
DmmOS"

IMS F003C
2D graphics
occam & C Libraries

A software support package
for iq systems' graphics TRAMs.
(lMS DX05B, DX205, DX214 toolset compatible)

J:.•• SCS-T1fOMSON
•J'8 t\1JJ©Ja@~~~a

INMOS is a member of the SGS-THOMSON Microeleclrooics Group

72 OEK 264 01 May 1992

Copyright © INMOS Limited 1992. This document may not be copied, in whole or
in part, without prior written consent of INMOS.

• 1$, rr[1jfl)08@, IMS and occam are trademarks of INMOS limited.

INMOS is a member of the SGS·THOMSON Microelectronics Group.

72 OEK 264 01 May 1992

I Contents

1.2

1 Introduction to the IMS F003C •........•......•...•...

1.1 Prerequisites.•.

1.1.1 Hardware .
1.1.2 Software•.
Organisation of the manual ..
1.2.1 Manual conventions•........•.

1

1

1
1
2
2

2 Software installation••.•••.••••.••.... 3

3

4

Overview of the IMS F003C••.•.•...

3.1 CGI display server•....•.
3.1.1 ANSI C and OCCAM libraries•.
3.1.2 Graphics board support libraries•....•...

CGI concepts•.....

4.1 The IMS F003e CGllibrary

4.2 Screens. . . .
4.3 Colour representation .

4.4 CGI drawing modes•.
4.4.1 Plot styles .
4.4.2 Filler modes
4.4.3 Pixel replace modes ..

5
5
8
8

9
12

13
15
15
15
16
17

20
21

22
23
23
24
24

5.3
5.4

Graphics board concepts............................ 19

5.1 Board initialisation .

5.2 Video memory management .

5.2.1 Mapping physical CGf screens to VRAM .
Colour palelle .

The iq Systems graphics boards ..

5.4.1 lMS 8419 graphics TRAM .
5.4.2 IMS 8437 compact display TRAM ..

5

6 CGllibraries. • 25

6.1

6.2

Initialisation alld termination .

Alphabetical list of CGI primitives ...

25

26

7 Graphics board functions.•. 95

7.1 listoffunctions.. .•. 95

Contents

8 ANSI C user guide 103
8.1 Toolset search path.................................. 103

8.1.1 IMSFOO3Clibraryandilcludefiles 103
8.2 Invoking the CGI display selVer 104

8.2.1 Single processor, single prl){1'8m. 104
8.2.2 Multiprocessor, multi program . 106

8.3 Configuring transputer memOlY sizes . . . 107
8.4 Opening the graphics board ... 108
8.5 Compiling and linking IMS F003C programs 109

8.5.1 Compiling 109
8.5.2 Linking.. 109

8.6 Example program•....•. 109

9 occam user guide 111

9.1 Toolset search path 111
9.1.1 IMS FOO3C library and include files 111

9.2 Invoking the CGI display server 112
9.2.1 Single processor, single program................ 112
9.2.2 Multiprocessor, multi program•..... 114

9.3 Configuring transputer memory sizes 114
9.4 Opening the graphics board 114
9.5 Compiling and linking IMS F003C programs 116

9.5.1 Compiling 116
9.5.2 Linking 116

9.6 Example program 116

10 Further use of the CGI system 117

10.1 Using and defining text fonts 117
10.2 Using CGI saeens for windowing..... 119
10.3 Simple animation techniques.... 122
10.4 Writing a board support library 124

Contents

Appendices

iii

A Directory structure 125

B IMS B419 hardware overview 127
B.1 Description . . 127

B.1.1 Introduction........... 127
8.1.2 Screen sizes 128
8.1.3 SubSystem signals............ 128
8.1.4 Memory Map. 129
8.1.5 Pixel clock selection 130
8.1.6 Jumper selection. 130

8.2 80ard layout. 131
8.2.1 Video and sync outputs 132

elMS B437 hardware overview 133
C.1 Description... 133
C.2 Memory map.. 134
C.3 Display formals 134
C.4 Colour video controller 134
C.S Control register programming 136
C.6 Hardware cursor 137
C.l Events. .. 137
C.8 80ard control registers. 138

10.4.1 Colour mode select register 138
10.4.2 IMS G332 reset register 138
10.4.3 Startup procedure... 139

C.9 Video outputs 139
C.10 Board layout .. 140
C.11 Accessories. 140

o References•......•....•.•....•............ 141

iv Contents

1 Introduction to the
IMS F003C

The IMS F003C is a 2D (two dimensional) graphics package for iq Systems graph­
ics board products. It provides functional conformance with a subset of the Com­
puter Graphics Interface (CGI) standard.

Applications can be developed in the C or occam programming languages for an
arbitrary networ1l: of transputers. Graphical output is obtained by installing an ap­
propriate iq Systems graphics board somewhere in the netwOfk and programming
it using the IMS F003C software package.

The IMS F003C is compatible with INMOS software development toolsets. Devel­
opers incorporate IMS F003C with their own application software using an appro­
priately selected C or occam toolset.

1.1 Prerequisites

In order 10 develop applications with the IMS F003C the following environments
are required:

1.1.1 Hardware

• IBM PC AT or compatible personal computer

• IMS B008 IBM PC AT TRAM motherboard

• IMS B419 graphics TRAM

OR
IMS B437 compact display TRAM

1.1.2 Software

IMS 07214 ANSI C Toolset for IBM PC AT
OR

• IMS 07205 occam Toolset for IBM PC AT

72 OEK 264 01 May 1992

2

1.2 Organisation of the manual

This manualls split into ten Chapters and four appendices.

Chapter 2 provides slep by slep instructions for installing the IMS F003C software
on an IBM PC AT or compatible computer.

Chapter 3 contains an overview of the software components contained in the lMS
FOO3C package and desaibes some potential development environments.

A detailed desaiption of CGl ooncepts is provided in Chapter 4. Readers familiar
with 20 computer graphics systems may choose 10 overloolt this Chapter.

ChapterScontains a detailed explanation ofgraphics board concepts with particu­
lar reference to iq Systems graphics board products. Again, readers fammar with
these concepts may wish to over1ook this Chapter.

An alphabetical description of the CGllibrary and graphics board utility functions
can be found in Chapters 6 and 7.

Chapter 8 desaibes how to develop software using IMS F003C in conjunction with
an ANSI Ctoolset. occam toolset usersshould instead read Chapter 9, which con­
tains an equivalent occam user guide. Both Chapters also contain annotated ex­
ample source code and instructions for compiling and executing examples in­
duded on the Installation disks.

The final Chapter looks into a number of more advanced topics. For example, an
explanation of the text font format and a description d multi-frame animation tech­
niques can be found in this Chapter.

Engineering data for the iq Systems graphics board products supported by IMS
F003C can be found in the appendices. Memory and register address maps are
prOVided together with more detailed hardware Information.

1.2.1 Manual conventions

Throughout this manual, reference to software routines andconstants will be made
using ANSI C syntax. Equivalent occam names may be derived by substituting
occurrences ofthe '_' (underscore) characterwith a' • (period) character as appro­
priate.

Source code fragments and operating system command lines will be printed in a
teletype style font.

72 OEK264 01 May 1992

3

2 Software installation I

The installation of IMS F003C requires at least2Mbytes offree disk space be avail­
able on the host computer system hard disk.

IMS F003C is distributed on two 1.2Mbyte Sif4"f1oppy disks oron two 720K byte
3 1/2" diskettes. The disks can be found in a transparent wallet al the rear of the
manual. Seled the appropriate disks for your system.

To inslalilMS F003C from floppy disk dlive A: onto hard disk drive c: of an IBM
PC AT or compatible computer proceed as follows:

Insert the disk labelled DISK 1 of 2, into disk drive A:

2 Change current working directory 10 c: \.

3 Altha operating system command prompt, type 11.: install II c.

4 Respond as appropriate 10 prompts made by the install program.

S Insert the second disk (labelled DISK 2 of 2) when prompted.

The installation procedure will create and inslalllMS F003C files underthe directo­
ry c: \F003C. See Appendix A fordetails ofthe directory structure and a list of the
files that should be present after installation.

The file c: \F003C\INSTAI.L2. BAT may be deleted after installation.

72 OEK264 01 May 1992

4

72 OEK 264 01 May 1992

5

3 Overview of the
IMS F003C

The IMS F003C software package consists of the following components:

• CGI display server

ANSi C and occam Interface libraries

Include files

iq Systems graphics board support libraries

Source code of the board support libraries

Example source code

3.1 CGI display server

The CGI display server is a process that runs in parallel with application software
and provides access to a graphics board. It is responsible for programming the
graphics board hardware and for performing CGI operations when requested by
an application program. Graphical output is displayed on an output monitor con­
nected to the graphics board. The CGI display server may be configured 10 run on
any of the iq Systems graphics boards, it is linked with a board specific library thai
provides it a device independent interface 10 the hardware.

The CGI display server may run in parallel with application software on the same
transputer (the graphics board), or with the application running on an adjacent
transputer networkoramixture ofthe two. This arrangement Is shown in the fol1ow­
ing diagrams, where a mixture ofTRAM motherboards, general purpose compute
TRAMs and graphics TRAMs are used to build various transputer systems capable
of generating graphical output via an attached monitor.

72 OEK264 01 May 1992

6

High resolution monitor

IBM PCIAT Host

D ~J
I ~I

I

IMS 8419 0 ...

Graphics TRAM G,een
01".

IMS B006 TRAM motherboard

I'roaI_cgi

ANSle

to or occam
program to_ell'

ISERVER

t. to CGI
server

to

IBM PC AT IMS 8419 TRAM

Figure 3.1

This shows an IMS B008 TRAM motherboard and an IMS 6419 graphics TRAM.
The graphics TRAM is connected to a high resolution monitor. The application pr0­
gram is hosted by an 15ERVER running on an IBM PC AT development host and
consists of a number of processes running in parallel with the CGI display server.

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C llbraries 7

High resolution monitor

IBM PCJAT Host

Gd ~
I ~I

I
0 ...

IMSB404 IMS 6404 lMS B4J1
GreenComo"'" Com"', "-

TRAM TRAM TRAM Alee

IMS B008 TRAM motherboard

Host

i

ISERVER
CGI

SERVER

to f.
to_CC1i trco_CCJ

Compote
TRAMS

&> &>
Figure 3.2

This also shows an IMS 8008 TRAM motherboard. It is configured with two general
purpose compute TRAMs and an IMS B437 compact display TRAM. Again, the

72 OEK 264 01 May 1992

8

graphics TRAM is connected to a high resolution monitor. The CGl server runs by
itself on the graphics TRAM wh¥e the application program runs In parallel on the
othel' compute TRAMs. N11SERVER runs on the host.

3.1.1 ANSi C and occam libraries

The IMS FOO3C ANSI C and occam interface libraries contain an equivalent sel
of procedures. They all communicate with the CGI display server over a pair of
transputer channels connected between the server and application software. The
programmer's interface to the CGI system is defined by these Interface libraries.

The libraries contain two sets of procedures. Those prefixed by cgi_ belong to
the family ofComputer Graphics Interface primitives. There are a large numberof
these and collectively they define a two dimensional graphics package that is ful'll>
lionally confonnant with a subset of the 001 standard. The CGI primitives are aa
device independent: they require no knowledge of the undertying graphics board
architecture.

The other sel of procedures are prefixed by fa . These implement a device inde­
pendent interface to the graphics hardware. Thesame procedures are used to pro­
gram the graphics hardware regardless of the actual graphics board being used.
The CGJ display server programs the hardware correctly by calling elements of a
board specific support library which is selected according to the graphics board
"""",l

3.1.2 Graphics board support libraries

The device independent interlace to the graphics hardware provided by the CGI
server is implemented by a number of device dependent board support libraries.
Ubraries are supplied for a wide range of the jq Systems graphics board products,
the appropriate one is linked with the CGI display server when building an applica­
tion.

Monitor resolution and timing charaderistics are completely programmable and
the libraries also provide device independent colour palelle setup and video
memory management.

The board support libraries are supplied in source code form. If required, a variant
for some other transputer based graphics board can be created by porting the
source provided. This is desaibed in Chapter 10.

72 OEK 264 01 May 1992

9

4 CGI concepts I
-----'----
IMS F003C provides a functionally conformant subset of the Computer Graphics
Interface standard (ISO TC97/SC21 N1179). The standard defines the interface
between the device independent and device dependent parts of a two dimensional
(20) graphics system. IMS F003C implements the CGI graphical primitive func­
tions, attribute functions and miscellaneous initialisation and error logging primi­
tives.

CGI defines the functional behaviour of a numberofgraphical output primitives and
attribute functions, in a way which is encoding and binding independent. This al­
lows the same facilities to be provided in different languages while taking into ac­
count the syntax aftha! language. IMS F003C provides such bindings for the ANSI
C and occam programming languages.

CGI graphical primitive functions are those functions thai define the geometric
components of a picture. The graphics primitive functions defined in the CGI sian­
dard fall into one of the following categories:

• Une

Marker

• Text

• Filled area

• Image

• Generalised drawing primitive (GDP)

CGI attribute functions determine the appearance of the graphical primitive func·
tions. Attributes are either individual or 'bundleable'. This means that either an at·
bibule must be applied individually orthat it may be combined with others, and then
applied.

Readers seeking further information on the CGI standard should consult docu­
ment: ISO TC97/SC21 Nl179. The following tables show how the various CGI
primitives are Implemented by the IMS F003C libraries.

