84 (BC_1, memdata(2) , output3, X, 87, 0, Z),” &

ST20450

103/106



” 85 (BC_1, memdata(3) , input, X),” &
” 86 (BC_1, memdata(3) , output3, X, 87, 0, Z),” &
” 87 (BC_1, * , control, 0),” & -- mdata 0-7
” 88 (BC_1, memdata(4) , input, X),” &
” 89 (BC_1, memdata(4) , output3, X, 87, 0, Z),” &
” 90 (BC_1, memdata(5) , input, X),” &
” 91 (BC_1, memdata(5) , output3, X, 87, 0, Z),” &
” 92 (BC_1, memdata(6) , input, X),” &
” 93 (BC_1, memdata(6) , output3, X, 87, 0, Z),” &
” 94 (BC_1, memdata(7) , input, X),” &
” 95 (BC_1, memdata(7) , output3, X, 87, 0, Z),” &
” 96 (BC_1, memdata(8) , input, X),” &
” 97 (BC_1, memdata(8) , output3, X, 104, 0, Z),” &
” 98 (BC_1, memdata(9) , input, X),” &
” 99 (BC_1, memdata(9) , output3, X, 104, 0, Z),” &
” 100 (BC_1, memdata(10) , input, X),” &
” 101 (BC_1, memdata(10) , output3, X, 104, 0, Z),” &
” 102 (BC_1, memdata(11) , input, X),” &
” 103 (BC_1, memdata(11) , output3, X, 104, 0, Z),” &
” 104 (BC_1, * , control, 0),” & -- mdata 8-15
” 105 (BC_1, memdata(12) , input, X),” &
” 106 (BC_1, memdata(12) , output3, X, 104, 0, Z),” &
” 107 (BC_1, memdata(13) , input, X),” &
” 108 (BC_1, memdata(13) , output3, X, 104, 0, Z),” &
” 109 (BC_1, memdata(14) , input, X),” &
” 110 (BC_1, memdata(14) , output3, X, 104, 0, Z),” &
” 111 (BC_1, memdata(15) , input, X),” &
” 112 (BC_1, memdata(15) , output3, X, 104, 0, Z),” &
” 113 (BC_1, * , control, 0),” & -- mdata 16-23
” 114 (BC_1, memdata(16) , input, X),” &
” 115 (BC_1, memdata(16) , output3, X, 113, 0, Z),” &
” 116 (BC_1, memdata(17) , input, X),” &
” 117 (BC_1, memdata(17) , output3, X, 113, 0, Z),” &
” 118 (BC_1, memdata(18) , input, X),” &
” 119 (BC_1, memdata(18) , output3, X, 113, 0, Z),” &
” 120 (BC_1, memdata(19) , input, X),” &
” 121 (BC_1, memdata(19) , output3, X, 113, 0, Z),” &
” 122 (BC_1, memdata(20) , input, X),” &
” 123 (BC_1, memdata(20) , output3, X, 113, 0, Z),” &
” 124 (BC_1, memdata(21) , input, X),” &
” 125 (BC_1, memdata(21) , output3, X, 113, 0, Z),” &
” 126 (BC_1, memdata(22) , input, X),” &
” 127 (BC_1, memdata(22) , output3, X, 113, 0, Z),” &
” 128 (BC_1, memdata(23) , input, X),” &
” 129 (BC_1, memdata(23) , output3, X, 113, 0, Z),” &
” 130 (BC_1, * , control, 0),” & -- mdata 24-31
” 131 (BC_1, memdata(24) , input, X),” &
” 132 (BC_1, memdata(24) , output3, X, 130, 0, Z),” &
” 133 (BC_1, memdata(25) , input, X),” &
” 134 (BC_1, memdata(25) , output3, X, 130, 0, Z),” &
” 135 (BC_1, memdata(26) , input, X),” &
” 136 (BC_1, memdata(26) , output3, X, 130, 0, Z),” &
” 137 (BC_1, memdata(27) , input, X),” &
” 138 (BC_1, memdata(27) , output3, X, 130, 0, Z),” &
” 139 (BC_1, memdata(28) , input, X),” &
” 140 (BC_1, memdata(28) , output3, X, 130, 0, Z),” &
” 141 (BC_1, memdata(29) , input, X),” &
” 142 (BC_1, memdata(29) , output3, X, 130, 0, Z),” &