72 OEK 264 01 May 1992

10

line functions
Polyline cgi...,p0lyline
Disjoint Polyline cgi_disjpolyline
Circular Arc Centre cgi_arc
Elliptical Arc 091 arc
Marker function
Poly Marker og1 dot, og1 copy
Text functions
To'" cgi_text, cgi_sptext
Append Text og1_addtext I c:gi_addsptext
Restricted Texl cgi_text, cgi_sptext, cqi_cbrbegin,

og1 chrspace
Filled area
functions
Polygon cqi...,p0lygon, cgi...,paint
Polygon Set cgi""polyline, cgi_disjpolyline,cgi_line.

cgi_ftrap

Rectangle cgi_rect, cgi_frect
Cirde cgi_circle, cgi_fcircle
Circular Arc 3 Point cqi_arcc, cgi_strokearc, cqi_fanfill
CI"",

Circular Arc Centre cgi_arcc, cgi_strokearc, cqi_fanfill
Close

Ellipse cqi_circle, cg'i_fcircle
Elliptical Arc Close og1 arec, cqi strokeare, oq1 fanfill
Image function
Cell Array 091 freet, cgi_ftrap, cgi copy

Table 4.1 CGI graphical primitives vs. IMS F003C

72 OEK264 01 May 1992

lMS F003C 20 graphIcs occam and C libraries 11

Line attributes

Une Type cgi_setlinestyle,

Line Width cgi_setdrawmode

Line Colour

Marker attributes
Marker Type cgi_setpelstyle,cgi_copy,

Marker Size cqi_zOOlll
Marker Colour

Text attributes

Text Fonllndex cqi_setfont

Text Precision cgi_text,cgi_chrz,cgi_zoom

Character Expansion Factor cqi_chrz,cgi_zoom

Charader Spacing cgi_chrspace

Text Colour cqi_setfcol

Character Height cgi_chrz

Character Orientation cqi_setorient

Character Set Index cgi_setfont

Filled area attributes
Interior Style

Fill Colour
Hatch Index cqi_setfillstyle,cqi_setfcol

Pallem Index

Pallam Tobie

Pallem Size

Table 4.2 CGI attribute primitives vs. IMS F003C

72 OEK264 01 May 1992

12

4.1 ThelMS F003C CGllibrary

The lMS FOO3C CGI functions are supplied in an INMOS TCOFF compatible object
library called CGILIB. LIB. Two variants CW'e provided, one fcK ANSI C, the other
for occam. The following lists summarise the CGI functions available:

Line functions
eqi_line

Cg'i_rect

c;lyolyline

cqi_disjpolyline

cglyolygon

cgi_circle

cgi_llrc

cgi_arcc

cqi_strokearc

cqi dot

egi_setlinestyle

Text functions
cqi_text

cgi_addtext

cqi_8ptext

cgi_addsptext

cgi_chJ:begin

eqi_chJ:llIpace

cqi chrz

cqi ••tfant

Filled area functions
eqi_cls

cqi_frect
cgi_fcircle

cgi_fanfill

cgiyaint

cgi_ftrap

cgi_fhline

cgi_setfillstyle

72 OEK 264 01

Straight line

Rectangle outline

Consecutive line segments

Straight line segments

Polygon outline

Ellipsoid outline
Partial e11ispoid outline

Closed partial eUipsoid outline

Stroke ellipsoid outline

Single point

Setup custom line sty1e

Print text at position

Add text at current position

Print text with spacing control

Add text with spacing control

Set character position

Set character spacing

Print charadef with scaling

Setup character font

Clear saeen

Filled rectangle

Fitled ellipsoid

Filled partial ellipsoid

Area nood fill

Filled trapezoid

Filled horizontal lines

Set custom till pattern

May 1992

IMS F003C 20 graphics occam and C libraries 13

Image functions
eqi_copy

eqi_zoom

cgi_rot

cgi_shear

cgi_search

cgi_setpelstyle

Control functions
cgi_init

cgi_terminate

cgi_setdrawmode

cgi_setdrawscreen

cgi_setorient

Error handling
O9i errs tat

4.2 Screens

Image copy

Image copy with zoom

Image rotation

Image shear
Search for colour change

Set custom pel pattern

Initialise CGI system

Terminate CGI system

Set drawing modes

Sel current CGI saeen

Seltext and image orientation

Expound current CGI error

All CGI operations are performed on an abstract data structure called a screen. A
screen represents a bounded two dimensional area that contains the graphical
output of CGI functions. Cartesian coordinates are used to address points located
on a screen and all CGI operations, when applied to a screen, are dipped to its
extent The CGI system uses the screen abstraction to represent various types of
graphical object. For example, screens are used to hold character images when
expanded from a packed fonl.

In IMS F003C, the ANSI C and occam implementations of a screen are defined
as follows:

ANSI C struct occam INT array

struct [SCREEN.SIZE]INT screen:

{

char "'raster; screen [SCREEN.RASTER]

int xsize; screen[SCREEN.XSIZE]

int ysize; screen[SCREEN.YSIZE]

int stride; screen[SCREEN.STRIDE]

int multiMode; screen[SCREEN.MULTIMODE]
) screen;

72 OEK 264 01 May 1992

14

raster Is the transputer address of aregion ofmemory used to hold a tINa dimen­
sional image, called a raster. It is JUlIize pixels wide by ysize pixels high. The
stride value specifies the horizontal stride to take when stepping 10an equivalent
position on the next horizontal line. mul tiMed. is used internally by the CGI sys­
tem.

x.as

2~LLLLJ
raster memory

y size

stride

Figure 4.1 The CGI saeen abstraction

The CGI system maintains the notion of a current drawing sueen. This is a screen
that has been identified as a target for future CGI operations: the majority of the
CGI functions implicitly address the current drawing screen. It is assigned with
cgi_s.tdrawscr••n.

Any number of screens may exist in a system and some may be related 10 others.
For example. to build a windowing system one could use the screen abstracUon
to represent the hierarchies that exist between parent windows and theirchiJd sub­
windows. The only restriction concerning the use of the saeen abstraction is that
the memory associated with a screen must be located on the transputer running
the CGI display server.

Ascreen may be displayed on an output monitor if its horizontaland vertical dimen­
sions match the physical display resolution. Such ascreen isreferred to as a physi­
cal screen. Physical screens are usually implemented with video memory on the
graphics board. When displayed on a monitor their cartesian origin (0,0) Is lo­
cated at the top left hand comer of the display.

CGI screens can be allocated statically, ordynamicaJly, on the transputer that runs
the CGI displayserver. Anewscreen may be derived from an existing one by refer­
encing asub-area of the existing saeen's raster memory. Physical screens are al-

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries 15

located dynamically using f. in!ucreen and have their rasters stored in video
memay on the graphics board.

4.3 Colour representation

The IMS FOO3C implementation of CGI uses 8 bit pixels resulting in saeens c0n­

taining upto 256different colours. Pixel values are used to address ac:olour palette
which generates the adual display colour from apossibly larger range. The resolu­
tion of the coIout palette is graphics board dependent, see section 5.3 for specific
details of this.

4.4 CGI drawing modes

The CGI system may operate in a number of different drawing modes that define
the run-time behaviourofgraphical primitives. Drawing modes are concerned with
the following:

• Plot style

• Filler mode

Pixel replace mode

Ultimately, most graphical primitives are implemented by plotting a sequence of
pixels. The pixel replace mode defines how a pixel is written inlo screen melTlOfY.
The plot style is used to control the generation of pixel values, for example, when
drawing a line, and the fill mode relates to the different methods available for per­
forming area flood fill.

The CGI system applies the current platstyle, fill and pixel replaoe modes implicitly,
during normal operation. They may be initialised with cgi_utdrawmode and de­
pending on the CGI function may combine to produce a resultant visual etreet. In
other situations only a subset may have an impact.

4.4.1 Plot styles

Plot sty1es atreet the outcome of the CGI plotting and outline functions, such as
cgi_dot., cgi_circle or cgiJX>lyline.

When tracing the outline of an object, orwhen plolting a sequence of slraightlines,
the current plot style determines the size, shape and visibility ofevery point plotted.
There are five plol styles:

PIXEL

PEL

L1NESTYLE

72 OEK264 01 May 1992

16

• L1NESTYLE·TRANSPARENT

L1NESTYlE·PEl

PIXEL

A single pixel is plotted to represent each point This gives solid outlines of mini­
mum display thickness drawn in the current foreground colour. See cgi_••tf­
col.

PEL

Each point is represented by a small, two dimensional pattern, called a pel. The
pel pattern is established with cgi_lIetpelatyle and used whenever a poinl
would otherwise have been plotted. Pels are useful for repeatedly plotting custo­
mised shapes such as cursors or bullet mam,

The pixel values defined by a pel pattern determine Its colour. In the default pixel
replace mode (overwrite) only pixels which have non-zerovalues are plotted. This
means that if the pel background colour is always zero, then the foreground can
consist of any number d non-zero colours, all of which will be plotted normally. By
selecting an appropriate pixel replace mode the zero-valued background can be
plotted, or the foreground ignored.

L1NESTYLE

A line style is a one dimensional array ofpixel values that is used to determine the
value of consecutive points on a line. The CGI system keeps track of which pixel
value to use fOf the next point and cycles repeatedly through the pixel array assign­
i'lg values to new points. Apixel value can be used a variable number of times be­
fore moving on to the next value, this Is controlled by the line sly'e zoom factor and
achieves a stretch elfect. lila styles are initialised with cqi_uUineatyle
which defines the pixel array contents, and its zoom factor.

lINESTYLE·TRANSPARENT

This is a variant of the line style. Atransparency effect is achieved by only p10lting
points that have non-zero values as defined by the line style array. All other points
are plotted normally. Zero valued pixels define positioos where background
c:otours will be visible through the line style.

lINESTYLE·PEL

Anothervarianl oflhe line sty1e mode, this combines a line slyle with a pel pattern.
Non-zero valued points defined by the line style are replaced by the pel pattern.

4.4.2 Filler modes

The CGI area fill primitives operate aCCOl'ding to the current fill mode. This defines
the method for filling amas aeated by functions such as cqi_ frect orcqi_fan­
fill. There are two fill modes:

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries

• SOLID

PATIERN

17

SOLID

Areas are filled with a solid colour. The colour is defined by the cUlTent foreground
colour, see cgi_setfcol.

PATTERN

A customised two dimensional pattern caned a til style is used. This is tiled over
the fill area and dipped to it's boundary. The current fill style is intialised with
cgi_sett"illllltyle to define the pixel values contained in the fiB style pattern.
By selecting a suitable pixel replace mode, zero valued pixels may be treated spe­
cially if required, otherwise they are 'Mitten to the current saeen along with the
noil-"zero valued pixels.

4.4.3 Pixel replace modes

The pixel replace modes define how pixels are ultimately written into sasen
memory. They are fundamental 10 the operation of the CGI system: the result of
every CGI primitive in conjunction with the higher level drawing modes is in­
nuenced by the current pixel replace mode. There are three types of pixel replace
mode:

OVERWRITE

lOGICAl

• TRANSPUTER

OVERWRITE

The basic replace mode. Screen memory Is overwritten with new pixel values.

LOGICAL

The logical replace modes are implemented by perfooning a read modify write 0p­
eration on saeen melllOl)'. An existing pixel Is combined, using a logical operator,
with the new pixel value and the resultant pixel written into screen melTlOlY. The
logical modes supported are:

Operator Result

AND bitwise AND

OR bitwise OR

XOR bitwise XOR

NAND bitwise NAND

NOR bitiwse NOR

72 OEK 264 01 May 1992

18

TRANSPUTER
The transputer replace modes correspond directly to the two dimensional blodt
move lnstructions supported by the transputer. They are:

Operator Result

l4OVE2DALL block copy

MOVE2DZERO zero block copy

MOVE2DNONZERO non-zero block. copy

72 OEK264 01 May 1992

19

5 Graphics board
concepts

The iq Systems graphics board products supported by IMS F003C all have a simi­
lar hardware architedure. They all feature a transputer(of some sort), have normal
dynamic random access memory for program and data storage and an additional
area of special purpose video memory for image output 10 a graphics monitor. All
the boards have a colour video controller (eVe) chip capable of driving a wide
range of monitors al di1'l'erent pixel rates and at different display resolutions.

The JMS FOO3C CGllibrary contains a number of functions for Initialising and c0n­
trolling the hardware on agraphics board In adevice independent way. This allows
software developed for one graphics board to run on anotherwilhoot changing any
source code. The programmer's interface to the graphics board hardware Is de­
fined by the following functions:

Function Description

fs_sc.reenaddr Return the address of 8 screen's raster

fa_dillplaybank DIsplay a bank 01 vkieo memory

fs_initscr••n Map 8 physical screen to video memory
t._lIetpalette Set colour palette entry

rll_openboar;cl DevIce independent board cpon function
ra_cloaaboar;d Devioe independent board close function

fa writerega Write graphics board registers

These functioos cause the CGI display server to caU a similar set offunctions from
a device dependent library that achieve an equivalent elfed on whatever graphics
hardware is actuaDy present The CGI server is linked against a device dependent
library when building an application program for a partiaJlar graphics bocr'd. De­
vice dependent libraries for the following iq Systems I13phics board products are
provided with IMS FOO3C:

iq Systems graphics board IMS F003C library

IMS 8419 graphics TRAM BU9.LIB
IMS 8419 graphics TRAM with G300A B419A.LIB

IMS 8437 compact display TRAM B437.LIB

72 OEK 264 01 May 1992

20

5.1 Board initialisation

In orderto use agraphics board an application must first open it with the fa_ open­
board function. This performs a number of operations 10 initialise the graphics
hardware ready for use by the CGI system. The mostimportantoflhese is the intisl·
isation of the Cl/C chip. The eve chip generates a display on an output monItor
and must be programmed with a number of video timing parameters that specify
the format and liming of signals used to control the monitor. Usually, this wiD de­
pend on the desired display resolution and the timing charac:teristics althe chosen
monitor.

The eve is programmed with the contents ofadata structure called the video lim­
ing generator (abbreviated vrG) parameter block. This contains a number of val­
ues that define elements of the video signals used 10 drive a monitor. The parame­
ters are directly applicable to a rangeofCVC devices manufactured by INMOS and
used on the iq Systems graphics boards. The ANSI C and occam definitioos of
the VTG parameter block are:

ANSI C at:ruct occam INT array

IlItruct [VTG.SIZE]IHT vtg:

(

int pll; vtg [VTG. PLLl
int line_tim.; vtg [VTG. LlNE.TlMEJ
int balf_sync; vtq [VTG.HALF. SYNC]
int backJOrch; vtg [VTG .BAa. PORCH]
int displaYi vtqIVTG.DISPLAY)
int sbort_di.play; vtqIVTG.SHORT.DISPLAY]
int v_display; vtqIVTG.V.DISPLlY]
int v_blank; vtg [VTG. V. BLANK]
int v_aync; vt9(VTG.V.SYNC]
int v-preequali.e; vtgIVTG.V.PREEQUALISE]
int v-POstequalise; vtg[VTG.V.POSTEQUALISE]
lnt broad-pulse; vtg (VTG.BROAD. PtJLSE)
int mem_initi vtg(VTG.MEM.INIT]
int tranafer_delay; vtg [VTG. 'l'R1lNSFER. DELAY]
int aalllk_regi.teri vtq (VTG .MASK. REGISTER]
int control; vtg [VTG. CONTROL)

} vtg';

ANSI C and occam header files are supplied that define a number of constant
vrG parameter blocks suitable for controlling a range or monitors at a number or
commonly used display resolutions. In most situations, a parameter block that

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries 21

matches the requirements of a particular application can be selected from the
header file and used verbatim. If a suitable parameter block can't be found, or if
special requirements dictate the use of other timing parameters, then consull The
graphics databool< (51.

This contains technical information about INMOS CVC devices. It includes an in
depth discussion of video timing mechanisms and how to calculate video timing
parameters. The reader should also consult the appendices, which contain engi­
neering data forthe iq Systems graphics board products supported by IMS F003C.

5.2 Video memory management

Transputers used on the iq Systems graphics boards have a linearaddress space.
Within this space lies aregion ofnormal dynamic random access memory (DRAM)
and a region of special video memory (VRAM). The size and location of these
memory areas is dependent on the architecture of the graphics board. The DRAM
is always located at the bottom of the transputer address map (most negative ad­
dress end) and is used for program and data storage. The VRAM is located else­
where, usually at higher addresses, and is used as raster memory to store the out­
put ofgraphical operations. A monitordisplay is produced by the CVC which reads
the VRAM continuously to generate the appropriate output signals.

On some graphics boards the two memory areas are separate, on others they may
be configured (with ajumper) to be eithercontiguous or non-contiguous. Spare vid·
eo memory can be used for additional program and data storage, but only if it is
contiguous with existing DRAM. Otherboards have no normal DRAM atall and use
VRAM for program, data and raster storage. The amount ofVRAM required togen­
erate output on a monitor is directly related to the monitor resolution. Since the
evc hardware allows this to be configured at run-time the available VRAM can
serve a number of purposes:

• Depending on the amount of VRAM present it can be used to store a num­
ber of monitor sized rasters. The graphics hardware is programmed to dis­
play one of these rasters but can be switched, at anytime, to display anoth­
e,.

If the VRAM is contiguous with DRAM then part of it may be allocated to
program storage effectively extending the amount of the DRAM available.

Video memory is managed by dividing it up into a number of equal sized regions,
called banks. The size of a bank is determined by the display resolution and
matches exactly the amount of raster memory needed to generate an output image
at that resolution. The total number of video banks available on a particulargraph­
ics board therefore depends on two factors: the amount of VRAM present and the
configured display resolution.

72 OEK 264 01 May 1992

22

The memory armited.ure of a typical graphics board Is shown in the diagram be­
low

VRAM

BankO] Output to a monitor

Bank 1

Bank 2
•••

I I

~ /:;..rI II

DRAM]Program and data

Internal RAM

Figure 5.1 Memory architecture of a graphics board

Nole that video memory banks are allocated from the top of video memory toward
lower memory addresses. In the diagram, bank number 0 is positioned at the top
most part of VRAM. Other banks are located at ever decreasing addresses be­
neath this. If the VRAM and DRAM are contiguous it is possible to extend the
memory available for program and dala storage by using up spare VRAM banks
near the bottom. This is achieved by configuring an application program with a
memory size that indudes any spare VRAM banks nominated for program use. It
is the programmer's responsibility to ensure that sud! VRAM banks win never be
used for any other purpose.

5.2.1 Mapping physical CGI screens to VRAM

Physical CGI sa-eens have their raster memoryallocated from VRAM by initialising
a screen data structure to reference a video memory bank. This Is done with
fa_initscreen, given the number of the video memory bank to use for the
screen's raster it returns a sasen structure.

There need be no correspondence between the current CGI drawing screen and
the physical scteen displayed 00 a monitol'". Both can be selected independently.

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries 23

Ascreen is made visible by programming the graphics hardware to output the cor­
responding video memory bank. fs_ displll.ybank does this.

In the example below, a new screen is allocated and mapped to video memory
bank O. It is made the current CGI drawing screen and its video memory bank dis­
played on an output monitor. This has the effect of causing the CGI system to dis­
play all subsequent operations instantaneously, on the monitor.

Scr....n .;

/* Alloc:attl • phydc:al sc:rMn and _p it to bank 0 */

/* The sc:reen is s.xsize pixels wide by s.ysize pix..ls
hig"h. The.e value. c:orrespond to the aonitor resolution
which i. fixed at .tartup time with h_openboardO */

/* Assign the screen to the current draw screen */

/* Display the screen on an output monitor */

h_dhplaybank(to_cg"i, 0); /* Output video bank 0 */

/* Do lots of drawing" with the CGI functions ... */

5.3 Colour palette

The INMOS colour video controllerchips used on all the iq Systemsgraphics board
products generate colour displays with a programmable colour look-up table
called a palette. This provides a mapping between pixel values and the actual c0­

lour generated on an output monitor. Colour values are described by three num­
bers that specify the red, green and blue components ofthe colour. Foragiven pix­
el value, the output colour is programmed with is setpalette by specifying
what the red, green and blue colour components should be.

The colour components have an 8 bit resolution. When combined, they describe
a colour from a 24 bit colour space that supports a palette of up to 16 million differ­
ent colours. Because the IMS F003C CGl system manipulates 8 bit pixel values
the colour palette can contains up to 256 different colours selected from the 16 mil­
lion possible.

5.4 The iq Systems graphics boards

This section describes some specific features of iq Systems graphics boards that
should be considered before using them. More detailed engineering data, on each,
can be found in the appendices.

72 OEK 264 01 May 1992

24

5.4.1 IMS 8419 graphics TRAM

The IMS 8419 has 2M bytes of DRAM and 2M bytas ofVRAM. There is enough
video memory to support display resolutions of up to 1280 by 1024 pixels with
some left over. (Note that display resolutions any larger than this are not possible
because of the very high pixel dala rates required).

There are two variants aftha IMS 8419. The older has an IMS G300A eve fitted,
current production versions use the IMS G300B. The corresponding board support
libraries are: B419A. LIB and 8419 .LIB.

The IMS 8419 must be configured 10 make its DRAM and VRAM contiguous. This
is ajumperoplion on the board and isdescribed inAppendixB. Making the memory
areas contiguous offers the possibility to extend program and dala space inlo
VRAM as previously described. Nole that the board support libraries will not fune­
tion correctly unless this is done.

5.4.2 IMS 8437 compact display TRAM

The 1M3 B437 has 1M byte of VRAM and no DRAM. Because of the limited
memory available a trade off situation must be reached 10 satisfy the requirements
of program slorage and the desired monitOl" resolution. For example, one sasen
with a resolution at 1024 by 768 pixels would leave approximately 256K bytes of
memOfY left fOl" program storage. Typically, the IMS 6437 is used in configurations
where only the CGI server runs on the IMS 8437 and application software rullS
elsewhere in the transputer networK

The board support library for the IMS 8437 is: B431.LIB.

The special purpose times one pixel clock frequencies available on the IMS 8437
are not used by the board support library. For more information on these features
see the Appendix C.

72 OEK264 01 May 1992

25

6 CGllibraries I

6.1 Initialisation and tennination

6.1.1 cgUnit

Initialise the CGI server.

c:
void cgi_init(Channel *to_cgi l

occam:

PROC cgi.init{ CHAN OF ANY to.cgi)

Parameters:

Parameter
to C9i

Comment

Channel to CGI server

Description:

c91_init Initialises the CGI system to the following state:

• No current text font

• No current pel, fill or line style patterns

Pixel mode PM_COL

Replace mode ro'LCOL

Fill mode i'M_COL

6.1.2 cgUerminate

Terminate the CGI display server.

e:
void cgi_terminate(Channel *from_cgi, Channel *to_cgi

occam:
PROC cgi.terminate(CHAN OF ANY from.cgi, to.cqi l

Parameters:

Parameter Comment

frollLcqi Channel from CGr server

to C91 Channel Ie CGI server

Description:

cgi_terminate terminates the CGI display server.

72 OEK 264 01 May 1992

26

6.2 Alphabetical list of CGI primitives

6.2..1 cgCaddsptext

Append text at ament character position, with spacing control.

c:
void cgi addsptext(

Channel ..to cgi,
lot n t cbar-·.tr,
lnt *dx, lnt *dy)

occam:
PROC cgi. addsptnt (

CHAN OF ANY to.cgi,
VAL !NT a,
vu. []BYTE .tr,
VAL () INT dx, dy)

Parameters:

Parameter Comment

to_cqi Channel to CGI server

n Number of characters 10 p1o1

.tr Character string
<Ix X axis character spacing distances

dy Y axis character spacing distances

Description:

cqi addsptext plots n characters from the character string .tr according to
the CUrrent font desaiption. The first character Is plotted at the current character
position which is then incremented by X and Y axis offsets specified by the inter­
d\arac::ter spacing vectors cbt and dy, for the character. Subsequent characters are
plotted in the same manner, using the next pair of spacing d"sstances. The curTent
character position after the operation completes is otrset from the fitst character
plotted by Xand Yaxis distancesequal to the sum of the dx and dyspacing VectOfS
respectively.

The spacing vectors should be set with respect 10 the current orientation, see
cqi_utorient. Characters are plotted according to the current pixel replace
mode, see cgi_ setdrawmode.

Characters are reproduced at the siZe of their font, which should be Initialised, see
cqi_aetfont. Each pixel of every character plotted is dipped to the current
saeen definition, see cgi_setdravscreen.

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

For text display, the default pixel replace mooe RM COL, will cause characters to
imprint within a rectangular bounding box of coloura. In some cases this will not
pl'"oduce the desired effect. If only the foreground of the text is required and a pixel
overwrite mode rather than a logical operation is desired then select pixel replace
mode RM_NZ. This will cause only those pixels which are non-zero to be plotted.

Diagram:

Current screen

str[2]

.tr[OI 11\ I
It, t ~[ll ""[21 /:'['1

/ dy[l] l!JY(2l dy(31

""[01 1m
dy[OI e t

str(3]
str[l]

n = 4
• = current character position

72 OEK264 01 May 1992

28

6~2 cgi_addtext

Append text at current character position.

c:
void cgl addtext (

Channel tto cgoi,
int n, char-.ab:

occam:

PROC cgi.addtext(
CIWf OF ANY to.cgi,
VAL INT ft,

VAL [] BYTE 8tr)

Parameters:

Parameter Comment

to_C9i Channel to CGI server
n Number of characters to plot

str Character string

Description:

c;i_addtext plots n characters from the character smog str according to the
current font description. Characters are plotted al the current character position
which Is then incremented by the currenUy defined X and Y axis Inter-character
spacing distances, see cgi_chrspace. The current character position after the
operation completes is otrset from the last charader plotted by these distances.

Characters are plotted according to the ClIffeol pixel replace mode, see cqi aet-
dra_ode and the culTent orientation, see cgi_setorient. -

Characters are reproduced at the size of their fonl which should be initialised, see
cgi_setfont. Each pixel of every character plotted is dipped to the current
saeen definition, see cqi_ ••tdravacreen.

For text display, the default pixel replace mode IlH COL, will cause characters to
Imprint within a rectangUlar bounding box of colourO. In some cases this will not
produce the desired effecllf only the foreground of the text is required and a pixel
overwrite mode rather than a logical operation is desired then select pixel replace
mode RM_NZ. This will cause only those pixels which are non·zero to be plotted.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

Diagram:

Current screen

29

strlO] str[l] str[2] strl3]

current character position

current inter--character spacing

72 OEK264 01 May 1992

30

6.2.3 cgLarc

Outline part of an axis aligned ellipsoid.

c:
void cqi_&r'C (

Qlannel ·to cqi,
tnt Xc, tnt-Ye, int A, tnt B,
i.J:r.t OXs, int DIs, tnt OXe, int DYe)

occam:

PROC cgi.arc(
CHAN OF ANY to.cqi,
VAL INT Xc, Ye, A, B, OX., DYs, OX., DYe)

Parameters:

Parameter Comment
to_egoi Channel to CGI server
(Xc,Yc) Centre coordinate

A Length of X direction semi axis
B length of Y direction semi axis
(OX.,DYs) Start vector
(OXe,DYe) End vector

Description:

cqi_arc plots part of lhe outline of an axis aligned ellipsoid centred at (Xc, Ie)
and with semi-axis lengths of A and B pixels. Both A and B must be positive, the
larger althe two values is the semi-majoraxis length, while the lesser specifies the
semi-miOOfaxis length.

(OXa,oYa) and (OX_,DYe' define direction vectors eminating from the centre
of the ellipse thai specify which part of its outline to draw. Only points clockwise of
the (OX./DYa) vector and anlidockwiseof (DX_,DYe) are plotted.

The outline is dipped to the current screen definition, see cgi_..tdra..creen.

The current pixel replace and plol modes affect the appearance of the outline, see
cgi_•• tdrawmode.

n OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

Diagram:

Current screen

--~.-.-
/

/
/

A

(Xc,Yc

B

A> B
A :: Semi Major Axis
B = Semi MinorAxis

72 OEK 26401

(OX.,DYs)

(OXe,OYe)

31

May 1992

32

6.2..4 cgl_arcc

Outline part of an axis aligned ellipsoid. closed with chord or segment lines.

c:
void 00'1 arec (

Chann.I "to cqi,
int xc, int-Ye, int A, int B,
int ox., int DYs, int OX., int DYe,
int CIo_aNode I

occam:

PROC 0;1 .arec (
CHAN or ANY to.cgi,
VAL INT. Xc, Ye, A, B, ox., DIs, ox., DYe,
CloaeMod.)

Parameters:

Parameter Comment

to_cqi Channel to CGI server
(Xc,Yc) Centre cooroinate

A length of X direction semi axis

B Length of Y direction semi axis
(DlUi,DIsj Start vector
(DXe,DYel End vector
CloseMode Close mode

Description:

cqi arec plots partoflhe outline of an axis aligned ellipsoid centred at (Xc, Ye)
and With semi-axis lengths of A and 8 pixels. Both A and B must be positive, the
largerof the two values Is the semi-major axis length, while the lesserspecifies the
semi-minor axis length.

(Ob,Dh) and (OX_,Dle) define di"ection voctors aminating from the centre
of the ellipse thai specify which pat of its outline to draw. Only points dockwise of
the (OX_,DYs) vedorand antidockwise of (DXe,DIe) are plotted.