ST20450

104/106



” 143 (BC_1, memdata(30) , input, X),” &
” 144 (BC_1, memdata(30) , output3, X, 130, 0, Z),” &
” 145 (BC_1, memdata(31) , input, X),” &
” 146 (BC_1, memdata(31) , output3, X, 130, 0, Z),” &
” 147 (BC_1, memaddr(2) , output3, X, 150, 0, Z),” &
” 148 (BC_1, memaddr(3) , output3, X, 150, 0, Z),” &
” 149 (BC_1, memaddr(4) , output3, X, 150, 0, Z),” &
” 150 (BC_1, * , control, 0),” & -- maddr 2-7
” 151 (BC_1, memaddr(5) , output3, X, 150, 0, Z),” &
” 152 (BC_1, memaddr(6) , output3, X, 150, 0, Z),” &
” 153 (BC_1, memaddr(7) , output3, X, 150, 0, Z),” &
” 154 (BC_1, memaddr(8) , output3, X, 160, 0, Z),” &
” 155 (BC_1, memaddr(9) , output3, X, 160, 0, Z),” &
” 156 (BC_1, memaddr(10) , output3, X, 160, 0, Z),” &
” 157 (BC_1, memaddr(11) , output3, X, 160, 0, Z),” &
” 158 (BC_1, memaddr(12) , output3, X, 160, 0, Z),” &
” 159 (BC_1, memaddr(13) , output3, X, 160, 0, Z),” &
” 160 (BC_1, * , control, 0),” & -- maddr 8-15
” 161 (BC_1, memaddr(14) , output3, X, 160, 0, Z),” &
” 162 (BC_1, memaddr(15) , output3, X, 160, 0, Z),” &
” 163 (BC_1, memaddr(16) , output3, X, 164, 0, Z),” &
” 164 (BC_1, * , control, 0),” & -- maddr 16-23
” 165 (BC_1, memaddr(17) , output3, X, 164, 0, Z),” &
” 166 (BC_1, memaddr(18) , output3, X, 164, 0, Z),” &
” 167 (BC_1, memaddr(19) , output3, X, 164, 0, Z),” &
” 168 (BC_1, memaddr(20) , output3, X, 164, 0, Z),” &
” 169 (BC_1, memaddr(21) , output3, X, 164, 0, Z),” &
” 170 (BC_1, memaddr(22) , output3, X, 164, 0, Z),” &
” 171 (BC_1, memaddr(23) , output3, X, 164, 0, Z),” &
” 172 (BC_1, memaddr(24) , output3, X, 174, 0, Z),” &
” 173 (BC_1, memaddr(25) , output3, X, 174, 0, Z),” &
” 174 (BC_1, * , control, 0),” & -- maddr 24-31
” 175 (BC_1, memaddr(26) , output3, X, 174, 0, Z),” &
” 176 (BC_1, memaddr(27) , output3, X, 174, 0, Z),” &
” 177 (BC_1, memaddr(28) , output3, X, 174, 0, Z),” &
” 178 (BC_1, memaddr(29) , output3, X, 174, 0, Z),” &
” 179 (BC_1, memaddr(30) , output3, X, 174, 0, Z),” &
” 180 (BC_1, memaddr(31) , output3, X, 174, 0, Z)”;

end ST20450A;

ST20450

105/106



ST20450

106/106



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the conse-
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this pub lication
are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics
products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON
Microelectronics.