The partial outline is dosed with either a single chord line, joining the two end
points, or a pair of segment lines, connecting each end point to the centre of the
ellipse at (Xc, Ic). The value of CloseMode determines which method is used,
valid values are:

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

C1OlleMode Comment
OI_CBOiW Close outline with a chord line
CM SEGHEHT Close outline with two segment lines

33

The outline is dipped to the current screen definition, see cqi_..tdrawscreen.

The current pixel replace and plot modes affect the appearance of the outline, see
cgi_setdrollwmode.

Diagram:

Current sueen

~

/'
/'

/
/
I.

\
\

"­
'-

'-.
'-.

.>8
A = Semi MajorAxis
B = Semi MinorAxis

720EK 264 01

(Xc, te

8

, (DXe,DYe)

May 1992

34

6.2.5 cgi_chrbegln

Sel current character display position.

c:
.oid OIli ehrbe;in (

Channel *to cqi,
int X, int i)

occam:
PROC cqi. cbrbegin (

CHAN 01" ANY to.cqi,
VAL IN'!' X, Y l

Parameters:

Parameter Comment

to_ego1 Channel to CGI server

(X,Y) Character position coordinate

Description:

cgi chrbegin sets the ament character position to (X, Yl . The next text opera­
tion WiI start plotting characters at this position. AI text operations, other than
C9i_chr~, update the Qment character position as characters are plotted.

Setting the current character position to a location outside the extent aftha current
screen definition Is allowed. However, It should be remembered that all character
plotting operations are clipped to the current screen defll'lition, see egoi ••t-
draw.or.en. -

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries

6.2.6 cgLchrspace

Set current inter-character spacing.

c:
void egi_chrspace(

Channel *to cqi,
int dX, int-dY)

occam:

PROC cgi.chrspace(
CHAN OF ANY to.cgi,
VAL INT dX, dY)

Parameters:

Parameter Comment

to_cqi Channel to CGI server

<IX Xaxis character spacing distance
dY Y axis character spacing distance

35

Description:

c91 c:hrspace sets the current Inler-character spacing distances. These values
are used to increment the current character position, in the Xand Yaxis directions,
after each character is plotted. dX specifies the inter-character spacing distance
in the Xaxis direction, dY specifies the Y axis distance.

The inter·characterspadng is independentof the current orientation and font size,
see cgi_setorient and egi_ setfont.

72 OEK264 01 May 1992

36

6.2.7 cgi_chrz

Plot character with zoom scaling.

c:
void CCJi_chrz (

Chann.l *to O9i,
char ch, -
int zlenx, int zleny

occam:
PROC cqi.chrz{

CH»I OF ANY to.cgi,
VAL BYTE ch,
VAL INT zlen~, zleny

Parameters:

Parameter Comment

to_C9i Channel to CGI server

ch Character to plot
zl_ Width of scaled character on X axis

zleny Height of scaled character on Y axis

Description:

0;1 chrz plots the single character ch according to the current font description
andWith independeot scaling In the X and Y axis directions. zlenx specifies the
width of the character, when plotted, in the Xaxis direction. The character's height,
also when plotted. is given by :deny on the Y axis.

Depending on the current font size, see cqi_..tfont, reduction or enlargement
can be achieved independently in the X and Vaxis directions by setting zlenx and
zlenyappropriately.

The current character position Is NOT updated after the character is plotted.

The character is plotted according to the a.UTen! pixel replace mode, see
r::qi_setdralllllOde.

For text display, the default pixel replace mode RM COL, wil cause the character
to imprint within a rectangular bounding box of colour O. In some cases this wiU not
produce the desired effect. If only the foI'"eground of the character is required and
a pixel overwrite mode rather than a logical operation is desired then select pixel
replace mode IU4_NZ. This will cause only those pixels which are non-zero to be
plolted.

Each pixel of the character p10lted is dipped to the culTent saeen definition. see
cqi_ setdrawsereen.

720EK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

6.2.8 cgl_clrcle

Outline an axis aligned ellipsoid.

c:
void O9i c1rcle(

Channel -to_egoi,
int Xc, 1nt Ye, int A, int B)

occam:

PROC cq1.circle(
CHAN OF ANY to.cq1,
VAL INT Xc, Ye, A, B

Parameters:

Parameter Comment

to_cqi Channel to 001 server
(Xc,Yc) centre coordinate

• Length of X direction semi axis

B Length of Y direction semi am

37

Description:

e9'1 circle plots the outline of an axis aligned ellipsoid centred at (Xc, Yc) and
withsemi-axis lengths of Aand Bpixels. Both A and Bmust be positive, the larger
of the two values Is the semi-major axis length, while the lesser specifies the semi­
minor axis length. An outline of a circle is plotted with a diameter equal to either
A Of e, if they have identical values.

The outline is dipped to the current saeen definition, see cq1_.etdra••creen.

The current pixel replace and plot modes atred the appearance of the outline, see
cqi_setdrawmode.

72 OEK264 01 May 1992

38

Diagram:

Current screen

A>8
A = Semi Major Axis
B = Semi Minor Axis

72 OEK264 01

(Xc, Yo

8

A

May 1992

IMS FOO3C 20 graphics occam and C libraries

6.2.9 cgl_c1s

Clear screen.

c:
void cgi cla(

Chann.l *to cgi,
Bcreen B, int colour

occam:
PROC cgi. cla (

CHAN OF ANY to.agi,
V1&L [SOEEN.SIZE]IN'I' a,
V1&L INT colour)

Parameters:

Parameter Comment

to_clli Channel to CGI server

• Saoon to clear

colour Col"'"

Description:

39

cgi cla dears the entire raster area associated with the saeen • to the colour
specified by colour.

The current fin and pixel replace modes are ignored.

72 OEK 264 01 May 1992

40

6.2.10 cgl_coPY

2D region block copy.

c:
void C9i_copy(

Channel *to cqi,
screen a , tnt x., int Is,
int DX, int OJ,
screen d, int Xd, lnt Yd)

occam:

PROC cqi .copy (
CBlN OF ANY to.cgi,
VAL (SOEEN.SlZE]INT a,
VAL 1NT XI', YlI, DX, OY,
VAL [SCREEN .SIZE] tNT d,
VAL 1NT Xd, Yd)

Parameters:

Parameter Comment

to_cgi Channel 10 CGI seNer

• Source screen
(XII, Is) Source coordinate

ox Size of region in X direction

OJ Size of region in Y direction

d Destination screen
(Xd, Yd) Destination coordinate

Description:

cgi copy copies a rectangular. axis aligned, region from the source SQ"eco • to
the destination screen d. The size of the region is specified by ox pixels in the X
axis di"ection and OJ pixels on the Yaxis.

The COOfdinale (x., Is) identifies the top left hand comer of the region on the
source sa-een, it is copied 10 (Xd, Yd) on the destination screen.

The region is clipped to the destination screen definition. No scaling is perfonned.

The current orientation and pixel replace modes atreet the resultant display, see
cgi_s.torient and cgi_ •• tdralftlO<i-..

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

Diagram:

Source screen s

41

Ox

Destination screen d

Ox

72 OEK 264 01 May 1992

42

6.2.11 cgLdisjpolyline

Draw a sequence of disjoint lines.

c:
void O9i diajpolyline(

Channel *to cgi,
int n, int .pointa)

occam:
PROC cgi.disjpolyline(

CHAN OF ANY to.cgi,
VAL INT n,
VAL [l INT point.)

Parameters:

Parameter Comment

to_cgi Channel to CGI selVer

n Number of ex.Y) points
point. Line start and end points

Description:

cgi_diajpolyline draws a sequence of disjoint (unconnected) straight lines
between points defined by the integer vector points. The coordinate of a point
is given by an integer pair (X,V) and lines are drawn between a pair of coordinates
specifying the line's slart and end points. Each coordinate is used only once, as
either a line start or as an end point. The first coordinate contained in pointa is
always treated as a line start point and the next its corresponding end point. The
number of points Is given by n which will usually be even (because a line is de­
saibed by two points). If n is odd a single point is plotted instead of the last ~ne,
if it is 1 only a single point is plotted.

Each line is dipped to the ament sawn definition, see cgi_utdra.screen.

The current pixel replace and plot modes aired the appearance of eaclliine, see
cgi_s.tdrawaode.

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

Diagram:

Current screen

43

(POin"IO~1

(point.s(2), poinu(JIl

(points[f.], poinb[5])

(points(6J, point.s(7])

nOEK 264 01 May 1992

44

6.2.12 cgLdot

Plot a point.

c:
void cgi_dot(

Channel .t.o cgi,
int X, tnt i' l

occam:
PIWC cg'i.dot(

CHAN OF ANY to.cgi,
VAL INT X, Y)

Parameters:

Parameter Comment

to_C9i Channel to CGI server

(X, Y) Coordinate of point

Description:

cgi_dot pk)1$ a single point at (X, Y).

The point is only plotted If it lies within the extent of the current saeen definition,
see C9i_•• tdrllw5creen.

The current pixel replace and plot modes affect the appearance of the point, see
cgi_lIiIl!ltdr.llwmoda.

Diagram:

Current screen

(X, Y)

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries

6.2.13 cgLerrstat

Expound the current CGI error.

c:
int cgi errstat(

Channel *frOlll c<]i, Channel *to c<]i,
char *errtext7 int *errqual) -

occam:

PROC cgi.errstat(
CHAN OF ANY frOlll.cgi, to.cgi,
IlBYTE errtext,
INT errtext.len,
INT errno, errqual)

Parameters:

Parameter Comment

frolll_cgi Channel from CGI server

to_cgi Channel to CGI server

errtell:t Text string indicating etTor

errtext.len Length of etTor string (OCCAM only)

errno CGI etTor code (OCCAM only)
errqual CGI etTor qualifier

Note that cgi_errlltat returns errno.

45

Description:

cgi_errstat returns the current CGI error status.

The CGI system records the reason for any etTor condition it encounters during
normal operation, this consists of an error code and an etTor qualifier.

The error code errno indicates the reason for the current etTor and the qualifier
errqual further qualifies it in a context sensitive way. For example, if the cutTenl
etTor code describes an invalid pixel replace mode then the error qualifier will con­
lain the offending mode value.

A textual description of the cutTent error code is returned in errtext, this should
contain at least maxErrString characters of storage. For OCCAM, cgi. err­
stat returns the length of the error sIring in errtext .len. The C variant returns
a normal, null terminated, string.

72 OEK 264 01 May 1992

46

The valid error number codes are:

erma Comment

0_"" No elTor
• BADPELMODE Invalld pixel plot mode, see cqi_••t-

dra_od.

e BADREPMOOE Invalid pixel replace mode, see cgi_set-
drawmode

e_BAOFILLMOOE Invalid fill mode, see 09i_aetdrawmode

e_BADSEARCHDIRN Invalid search direction, see 09i_....rch

e_BADSE1lRCHTEST Invalid search test criteria, see
cgi_aearch

• BADfORIMODE Invalid orientation, see cqi_..torient

The current error code and qualifier will be reset to indicate "No error'.

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

6.2.14 cgUcircie

Plot a filled, axis aligned, ellipsoid.

c:
void c9i fcircle(

Channel *to egi,
int Xe, int-Ye, int A, int B)

occam:
PROC cgi.fcircle(

CHAN OF ANY to.cgi,
VAL INT Xc, Yc, A, B

Parameters:

Parameter Comment
to_cgi Channel to CGI server

(Xc,Yc) Centre coordinate

A length of Xdirection semi axis

B length of Y direction semi axis

Description:

47

",~i._£<>i.r<>1 .. plots a filled. All.il: AlionQd. Qllipsoid centred at (Xo, Yo) and with
semi-axis lengths of A and B pixels. Both A and B must be positive, the larger of
the two values is the semi-major axis length, while the lesser specifies the
semi-minor axis length. A filted circle is plotted with a diameter equal to either Aor
B, if they have identical values.

Every point plotted is clipped to the current screen definition, see cgi_set­
drawsereen.

The current pixel replace and fill modes affect the appearance of the ellipse, see
cgi_setdraWlllode.

72 OEK 264 01 May 1992

48

Diagram:

Currentsaeen

A>.
A :: semi Major Axis
B '" Semi MinorAxis

72 OEK264 01

(Xc,Yc

•

A

May 1992

IMS F003C 20 graphics occam and C libraries 49

6.2.15 cgLfanfill

Plot a partially filled, axis aligned, ellipsoid. Closed with chord or segment lines.

e:
void ogi fanfill(

Channel *to ogi,
int Xc, int-Yc, int A, int a,
int DXs, int DIa, int DX., int DYe,
tnt CloaeMode)

occam;
PROC ogi.fanfill(

CHAN OF ANY to.ogi,
VAL INT Xe, Ye, A, 8, DXs, OYs, OXe, DYe,
CloseMode)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

(Xe,Yc) Centre coordinate

A length of X direction semi axis

B Length of Y direction semi axis

(Oxs,OYs) Start vector
(OXe,OYe) End_

CloseMode Close mode

Description:

ogi fanfill plots part ofa filled, axis aligned,eDipsoldcenlred at (Xc, Ye) and
withSemi-axis lengths ofAand 8 pixels. Both A and B must be positive. the larger
of the two values is the semi-major axis length, while the lesser specifies the semi­
mil104" axis length.

(DX.,DYa) and (DXe,OYe) define direction vectors eminating from the centre
of the ellipse that specify which part of its interior to fill. Only points dockwise of
the (OXs,OYs) vector and anti clockwise of (Ox. ,DYe) are ploUed.

The partial ellipse is bounded by either a single chord line, joining the two end
points, or a pair of segment lines connecting each end point to the centre of the
ellipse al (Xc, Ye). The value of CloseMode detennines which method Is used,
valid values are:

CloseMode Comment

CMCHORD Close ellipsoid with a chord line

CM_SEGMENT Close ellipsoid with two segment lines

720EK 264 01 May 1992

50

Every point ~Ued is dipped to the current saeen definition, see cqi nt-
dr••screen. -

The current pixel replace and flU modes affect the appearance of the eDjpse. see
cqi_setdraWlllode.

Diagram:

Currentsaeen

~
~ ~

~

".(OXS ,Dfal

/'
/'

/ CM_S
I

I A
i"" (Xc,Ye

\
\

"-
'-

'- •~ ~

"-~-A>. (OX.,DYe)
A ;;; Semi MajorAxis
B = Semi Minor Axis

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries

6.2.16 cgUhline

Plot a sequence of filled, horizontal, ine segments.

c:
void cqi fhline (

Channel *to cqi,
int Y, int n, int *Xor~ I

occam:

PROC cqi.fhline(
CHAN or ANY to.cqi,
VAL IN! Y, 0,
VAL (l IN! Xordlll

Parameters:

Parameter Comment

to_cgi Channel to CGI server
y line segment Y ordinate

n Number of XOfdinates

Xords Segment start and end Xordinates

Description;

51

cqi thline plots a sequence of filled hortzontalline segments between points
defiOed by the integer vector Xorca in conjunction with the slngle Y axis ordinate
1: The coordinate of a point is given by an integer pair (X,Y) and Jines are fined be­
tween apair ofcoordinates specifying the line's startand end points on the horizon­
tal line Y. Each coordinate is used onlyonce, as eithera line sta1 Ofas an end point
When combined with Yo the first X axis ordinate contained in Xorcb is always
treated as a line start point and the next value used to define its corresponding end
point The number of Xaxis ordinates is given by n which must be even (because
a line is desaibed by two points).

Every line filled is dipped to the current screen definition, see C9i_.etdrllw.­
cre.n.

The current pixel replace and fill modes affect the appearance of each line, see
cgi_••tdrllwmode.

72 OEK264 01 May 1992

(Xords[O),Y)

52

Diagram:

Current saeen

n = 4

72 OEK264 01

., I:::x::::ords [1], I) .-:Ix:::o:;rds [3], I)

(Xorda [2] , I)

May 1992

IMS F003C 20 graphics occam and C libraries

6.2.11 cgLfrecl

Plot a filled, axis aligned, rectangle.

c:
void 09i freot(

Channel -to og1,
int XO, int-YO, int Xl, int Yl)

occam:

PROC cgi.freot{
CHAN OF ANY to.cgi,
VAL INT XO, YO, Xl, 11)

Parameters:

Parameter Comment

to_ogi Channel to CGI server
(XO, YO) Comer point coordinate
(Xl,Yl) Opposite point coordinate

Description:

53

cgi frect plots a filled, axis aligned, rectangle between two diagonally opposite
points specified by the coordinates (XO, YO) and (Xl, Y1) .

Every point plotted is clipped to the current screen definition, see cgi_set­
drawsoreen.

The current pixel replace and fill modes affecllhe appearance oflhe rectangle, see
cgi_setdrawmode.

Diagram:

72 OEK 264 01 May 1992

54

CUrrent screen

72 OEK264 01

(XO, YO;.):.".-_~~~__~'"l

(Xl,Yl)

May 1992

IMS F003C 20 graphics occam and C libraries

6.2.18 cgUtrap

Plot a filled trapezoid.

c:
void. egi ftrap (

Ch&nneI -to cgl,
lnt Xl, int-YI, int Xl, int Y2,
int Xl, int Y3, int X4, lnt Y4,
lnt Ys, int Ye)

occam:

PROC cgl.ftrap(
CHAN or ANY to.cgl,
VAL IN! Xl, Yl, Xl, Y2, X3, Y3, X4, Y4, Is, Ye)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

(XI,Yll First edge: Start point coordinate

(X2,Y2) First edge: End point coordinate

(X3,Y3) Second edge: Start point coordinate

(X4,14) Second edge: End point coordinate

Ys Top hofizontal Y axis bound

Y. Bottom horizontal Y axis bound

Description:

55

C9l_ftrap plots a filled trapezoid. The trapezoid is horizontally bounded by two
non-horizontal edges, filling occurs between the left and right edge lines. The first
edge is spedfied by a straight line between the points (Xl,n) and (Xl, Y2) and
the second edge by a lioe between (X3, Y3) and (X4, Y4). The fillarea is vertical­
Iy bounded by two horizontal edges. The top edge is desaibed by a horizontal line
with a Yaxis value equal to the larger ofrs and the smallest rl, Y2, Y3 or r4 ordi­
nate. The bottom edge line has a Y axis value equal to the lesser of Y. and the
largest n, Y2, Y3 or Y4 ordinate.

The left and right edge lines may intersect. If they do, an object similar in shape
to an hour glass (two touching triangles) will be plotted.

Every point plotted is dipped to the current screen definition, see cgi_set­
clrawscreen.

The current pixel replace and filt modes alfect the appearance of the trapezoid, see
cqi_setdra_ode.

72 OEK 264 01 May 1992

56

Diagram:

Current screen

(Xl, Yl),
\

\
(X2, Y2)

72 OEK264 01

(X.f.,Y4),

/,
(xlI3)

May 1992

IMS F003C 20 graphics occam and C libraries

6.2..19 cgUlne

Draw a straight line belWeen two points.

c:
void cqi lin. (

Channel *to_cgi,
int XO, int YO, int Xl, int YI 1

occam:
PROC c9i. line (

CHAN OF ANY to.egoi,
VAL INT XO, YO, Xl, YI 1

Parameters:

Parameter Comment

to_egoi Channel to CGI server
(XO, YO) Start point coordinate
(Xl, Yl) End point coordinate

Description:

57

cqi line plols a straight line between two points specified by the coordinates
(XO-;-YO) and (XI,H).

Every point plotted is clipped to the current screen definition, see cqi ..t-
drawsereen. -

The current pixel replace and plot modes affect the appearance of the line, see
cgi_setdrawmoc1e.

Diagram:

72 OEK264 01 May 1992

58

Cumlnt saeen

72 OEK264 01

(XO,YOl

(Xl, Yl)

May 1992

IMS F003C 20 graphics occam and C libraries

6.2.20 cgtJ)aint

Paint (flood fill) a bounded region.

c:
void cgiyaint(

Channel *to cgi,
int Xs, int-Ys, int Bcol

occam:

PROC egi.paint{
CHAN OF ANY to.cqi,
VAL INT x., Ys, Beol

Parameters:

Parameter Comment

to_cgi Channel 10 CGI server

(Xs, Ys) Interior point coordinate

Bool Boundary colour

Description:

59

cgiyaint flood fills a bounded region. The region is specified by a boundary of
constant colour Bcol and filling starts at an interior point given by the coordinate
(Xs, Ys).lfthepixelatthispointalready has the value Beol then nofillingoccurs,

The current pixel replace and fill modes affect the resultant display, see c9'i_lIet­
drawmode.

Filling with the current foreground colour (fill mode i'M_COL and plot mode
PM COL) equal to the defined boundary colour Pf'oduces a corred result. However,
the-use of a fill pattern which contains pixels of the boundary colour will almost cer­
tainly fail.

The fill algorithm guarantees correct behaviour when a logical pixel replace mode
is active by plotting each pixel once only, see cgi_setdrawmode.

The fill region is clipped to the current screen definition, see cgi_lIetdraws­
creen.

72 OEK 264 01 May 1992

60

Diagram:

Currentsaeen

BCOL

n OEK264 01

(Xs,Ys)
•

May 1992

IMS FOO3C 20 graphics occam and C libraries

6.2.21 cgl""polygon

Outline a polygon.

c:
void ogi-?Qlygon(

Channel *to_cgi,
int D, int *point-

occam:

PROC cgi.poIY90n(
CHAN OF ANY to.cgi,
VAL INT n,
VAL [lINT points

Parameters:

Parameter Comment

to_C9i Channel to CGI server
n Number of (X,V) points

points Polygon vertex points

61

Description:

C9i"'po1Y90n plots the outline ofa polygon bydrnwing a sequence of comected,
straight lines, between its vertex points. The polygon's last vertex point is c0n­
nected to its first to complete the outline. The coon:finate of each point is given by
an integer pair (X,V) taken from the vedorpoints, the numberofpoints is speci­
fied by n. Li'les are drawn in the orderdefined by each consecutive point contained
in points. If onlyone coordinate is present, Of ifall the points are coincident, then
a single point is plotted.

The outline is clipped to the current saeen definition, see cq i _ •• tdr•••creen..

The current pixel replace and plot modes al'fect the appearance of the outline, see
cgi •• tdra_ode.

72 OEK264 01 May 1992

62

Diagram:

Currentsaeen

(points[O),pointa[lJl

(pointll[41,pointa[5Jl

(poinu(8l,pointa[9))

n = 5

72 OEK 264 01

(pointll (6] ,points [7])

May 1992

IMS F003C 20 graphics occam and C libraries

6.2.22 cgl""polylJne

Draw a sequence of connected fines.

c:
void cqi-P01yline(

Channel *to cqi,
int D, int *Points

occam:

PROC cqiopolyline (
CHAN or ANY to.cgi,
VAL 1NT n,
VAL [I tNT points

Parameters:

Parameter Comment

to_cgi Channel 10 CGI server

n Number of (X,V) points

points Line start and end points

Description:

63

CQi-PQlyline draws a sequence of straighllines connecting the points defined
by the Integer vector point•. The number of points is specified by n. The roordi­
nate ofa point is given by an integer pair (X,V) and lines are drawn between a pair
d COOIdinates specifying the line's start and end points. The drawing order Is de­
fined by each consecutive point contained in points. The resulting, continuous
line, is called a polyline.

The polytine is dipped to the currenl screen definition, see cqi_ ••tdra.acreen.

The current pixel replace and plol modes alfeet the appearance of the polyline, see
cqi_••tdrawmode.

72 OEK 26401 May 1992

64

Diagram:

Currant screen

(point.rOj ,point.[lJ) (pointa[.f.] ,poinu(S])

(pointll (2] ,points [3])

(pointa(8] ,points[Sl))

n = 5

72 OEK 264 01

(pointll(6J,pointa[7])

May 1992

IMS FOO3C 2D graphics occam and C libraries

6.223 cgUect

OuUine an axis aligned rectangle.

c:
void cqi reet(

Channel *to cqi,
int XO, int-YO, int Xl, int Yl l

occam:
PROC cgi. net (

CHAN OF ANY to.cgi,
VAL IN! XO, YO, Xl, Yl)

Parameters:

Parameter Comment

to_cqi Channel to CGI server

(XO,YO) Comer !Xlint coordinate
(Xl,Il) Opposite !Xlint coordinate

65

Description:

cgi rect plots an outline of an axis aligned rectangle between two diagonally op­
posite points specified by the coordinates (XO, YO) and (Xl, Ill.

The outline is clipped to the current screen definition, see cgl_8etdra1fscreen.

The current pixel replace and plot modes affect the appearance of the outline, see
cgi_setdr41fJDodei.

72 OEK264 01 May 1992

Diagram:

Current screen

72 OEK 264 01

(XO,YOI,.:--------,

(Xl,l1)

May 1992

IMS F003C 20 graphics occam and C libraries

6.2.24 cgiJot

20 region block rotation.

c:
void cqi rot (

Channel ·to cqi,
screen s, int Xs, int Y., int LSX, int LSt,
int Xd, int Yd, float angle ,

occam:
PROC cq1. rot (

CHAN OF ANY to.cgi,
VAL [SCREEN.5IZE]INT .,
VAL IN! Xs, Ys, LSX, LSY, Xd, Yd,
VAL REAL32 anqle)

Parameters:

Parameter Comment
to_cqi Channel to CGI server

• Screen

(XII,h) Source coordinate
LSX Size of region in X direction

LSX Size of region in Y direction

(Xd,Yd) Destination coordinate

angle Radian angle of rotation

67

Description:

cgi_rot oopies and rotates a rectangular, axis aligned, region from the source
screen _ to the current drawing screen. The size of the source region is specified
by ox pixels in the X axis direction and oy pixels on the Yaxis. It is rotated through
an angle ofangle radians, a positive value denotes an anti-clockwise angle of r0­

tation.

The coordinate (Xs, Ts) identifies the top left hand comer of the region on the
source screen, its rotated copy is plotted at {Xd, Yd} on the current drawing
screen.

The rotated region Is clipped tothe current screen definition, see cgi_ ntdraws­
creen.

The current pixel replace mode affects the resultant display, see cgi_setdraw­
mode.

72 OEK 264 01 May 1992

68

Diagram:

Source screen

(Xs, X,;aLI__--,

LSI

a
LSX

720EK 26401

Angle

(Xd,Yd)

May 1992

IMS FOO3C 20 graphics occam and C libraries

6.2.25 cgLsearch

Scan a honzontalline segment for colour change.

c:
lnt cgi search (

Channel *frOlll cqi, Channel *to_cgi,
int Xs, int lSI int Beol,
int s.ns., int dirn)

occam:

PROC cqi. 8eaJ:cb (
CHAN OF ANY from.cgi, to.C;i,
VAL INT x., Ts, Beol, sense, dirn,
INT xpo.n)

Parameters:

Parameter Comment
fro__cqi Channel from CGI server
to_cqi Channel to CGI server

(Xs, lal Search point coordinate
Beol Colour transition
••na. Search criteria

dirn Search direction
xposn X axis result (OCCAM only)

Note that cql_lIearch returns xpolln.

Description:

69

cqi search is used to discover where on a horizontal line, a particular colour
change occurs. The start point for the search is specified by the coordinate
(X., Tal, the search occurs along a horizontal line drawn through it The search
proceeds in one of two directions: either to the left otthe start point, or to its right,
as specified by dim. searching continues until a pixel of the transitioo colour
Beal is discovered, or until a pixel of some othercolour is found. The search aite­
ria nnse defines which method to use.

Valid search direction values are:

Search direction Comment

S_LEFT Search left of start point

S RIGHT search right of start point

72 OEK264 01 May 1992

70

Valid search aiteria values are:

Sear~ t •• t Comment

S WHlLEHOT Search until a pixel of colour Bcol is
discovered

S WBILEGOT Search until a pixel not equal in colour
to Bcol is discovered

Diagram:

Current screen

....--------------~
S_LElT (Xs,Ys) S_RIGBT

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C librarIes

6.2.26 cgi_setbcol

Set current background colour.

c:
oid cgi setbool(

Channel -to cgi,
int Bcol) -

occam:

PROC cgi.setbcol(
CHAN OF ANY to.ogi,
VAL INT Bool)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

8col Background colour

Description:

091_setbcol sets the current background colour to Bcol.

72 OEK264 01

71

May 1992

72

6.2.27 cgLsetdrawmode

Set current draw modes fO(plotting, filling and logical pixel operations.

c:
void cgi ••tdrawmode (

Channel *to 09i,
int pm, int-rm, int fill)

occam:
PROC 09i. lIetdrllwmode (

CHAN OF ANY to.cgi,
VAL INT pm, rm, fm 1

Parameters:

Parameter Comment

to_cgi Channel to CGI server
pm Plol mode

= Replace mode
f. Fill mode

Description:

cgi_setdrawmode sets the current pixel plot, replace and fill modes to pill, rm
and fm respectively.