 1995 SGS-THOMSON Microelectronics - All Rights Reserved

IMS and DS-Link are trademarks of SGS-THOMSON Microelectronics Limited.

is a registered trademark of the SGS-THOMSON Microelectronics Group.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco -

The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.



106

	ST20450 bug list
	Contents
	1 Introduction
	2 Architecture
	3 Central Processing Unit
	3.1 Registers
	3.2 Processes and concurrency
	3.3 Priority
	3.4 Process communications
	3.5 Timers
	3.6 Traps and exceptions
	3.6.1 Trap groups
	3.6.2 Events that can cause traps
	3.6.3 Trap handlers
	3.6.4 Trap instructions
	3.6.5 Restrictions on trap handlers

	4 Interrupt controller
	4.1 Interrupt vector table
	4.2 Interrupt handlers
	4.3 Interrupt latency
	4.4 Pre-emption and interrupt priority
	4.5 Restrictions on interrupt handlers
	4.6 Interrupt configuration registers
	4.6.1 HandlerWptr0-7 registers
	4.6.2 TriggerMode0-7 registers
	4.6.3 Mask register
	4.6.4 Pending register
	4.6.5 Exec register

	5 Instruction set
	5.1 Instruction cycles
	5.2 Instruction characteristics
	5.3 Instruction set tables

	6 Memory map
	6.1 System memory use
	6.1.1 Subsystem channels memory
	6.1.2 Trap handlers memory

	6.2 Boot ROM
	6.3 Internal peripheral space

	7 Memory subsystem
	7.1 SRAM

	8 External memory interface
	8.1 Pin functions
	8.2 External bus cycles
	8.2.1 Refresh
	8.2.2 Wait

	8.3 EMI Configuration
	8.3.1 ConfigCommand register
	8.3.2 ConfigStatus register
	8.3.3 ConfigDataField0-3 registers
	8.3.4 Format of the data registers for transfers to/from register bank 0
	8.3.5 Format of the data registers for transfers to/from register bank 1
	8.3.6 Format of the data registers for transfers to/from register bank 2
	8.3.7 Format of the data registers for transfers to/from register bank 3
	8.3.8 Format of the data registers for transfers to/from PadDrive register

	8.4 EMI initialization
	8.4.1 Reset
	8.4.2 Bootstrap
	8.4.3 Initializing DRAM banks

	9 System services
	9.1 Reset, initialization and debug
	9.1.1 Reset
	9.1.2 CPUAnalyse
	9.1.3 Errors

	9.2 Bootstrap
	9.2.1 Booting from ROM
	9.2.2 Booting from link
	9.2.3 Peek and poke

	10 Test Access Port
	11 Clocks and low power operation
	11.1 Clocks
	11.1.1 Processor speed select

	11.2 Low power control
	11.2.1 Low power configuration registers

	11.3 Wakeup times and power consumption during standby
	11.4 Clocking sources

	12 Serial link interface (OS-Link)
	12.1 OS-Link protocol
	12.2 OS-Link speed
	12.3 OS-Link connections
	12.4 Event

	13 Software development
	13.1 ST20 toolset
	13.1.1 Debugging and profiling software

	14 Configuration register ad dresses
	15 Electrical specifications
	15.1 Absolute maximum ratings
	15.2 Operating conditions
	15.3 DC specifications

	16 Timing specifications
	16.1 EMI timings
	16.2 Link timings
	16.3 Reset and Analyse timings
	16.4 Event timings
	16.5 Clock timings
	16.5.1 ClockIn and LinkClockIn timings
	16.5.2 ProcClkOut timings

	16.6 TAP timings

	17 Pin designations
	18 Package specifications
	18.1 ST20450 package pinout
	18.2 ST20450 208 pin PQFP package dimensions
	18.3 ST20450 208 pin PQFP package thermal data

	19 Ordering information
	A Boundary scan description language (BSDL) file