The pixel plot mode pm affects the result of most drawing operations, such as
cqi"'polyline Of cgi_a:r:c. Drawing operations are achieved by plotting a se­
quence of points according 10 the current plot mode. It defines whether a single
pixel, the current picture element or the current line style pattern is used to deter­
mine how each point should be plotted. Valid pixel p10l modes are:

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries 73

Flot mode Comment

PM COL Points are plotted as a single pixel in the current fore
ground colour, see ogi_setfool

PM_ LlNESTYLE Points are plotted according to the current line style pat-
tern, see cqi_setlinestyle

PM_LlNESTYLETR As PM_LlNESTYLE, except that zero valued linestyle
pattern pixels are not plotted. This achieves a transpar-
ency affect

i'M_FEL Single points are represented by the current picture ele-
ment pattern, see cgi_setpelstyle

PM_LS_i'EL As i'M_LlNESTYLE, except that single points defined by
the current line style pattern are replaced by the current
picture element pattern.

The pixel replace mode r:m affects the result of all drawing and fill operations. Ilde­
fines how pixels are ultimately written into the current frame store and therefore the
colour that each pixel will assume when displayed. Pixels can either be combined
(using a bitwise operator) with the value ofapixel at the same location, or they can
be written directly into the frame store. Valid pixel replace modes are:

Replace mode Comment

RM COL Overwrite mode: pixel defined by the current foreground
colour, see cgi_setfcol

AM AND Colour defined by the bitwise AND of the new pixel value
and the existing framestore pixel

AM OR Colour defined by the bitwise OR of the new pixel value
alld the existing framestore pixel

RM_XOR Colour defined by the bitwise XOR of the new pixel value
and the existing framestore pixel

RM NOR Colour defined by the bitwise NOR of the new pixel value
and the existing framestore pixel

AM NAND Colour defined by the bitwise NAND of the new pixel value
and the existing framestore pixel

AM_' Overwrite mode: existing framestore pixel only over written
with zero valued new pixels

AM N' Overwrite mode: existing framestore pixel only over written
with non·zero valued new pixels

AM ALL Overwrite existing pixel with new pixel varue

72 OEK 264 01 May 1992

74

The fill mode fa affects only fill operations, such as cqi frect. It defines how
filling should be performed, valid fiJI modes are: -

Fill mode Comment
i'M_COL Fill with current foreground colour, see

cgi_setfcol
FM PATTERN Fill with current fill style, see

cgi setfillstyle

72 OEK,264 01 May 1992

IMS F003C 20 graphics occam and C libraries

6.2.28 cgLsetdrawscreen

Set current drawing screen.

c:
void cqi setdrawscreen(

Cbannel *to cqi,
screen s) -

occam:

PROC cqi.aetdrawacreen(
CHAN OF ANY to.cq!,
VAL [SCREEN.SIZE]INT iii

Parameters:

Parameter Comment

to_cq! Channel 10 CGl server
s Screen

75

Description:

cq! setdrawscreen sets the current screen. The SCfeen, specified by s, de­
finesthe size and location of the frame store rasler 10 use for all subsequent CGI
operations.

72 OEK264 01 May 1992

76

6.2.29 cgl_setteol

Set current foreground colour.

c:
void O9i .etfool(

Channel ·to cqi,
int Fcol) -

occam:
PROC ogi.setfcol(

CHAN OF ANY to.cqi,
VAL INT FCQl)

Parameters:

Parameter Comment

to_C9i Channel to CGI server

F=l Foreground roIour

Description:

09i_••~f..ol cote tho CUlTOn! forvground oolourto Pool.

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

6.2.30 cgi_setfillstyle

Set current customised fill style.

c:
void cgi_setfillstyle(

Channel *to cqi,
int fxsize,-int fysize,
char *fillmap)

occam:
PROC ogi.set!illstyle(

CHAN OF ANY to.cgi,
VAL INT fxsize, fysize,
VAL [] BYTE fillmap)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

fxsize Width of fill style on X axis

fysize Height of fill style on Yaxis

fillmap Fill style pixel map

Description:

77

09i_setfillstyle sets the current fill style. Fill styles are represented by a two
dimensional pattern which is used to tile a screen area during patterned fill opera­
tions: the pattern is replicated over the screen area to be filled. The size of the fill
pattern is given by fxsize pixels in the X axis direction, and fysize pixels along
the Y axis. The fill style is described by the vector tillmap which should contain,
in horizonlalline order, each row of pixels that make up the custom fill pattern. The
maximum width and height of a fill pallern is maxFillSize pixels.

Nole that the current fill style is only used for fill operations if the current fill mode
is EM_PATTERN, see ogi_setdl:awmode.

The current pixel replace mode affects the resultant display: pixels defined by the
fill pattern are plotted according to the current pixel replace mode. See cgi_set­
drawmode.

72 OEK264 01 May 1992

78

6.2.31 cgLsetfont

Set current text fonl.

c:
int C9i_setfont (

Channel *frOlll cqi, Channel *t.o_cqi,
unsigned int *packfont,
int Dchars, tnt fam., int fwpc, int tIp.)

occam:
PROC cgi.setfont(

CHAN or ANY t"rOlll.cql, to.c;1,
VAL IN'l [l packfont,
VAL INf Dchars, ftlDl", fwpc, IIp.,
BOOL ok)

Parameters:

Parameter Comment

frolll_cgi Channel from CGI server

to_cqi Channel to CGI server
packfont Encoded font

nchar. Number of characters in font

f~. Width of unpacked character in bits

f"po Number of 32 bit words per character

£1pw Number of encoded rows per 32 bit word

ok Success status (OCCAM only)

Note that egi ..tfont returns non-zero if the font was loaded successfully, zero
othelWise. cgI. ntfont returns the boolean variable ok to indicate success Of

failure.

Description:

cgi ••tfont k>acls a font descriptioo Into the CGI server. Only one font may be
actiVe at anyone instant so this operation will overwrite any existing font descrip­
tion held by the server. If there is insutrident memory for the new fonl cgi ••t-
font wi. return an error status. -

Fonts are desaibed by an integer vector which contains a packed representation
of each character contained in the font. A font can contain any number ofcharac­
ters only limited by the memory restrictions of the CGI server. A bit mask is used
to represent each character cell, this has a oonslant width and height for all the
characters of the same fonl Bits are listed in horizontal scan Mne order for each
character: aone bit represents acoloured ptxel and a zero bit the background. The

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries 79

bit masks for each charader are packed into a numberof 32 bit words, these are
then concatenated to produce the packed fonl The order defines how characters
are retrieved from the font the integer varue of a ctlaracter is used as the index of
the corresponding charader cell within the font array, if ASCII text representation
is required then the font should contain charader desaiptions at positions that cor­
respond to the ASCII encoding.

packfont is an integer vector that desaibes a fonl containing nchan charac­
ters. Character cells are desaibed by the parameters tamw, twpc and tlpw. The
width of the font is given by bmw, this specifies the number ofbits to use per hori­
zonial row. Each bit defines whether a foreground or background pixel is plotted.
twpc is the numberof32 bit WOlds required to encode one character cell and t lpw
is the number of horizontal rows encoded per word.

All text operations use the current font description.

Sedion 10.1 'Using and defining texl fonls' describes this in more detaiL

72 OEK 26401 May 1992

80

6.2.32 cgl_setllnestyle

Set current customised line style.

c:
void egi_••~line.tyl.(

Channel *to o;i,
tnt n, char-*llll,
int zoomJ"ac l

occam:
PROC c:gi ...tlin.style (

CHAN OF ANY to.cgi,
VAL INT n,
vAL (]BYTE Is,
VAL INT zooraI'ac

Parameters:

Parameter Comment

to_C9i Channel to CGI server

n length of line style
10 Une style pixel map

zooal'ac Zoom factor

Description:

og1 aeUin•• tyle sets the currenlline style. Line styles are represented by a
onedimensional vedor of pixels. DUring drawing operations, the current line style
vector can be used to define the value ofthe nextpixel to plot. Pixelsare taken from
the line style vector and used to plot a specific number of subsequent points, as
defined by the line st)1e zoom factor. When a pixel value has been exhausted the
next pixel from the line style veclof is used, if it was the last pixel then the first pixel
is r&-used.

is describes a line style of length n pixels. The maximum length of a line style is
maxLineStyle pixels. the minimum length is 1.

The number of times a line style pixel is plotted is given by the zoom factorzOOll­
Fac.

Note that the current line style is only used for drawing operations if the current pix­
el plot mode specifies one of the line style plot functions, see cgi_setdrawmod•.

The current pixel replace mode affects the resultant display; pixels defined by the
line style are plotted according to the current pixel replace mode. See cgi set-
drawaode. -

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

6.2.33 cgi_setorient

Set current orientation for text and copy operations.

c:
void cqi aetorient{

OumneI ·to cqi,
int orient r

occam:
PROC cqi.aetorient(

CHAN OF ANY to.cqi,
VAL !NT orient)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

orient Orientation

Description:

61

cqi_setorient sets the ament orientation mode to orient. This specifies one
of eight, axis aligned, orientations to apply when plotting characters or performing
two dimensional block copy operatioos (see cqi copy). Valid Ofientation values
are: -

Orientation Comment

TX_NOilH Normal orientation

TX .0 Rotate 90 degrees dockwise

TX 180 Rotate 180 d£9l!E!S clockwise

TX 210 Rotate 270 degrees dockwise

TX_NORMFLIP Flip top to bottom

TX_90FLIP Rotate 90 degrees dockwlse, then nip
top to bottom

TX_180FLIP Rotate 180 degrees dod<wise, then
nip top to bottom

TX_210FLIP Rotate 270 degrees dockwlse, then
f1jp top to bottom

72 OEK 264 01 May 1992

82

6.2.34 cgi_setpelstyle

Set current customised pel styWi.

c:
void cgl_s.tpelstyle(

Channel *to 091,
tnt pxsiz.,-int pyalze,
char *pelaap I

int xor;, int yorq)

occam:

PROC cgi .••tpelatyle(
CHAN OF ANY to.cql,
VAL INT p ••ize, pyalz.,
VAL IlBYTE pelmap,
VAL INT xorg, yorg)

Parameters:

Parameter Comment

to_cgi Channel 10 CGI server

pxsin Width of pel style on X axis
py• .1.:r.e Height or pel styJe on Y axis

po"'"- Pel stykl pixel map
(xorg,yor;) Olfset to centre of Pel

Description:

cqi utpe.btyle sets the current pel style. Pel styles are represented by a two
dimensional pattern which is copied into the current Stteen where a single point
would otherwise have been plotted. Every operation that is implemented by draw­
ing a sequence ofpoints, such as c:gi line, can be configured 10 plot the pel style
pattern instead. -

The size of the pel pattern is given by pxsin pixels in the X axis direction, and
pyshe pixels along the Y axis. The pel styJe is desaibed by the vector pelmap
which should contain, in horizontal line order, each row of pixels thai make up the
custom pel pattern. The maximum width and height of apel pattern IsmaxPelSize
pixels.

The pel styie has a single point, located within its bulk, that identifies an origin. Pels
are plotted such that thei' origins are positioned at the coordinate of the replaced
point. (xorg, yorg-) defines the origin of the Pel style as an offset from the base
of its two dimensional pattern, (lop left hand corner).

The current pixel replace mode affects the resultant display: pixels defined by the
pel style are plotted according 10 the current pixel rep!ace mode. See egi aet-
dra_ode. -

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries 83

Note that the current pel style is only used for drawing operations if the current pixel
plot mode specifies one of the pel functions, see co;Ji_setdrawmode.

Diagram:

Current screen

pxsize

pysize

72 OEK264 01 May 1992

84

6.2.35 cgl_shear

20 region block shear.

c:
void cqi ahear (

Chann.I '*to cgi,
screen a, LOt Xs, int 'la, int LSX, int LST,
tnt Xd, int Yd,
int LDXX, lnt LDXy, int LDYx, int LDYy

occam:

PROC C9i.shear(
CHAN or ANY to.cqi,
VAL [SCREEN.SIZJ:)INT .t
VAL 1NT x., Ta, LSX, LSY, Xd, Yd,
LDXx, LDXYf LDYx, LOYy)

Parameters:

Parameter Comment

to_OCJi Channel to CGI server

• Sa-een
{Xs, Yal Source coordinate

LSX Size of region in X direction

LSY Size of region in Y direction

(Xd,Ydl Destination coordinate
LDXx,LDXy LSX shear control

LDYz,LDYy LST shear control

Description:

cgi sbear copies and shears a rectangular, axis aligned, region from the source
screen a to the current drawing screen. The size of the source region is specified
by LSX pixels in the X axis direction and LSY pixels on the Yaxis. It is sheared ac­
cording to the value of the four shear control parameters: LDXx, LDXy, LOYx and
LDYy. LOb and LOXy controllhe amount and direction of the shear along the
LSX line: LOb is the component of shearin the Xaxis direction, LOXy is the Y axis
component Similarly, LDYz and LDYy controllhe shear along the LSY line, LDYz
is the X axis component and LDYy is the Y axis part. Each pair of shear control pa­
rameters define a right-angled triangle with axis aligned sides, the hypoteneus
lines define the direction of the sheared horizontal or vertical edges ofilie original,
rectangular, region.

The coordinate (b,Ya) identifIeS the top left hand comer of the region on the
source screen, its sheared copy is plotted at (Xd, Ydl on the ament drawing
saeen.

72 OEK 264 01 May 1992

lMS F003C 20 graphics occam and C libraries 85

The sheared region is dipped to the current screen definition, see
cqi_••tdravscree~

The current pixel replace mode affects the resultant display, see
cgi_setdz:alnDOde.

Diagram:

/
/

/
>-'

/

LOr~
LDYx '"

CU~I;j
),'< LDXy

LOX.

Source saeenLSX
(Xs,Ysl~'~-==-'~

LSrlD

72 OEK264 01 May 1992

86

6.2.36 cgl_sptext

Plot text at specified position, with spacing control.

c:
void cgi spteJ[t (

Channel *to C91,
int X, int I,
int n, char *str,
int *dx, Int *dy)

occam:
PROC cgi. sptext (

CHAN OF ANY to.cql,
VAL INT X, I, n,
VAL []BYTE str,
VAL (J 1NT dx, dy l

Parameters:

Parameter Comment

to_cqi Channel to CGI server

(X,I) Start coordinate
n Number of charaders to plot

.tr Character string

<Ix X axis character spacing distances

dy Y axis character spacing distances

Description:

cqi aptezt plots n characters from the character string.tr according to the
current font description. The first character is plotted at the current character posi­
tion, which is inlialty set to (X, Y). It is then inaemented by X and Y axis offsets
specified by the inter-character spacing vectors dx and dy, forthe character. Sub­
sequent characters afe plotted in the same manner, using the next pair of spacing
distances. The current character position after the operation completes is offset
from the first character plotted by X and Y axis distances equal to the sum of the
dx and dy spacing vectors respectively.

The spacing vectOfS should be set with respect to the current orientation, see
cqi_setorient. Characters are plotted according to the current pixel replace
mode, see cgi_lIetdrawmoc:le.

Characters are reproduced at the size oflheirfont, which should be Initialised, see
cgi_setfont. Each pixel of every charader plotted is clipped to the current
saeen definition, see cqi_IJet4rav.lJcreen.

For lexl display, the default pixel replace mode RM COL, will cause characters to
imprint within a rectangular bounding box of colouro. In some cases this wiQ not

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries 87

produce the desired effect. Ifonly the foreground of the text is required and a pixel
overwrite mode ratherthan a logical operation is desired then select pixel replace
mode IU'LNZ. This will cause only those pixels which are non-zero to be plotted.

Diagram:

Current screen

cbt[O]
dy[O]~~ dx[1]./" &J dy[l]

(x''li t I .~,) ~1XJ
dx[2] /

lStr[O] dY(2y str[2]

-- dx[']- --h-ltdy[3] lJ:::J
str [3)•

current character position
n'

72 OEK 264 01 May 1992

88

6.2.37 cgl_strokearc

Outline part of an axis aligned ellipsoid, dosed with chord or segment lines.

c:
void cgi strok.arc (

Channel *to 091,
lnt Xc, int-yC, lnt A, int e,
tnt DXs, tnt DIs, lnt OX., tnt DYe,
lnt CloseMode)

occam:
PROC 09'1. strok.arc (

CHAN or ANI to.c9'i,
VAL !NT Xc, Ye, A, B, DX., 01. , DX_, DY.,
CloaeMode)

Parameters:

Parameter Comment

to_C9i Channel to CGI server

(Xc, Ye) Centre coon:Iinate

A Length of X direction semi axis
B length of Y direction semi axis

(OX-,on) Start vector
(OX8,DYe) End vector
CloseMode Close mode for arc

Description:

cqi atrok.arc performs the same function as cqi arcc. However, when
draWing with a defined line style, cgi atrck.arc achieves a more pleasing re­
sull This is because cqi_stroltearc uses a non-optimal algorithm and calcu­
lates individual points rather than using a faster (less acetKate) technique.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

Diagram:

Current screen

89

~

/'
/'

/
/
I.

• > B
A = Semi Major Axis
B = Semi Minor Axis

72 OEK 264 01

(Xc,Yc

B

".(DXs,DYS)

" (DXe,DYe)

May 1992

90

6.2.38 cgUext

Plot text at specified position.

c:
void cqi text (

Channel *to cgi,
int X, tnt Y,
tnt h, c:ha..r *.tr

occam:

PROC eqi.tezt(
CHAN 01' ANY to.cqi,
VAL INT X, Y, n,
VAL [JBUE .tr)

Parameters:

Parameter Comment

to_CC11 Channel to CGI server

(X, T) Slart coordinate
Q Number of characl.ers to plot

at< Charader smng

Description:

C91 text plots n characters from the character string lItr according to the cur·
rentfontdescriptlon. Characters are plotted at the current character position which
is then Inaemented by the currently defined X and Y axis inter-character spacing
distances, see cql chrspac•. The current character position after the operation
oompletes is offselkom the last charocter plotted by these distances.

Characters are plotted according to the current pixel replace mode, see cgi ••t-
drawmode and the current orientation, see cqi_..torient. -

Characters are reproduced at the size oftheirfon~ which should be initialised, see
cgi_••tfont. Each pixel of every character plotted is dipped to the current
screen definition, see c9'1_••tdrawacreen.

For text display, the default pixel replace mode RM COL, will cause characters to
Imprint within a rectangular bounding box of colourO. In some cases this will not
produce the desired effect If only the foreground of the text is required and a pixel
overwrite mode rather than a logical operation is desired then select pixe{ replace
mode IlM_ HZ. This will cause only those pixels which are non-zero to be plotted.

72 OEK264 01 May 1992

IMS F003C 2D graphics occam and C libraries

Diagram:

Current screen

91

str[O] str[l] str[2] str[3]

n = 4

• = current character position,-,
! .. = current inter--character spacing

72 OEK 264 01 May 1992

92

6.2.39 cgLzoom

20 region block copy with zoom scaling.

c:
void cqi 2,00II. (

Channel ·to_cgi,
.creen 5,
int Xs, int Ya, int L5X, lnt LSY,
screen d,
tnt Xd, int Yd, tnt LOX, lnt LOY,
int interpolate)

occam:
PROC cqi. zoom (

CHAN OF ANY to.cgi,
VAL (SCREEN.SIZE]IN'l a,
VAL tNT XII, YII, LSX, LSI,
VAL [SCREEN. S IZE1INT d,
VAL tNT Xd, Yd, LOX, LOY, interpolate)

Parameters:

Parameter Comment
to_cgi Channel to CGI sorvor

• Source screen

(Xs,Xs) Source coordinate
LSX Size of source in X direction

LSY Size of source in Y direction

d Destination screen
(Xd, Yd) Destination coordinate

LOX Size of destination in X direction

LOY Size of destnation in Y direction

interpolate Interpolated zoom nag

Description:

091 ZOOIIl copies a rectangular, axis aligned, region from lhe source saeen • to
the destination saeen d. II performs arbitrary scaling independently in the X and
Y axis directions to achieve a zoom effect.

The size of the source region is spedfied by LSX pixels in the X axis direction and
LSY pixels on the Y axis. It is scaled to fit the size of the destination region given
by LOX pixels in the X axis direction and LOY pixels on the Y axis.

The coordinate (Xs, Ys) identifies the top len hand comer of the region on the
source screen, it is copied to (Xd, Ydl on the destination screen.

72 OEK264 01 May 1992

IMS FOO3C 20 graphics occam and C libraries 93

interpolate controls whether an interpolated zoom win be performed. If it has
the value zero, no interpolation will be performed. If it is non-zero an interpolation
alQcrlhm wi. be applied when copying pixels to the destination screen.

The scaled source region is clipped to the destination saeen definition.

The current pixel replace mode affects the resultant display, see C9i ..tdraw-
mode. -

Diagram:

Source saeen a

(Xs, Ys)

LS{rd
• •LSX

72 OEK 264 01

Destination screen d

IJll(

May 1992

94

72 OEK 264 01 May 1992

95

7 Graphics board
functions

7.1 List of functions

7.1.1 fs_screenaddr

Return the raster address of a screen.

c:
char .fa screenaddr (

Channel ·from e91, Channel -to_09'1,
int bank) -

Note:
There is no equivalent occam variant of this function because the language does
not support indirect addressing.

Parameters:

Parameter Comment

fro'lLcqi Channel from CGI servei'

to_cqi Channel to 001 server
bank Bank number

Description:

!s scr_naddr returns what would be the raster address of a physical saeen
if mapped to video memory bank b.nk. If called from the same processor as the
CGI server this can be used for directly accessing the raster memory associated
with a physical screen.

72 OEK264 01 May 1992

96

7.1.2 fs_displaybank

Display a video memory bank.

c:
void t. displaybank(

Channel ·to cgi,
lnt bank) -

occam:

PR.OC t's .dhplaybank I
CHAN OF ANY to.C9i,
VAL IN'r bank)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

bank Bank number

Description:

fa dhplaybank. programs the graphics hardware to display a particular bank
orYideo memory. The outputSUbsequeoUy generated on a monitor will correspond
to the contents of the video memory bank Identified by banlt..

Physical CGI screens, which have their raster memory areas represented by video
memory banks, are displayed in this way. See fs_initsc:r:••n.

The video memory bank displayed by fs diaplaybank need not correspond to
the current CGI drawing screen, see cgl_s.tdra".creen.

72 OEK 264 01 May 1992

IMS FOO3C 20 graphics occam and C libraries

7.1.3 fsJnitscreen

Initialise a physical CGI saeen.

c:
void f5 initscreen(

Channel *frcm cgi, Channel *to_cgi,
screenptr s, -
int bank)

occam:

PROC f •. initscreen(
CHAN or ANY frem.OJi, to.cgi,
[SOEEN.SIZE]INT S,
VAL INT bank)

Parameters:

Parameter Comment

fro-._OJi Channel from CGI server

to_OJi Channel to CGI server

• Screen

bank Bank number

Description:

97

is ini tscreen creates and initialises a physical CGI screen ready for graphics
op;rations. It is returned in 5. The horizontal and vertical dimensions of the screen
are detennined by the graphics board display resolution, this is fixed when initialis­
ing the graphics board with fs_ openboard. All physical saeens have the same
dimensions.

The physical saeen has its raster memory area mapped to !he video melTlCHY bank
spedfied by bank. Deperding 011 the display resolution and the total amount ofvid­
eo memory available, a variable number of video memexy banks wiD be present
If the bank number is out ofrange then the saeen returned win be mapped to bank
zero (which is always available) and its X and Y axis dimensions set to zero. This
renders the screen useless for nonnal CGI operations.

The screen can be made visible by displaying the video memory bank associated
with it, see cqi_displaybank.

72 OEK264 01 May 1992

98

7.1.4 fS_S8tpalette

set colour palette entry

c:
void fs sstpalette(

Channel ·to c9i,
int clutno,-int red, int green, int blue)

occam:

PROC h ...tpalette (
CHAN OF ANY to.cqi,
VAL tNT clutno, red, green, blue)

Parameters:

Parameter Comment

to_cgi Channel to CGI server
clutno Colour palette Index

red Red colour component

or... Green colour component
blue Blue colour component

Description:

eqi_••tpalette programs one entry in thecolour palette. The CGI system uses
a fixed size coIourpaietle containing lD&XPal.tte coIourenlries. Each entry is 24
bits wide and consists of a red, a blue and a green component The entry to pr0­
gram is given by clutno arK! the corresponding colour components by red,
green and blue.

Colour component values range between 0 and 255. Small values indicate a low
intensity and larger values a higher intensity.

The Include files: coloura .hand colour•. inc contain red, green and blueeo­
lour component definitions for a number of interesting colours.

72 OEK 264 01 May 1992

IMS FOO3C 20 graphics occam and C libraries

7.1.5 fs_openboard

Initialise a graphics board for use.

c:
void. r._openboard (

Channel *to cqi,
VTG vtq I -

occam:

PROC r.. openbollrd (
CHAN OF ANY to.cqi,
VAL IVTG.SIZEJINT vtq)

Parameters:

P8rameter Comment
to_cgi Channel to 001 server

vto Video timing parameters

99

Description:

r._openboard initialises a graphics board. It causes the 001 display server to
perform whatever device dependent actions are necessary to setup the graphics
board ready for use, a graphics board must be opened before it can be used for
displaying the output of CGI operations.

A single parameter is required: vtg. This should contain monitor and display reso­
lution specific video timing parameters 10 initialise the CVC on the graphics board.
It is importanl thai these parameters match the capabilities ofan attached monitor.
Chapter 5 has a more detailed desaiption of this. The include files: video.h and
video. inc contain a number of constant video parameter block definitions that
may be applicable.

In normal circumstances the control register field of the parameter block should be
set to zero. This will cause the device dependent library assoicated with a particular
graphics board to program the CVC control register in a board specific way. This
can be overridden by specifying a non-zero value to write to the control register.
In ANSI C, the field is vtg . control, in occam it is vtg [VTG. CONTROL) .

72 OEK264 01 May 1992

100

7.1.6 fs_closeboard

Terminate use of a graphics board.

c:
void fa_elosaboard(Channel ·from_cgi, Channel -to_ogi)

occam:

PROC f8.cloaeboard(CHAN OF ANY frOlll..ogi, to.cgi)

Parameters:

Pa<amet.. Com......

from_cgi Chamel from CGI seMlf

to cgi Channel to CGI server

Description:

cgi cloaeboard performs whatever device dependent operations are neces­
sary-to terminate use of the graphics board. The actual actions taken will depend
on the graphics hardware being used.

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and Clibraries

7.1.7 fs_writeregs

Write graphics board regislers.

c:
void fe writereqs (

Channel .to cqi,
int n, int .registers, int ·contenta l

occam:

PROC fs.writereqs(
CHAN or ANY to.cqi,
VAL INT n,
VAL [lINT registers, contents)

Parameters:

Parameter Com.....

to_cqi ChaMeI to CGI seM!f

n Number of registers

registers Register addresses

contents Register contents

Description:

101

t._wriureg-s causes the CGI display server to program graphics board regis­
ters. This allows fun access to the hardware control regislersofany graphics board
in a device dependent way. registers should contain the addresses of the
graphics board registers to program, theywiU be written with the contents of con­
tents. The number regislers 10 program Is given by n.

72 OEK 264 01 May 1992

102

72 OEK 264 01 May 1992

103

8 ANSI C user guide I
This chapter contains a user guide for ANSI C toolsel developers. It provides all
the information necessary to de....elop graphics software for a transputer system,
iOCOflXll ating an iq Systems graphics board, with the IMS FOO3C and an ANSI C
toolset It should be read in conjunction with the appropriate toolset documenta­
tion.

8.1 Toolset search path

The toolset search path ISEARCH should be selup to include the following directo­
ries:

drive:\F003C\CLIB

drive:\r003C\BOARDS

For example, with:

SET ISEARCH=c:\r003C\CLIB\ C:\r003C\BOARDS\

8.1.1 IMS F003C library and include files

The fonewing Ubraries will then be on the seardl path:

Library Purpose

CGILIB.LIB ANSI C CGllibrary

B41Sl.LIB IMS 8419 board support library

B419A.LIB IMS 8419 (GJOOA) board support library

8431.LIB IMS 8437 board support library

and the following header files:

Include file Purpose

cqilib.b CGllibrary prototypes

cqitype•.h CGI constant and type definitioos

colour•. b Colour definitions

video.h Video timing parameters

72 OEK264 01 May 1992

104

8.2 Invoking the CGI display server

TIle CGI display seNer has the following entry point

CqiServer(Process ·P, Channel ·to_cqi, Channel '"'frca_cqi)

It must be invoked as a transputer process from a prOgram running on a suitable
graphics board. The channels to cgi and from_c9i are used to connect the
server to application software runmng on the same transputer, or on some other
transputer located elsewhere in the network.

The CGl server can be used in the following ways:

• By starting it from a C pl'"ogram and aIla.ving the same program to engage
in graphics operations. This is a single processor example where the ap­
plication software and the CGI server run in parallel on the same transput-

"'.
• By moving the invocation of the CGI server Into a separate program and

using the toolset conf9uration tools to place programs on different trans­
puters. This technique can be used to bu~d single and multiprocessor ap­
plicalions.

8.2.1 Single processor, single program

In this example, the CGI server is started with ProcRun and the main program c0n­
tinues In parallel. The main program calls functions from the CGllibrary to interact
with the server, it can subsequently stop the server by calling C9i_ terainate.

'lnclQde <.tdio.h>
'inclQde <proc•••. h>
'lnclQQe <channel.h>

'lncl~ <cqllib.h>
'lncl~ <cqitype•. h>

i.Dt_inO
{

Proce•• *cql:
Channel *to_cqi, *lrom_cql:

'* Alloeau. th. CGI chann.l. .,

to cqi - ChanAlloell;
lrO._C9l • ChanAllocll:

if (Ito cqi _ NOLL) t I (lrom_cql - NOLL)
{ -

printll ""Fail.cl. to allceato. chann.l\n");
Ulort{) :

}

'* Allceau. the CGI aerver proce•• *'

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries 105

't n. CGI ••rver stack sin 1a qiven by 001 stACK SIU
fr.. t:h4l ~a~r file <cqitYJ»s.h>. n. aan..r ~.s two
par...ter.: the "'to_cqi'" and "frca_cqi.'" c:han.n.ls. t'

cqi. ProcAlloc(CqiServer, CGI STACK S1.U, 2, to c9i,
froa_cqi I; - - -

if (cg-i - N1:JLI,)
(

printf{ "'railed to allocat. proce.s\n'" J;
abort() ;

't Start the CGI ••rver, the ..ill proqra.• continu•• *,
ProeRWl (eg'i);

,* 0•• function. fro-. t:h4l CGI linrary to inter.ct with th.
CGI serv.r. flMo fir.t initiali••s the CGI syst.e., others
are u.ed to perfo:nl lp"aphic. ope.rationa. The 001 server
ca..D be tera.1J::lated with "'cqi_terainate"'. t'

c9i_init{ to_cqi ,; 't lnitiaU.. the 001 .yste. *,
'* Open the qraphics board and do Iota of qraphic•...

clos. t:h4l qraphica board wh.n done *'
'* Application finished, tt.e to terminate the CGI .erver */

72 OEK264 01 May 1992

106

8.2.2 Multiprocessor, multi program

This example has two programs running in parallel. One Is responsible forrunnlng
the CGI server and the other is an application which communicates with the server
using placed transputer channels. The toolset configuration utilitiesare used to de­
clare and place the programs, and the channels connecting them, onto the avaij.
able hardware.

'include <atdio.h>
'include <proce.s.h>
'include <~l.h>

'include <ahe.b> /* For qet-P&Z'_O */

lincl~ <c'1ilib.b>
'include <c'1itypea.h>

lnt ..in()
{

hoc••• *evi;
Chaml.al *to_C9i, *froa_C9i;

'* Get tM CGI ch.&nnel. f~ the confi<JUrsUOIl .nviro~nt,
the•• _y bav. been _wed onto tranaputBr link. and
connactBd to another proce••or. Alternati_ly, they _y
connect this progr.. to another program running on the
sam. proca••or. *1

'" The CGI ••rver aUck ,iIt_ 11 qivan by CGI STACK SIU
frolll the h••der til. <cgityp.•. h>. The ••rver r.quire. two
par...tera: the -to_cql- and -froa_cqi- channel•. */

°91. Proc.U.loc(<:cziS<llrver, 001 StACK SUI, 2, to_C9i,
trOla_cgo!); - -

if (cqi. - WLL I
I

printf(~Fail.d to allocate proce••\n~ I;
abort 0 ;

,. Start the CGt ••rver and .ait until it i. terainated by
the appUcaUon .ottvar., thi. proqr_ .ill then terainate
a. _11 ./

ProePar (eqi, NULL);

72 OEK 264 01 May 1992

IMS FOO3C 20 graphics occam and C libraries 107

This could be simplified by calling the CGI server function Intine. If this Is done the
process descriptor parameter ProcellS .p must be passed to the function ex­
plicitly. It can be set to any value, for example:

'indude <.tdio.h>
'include <c.b&nnel..h>

'include <ogilib.h>
'include <C9itype•. h>

int _in()
(

,. Get the CG1 c:han.nel. fra. the conf1ga.ration env1.ron-nt,
the•• _y have be-.n _pped onto transputer liIllr.. Llld
conn.ct.ecl to another proce••or. AlternaU".ly, they_y
connect thia pr09raa to another progTaa runnin9 on the
.... proce••or. +/

to_C91 • get...P&raa(3);
fra._ogi • qet-puaa(4); '+ Definad by interface _ppinq .,

1+ Start the CGI ..rver and wait until it 1. Urainate<l. by
the application aoftvare, this prolp'aa will then te~ate

a. nll·'

8.3 Configuring transputer memory sizes

The amount of memory available on a transputer for program storage Is specified
by lBOARDSIZE (single transputer system) or by a configuration desaiption.
When specifying the amount of memory available on agraphics board with contig­
uous DRAM and VRAM, care should be taken to ensure Ihat program code ordala
is nol assigned to VRAM thai will be used for graphics operations.

72 OEK264 01 May 1992

108

8.4 Opening the graphics board
Before any output can be displayed on amonitor the graphics board must be initial-­
ised. This is done bycalting fs openboard with a suitable setofvideo liming pa­
rameters. Parameters for varying display resolutions and different monitor types
are provided in the include file video. h. The following example shows the typical
steps taken by an app[jcation program during jnitia~sation:

'tnclu4e <atdio.h>
'lncl~ <proc•••. h>
'include <chanDel.b>

tincl.ude <e~illh.h>

'i.nclude <cqitypea.h>

linclude <video.» /* For video tiainq par_uri */

lnt _in(l,
/* Start the 001 ••rver and allocate cha.DnelJl to it,

th••• In "'to_ego!" and "fl'Qa_eqi". Alt.a~Uvely, t:lMo
CGI ••nu ..y ~.dy be runninq in another proqraa *I

/* Declare and initiali... video tiainq par_ur block,
V l02t 168 i. defined in <video.h> and specifies •••t
01 para..terl for I 1024 by 768 pixel display. */

VTG v - v_1024_768

/* lniti.li•• tb40 qraphiC:I board. *'
tl_openboard(to_eq.l., v J;

/* Initiali•• I physical acreen and map it to vidao
:.:.. bank O. *'

fs_init.craan(froa_cq1, to_cq1, 's, 0);

'* Set the cur:.:ent cb:avinq sc:.:aan to • and. eli.play it
on the output mon1tor. *'

cqi_a.td.rawac:.:••n(to_cq1, a I; '* Now cb:awi.nq 1n a *'
h_elisplayb&nk(to_cqi, 0 I; '* Bank 0 now eli~l&y.d *'
'* 001 cb:&winq operations will now be displayed. ... *'

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries

8.5 Compiling and linking IMS F003C programs

109

8.5.1 Compiling

There are no special compilation requirements for programs that use the IMS
F003C libraries.

Adefauttfontcan be enabled by induding the headerfilecgi types.hand compil­
ing with the preproceSSOl' nag _FONT defined. For example, with:

ice ezaaple.c ItS 10_FONT

This uncomments an wuiqned int array called fontBbyB that contains a
simple font definition for use with cgi_setfont.

8.5.2 Linking

Software calling functions from the CGl libral)' should be linked against CGI­
LIB. LIB.

Programs which invoke the CGI server must be linked with one of the board sup­
port ~braries.

8.6 Example program

The directory \r003C\CLIB\EXAMPLES contains an example program. It is des­
gined 10 run on a single transputer configuration; one of the iq Systems graphics
boards.

To build and run it:

icc example.c Ita 10_FONT

ilint example.teo cqilib.lib board.lib If startup.lnk It..

(Where board is the name of a specific graphics board).

ieollect example.lku It

iserver /.e lab example.btl

72 OEK 264 01 May 1992

110

72 OEK264 01 May 1992

111

9 occam user guide I
This chapter contains a user guide for occam toolset developers. It provides all
the information necessary to develop graphics software for a transputer system,
incorporating an iq Systems graphics board, with the IMS FOO3C and an occam
toolset It should be read in conjunction with the approp1ate toolset documenta­
tion.

9.1 Toolset search path

The toolset search path ISEARCR should be setup to indude the following directo­
ries:

• drive:\F003C\OCCAMLIB

• driv~\F003C\BOARDS

For example, with:

SET ISEARCH=C:\F003C\OCCAMLIB\ C:\F003C\BOARDS\

9.1.1 IMS F003C library and include files

The following libraries will then be on the seardl path:

Library Purpose

CGILIB.LIB occam CGllibrary

LIBellED. LIB Reduced C runtime library

BtU. LIB lMS 8419 board support library

B419A.LIB IMS 8419 (G300A) board support library

B437.LIB IMS 8437 board support library

and the following header files:

Include file Purpose

cqil1b.inc CGI constant definitions

colour•. inc Colour definitions

video. inc Video liming parameters

72 OEK 264 01 May 1992

112

9.2 Invoking the CGI display server

The reader may need 10 referto the chaplerentitled Mixed language programming
in the appropriate occam toolset user manual when reading this section.

The CGI display server is implemented as aCfunction, when calling it from an 00·
cam program it has the following entry point

CgiServlllr(VAL INT gsb, p, CHAN OF ANY to.cqi, frOlll.cqi)

It must be invoked by a program running on a suitable graphics board. The chan­
nels to. cgi and frolD..cgi are used loconnectthe server to application software
running on the same transpuler, or on some other transputer located elsewhere
in the network.

Because the CGI server is implemented in C it requires the invoking occam pr0­

gram to setup a C environment. Support forthis is provided by the occam toolset
with the CALLe. LIB library. This contains a number of procedures for setting up
and initialising a C function caD from occam.

The CGI server requires a slatic and a heap area, These are allocated from an INT
array dedared by the calling occam program. The array must be big enough to
hold the static variables used by the CGI server and provide enough space for e
heap. The heap is used to allocate dynamic storage for Ioadable fonts (see
c:qi _••tfont), it should be large enough to hold the biggest font required by an
application. The static space required by the CGI server is constant and can be
satisified with a 5000 word INT array, additional space In the array will be used for
the heap. The workspace requirement oflhe CGI server is specified by a compiler
'PRAGMA in the include file cqilih. inc.

The CGI server can be used in the following ways:

• By running it in parallel with an application contained in the same program.
This is a single processor example where the application software and the
CGI server run in parallel on the same transputer.

By moving the Invocation of the CGI server into a separate program and
using the toolset configuration tools to place programs on different trans­
puters. This technique can be used to build single and multiprocessor ap.­
plications.

9.2.1 Single processor, single program

In this example, the CGI server is run in parallel with the application from a single
program. The application calls procedures from the CGllibrary to interact with the
server, it can subsequently stop the server by calling cqi. terminate.

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries

'IISI "bo.Uo.ll.b"
'IIICUJllI "bo.tio.i="

IlJU "-Uc.ll.b" -- _l_t ~&rl'

'1IS1 "qUl.b.ll.b"
IIIC1.OllI "qUU>.UIc"

PROC nUl'l.l C!lAH or ANT h, t., [1 lIlT f"... _

Ill! g~, .Utic.•l .. : - ro" thoI .Utic .."..
0ll.II or UT to.ql, t..-.cvi:

DeU..m- thoI _act _t ot .taUc .pac.......1"*' by
- thoI COl ••~r.

init .•tatic{ [t,,_._",,* 0 fQJl, 01, .utic .•l~., 9~)

" (.Utie.dr. > [nD r"..._1
'...... wrlU .•tr1<lq.1l.1{ f., U, "0 _ry for 001 .Utica" ,

.....ut{ h, ta, "P•• tail""" ,
CI.O~1l - Step thoI tr.....p"ur

ft~

""
-- Abb"• .,l.U tba .Utic and !M.p ar<I•• f"". tba t"..._
-- 1ft arr.y. ".taUe.•h." 'Ii..... tba unt ot .taUe apace
- ~ad. ~ flO.t ot trM._ 1& ad .. h6ap apa....

• UUC.&rU. IS ItI'M._ raoIf 0 POll .taUc.aiu):
lIMp•.,... IS If""'_ ""* .tatic ••h. POll

(SUI rr.•._1 - .tatic.•lr.,:

n,
lnitla.ll•• tba .taUc and lIMp .,.....

1ft "".....s.•lr.: - DoD't......" _ .u.
1A1t .•taUc{ .Utie. .."•• ,_ .•12., 9~
1A1t._pl 9~, _p. .,... 1

'M
c.,l.s.awor[g~, 0, to.CV1, t..-.e91)...

- 0..p~. tr.. thoI 001 library to 1J:l.Uract wlth tba
- CGI _awol'. Tb. tint 1n1Ualh•• tha 001 .y.t.., ...than ano
-ad to perto.. 9r.phic. oper.tion•• Ttl. 001 ••rvar ClU\ boo
-- ta>:m1n.ta.s witl>. "cgi.tal.'ll>1n.ta".

cv1.1nit(to.cgl I - Initi.l1.. tba CGI .y.u.

- 0p00D tha 9rapll.1C. board _ do lota ot 9r.puca
- c.loa. the "".pb.1c. board wbul dooo

113

72 OEK264 01 May 1992

114

9.2.2 MUltiprocessor, mulU program

This example has two programs running in parallel. One is responsible for running
the CGI server and the otheris an application which communicates with the seMir
using placed transputer channels. The toolset configuration utilities are used to de-­
clare and place the programs, and the channels connecting them, onlo the avail·
able hardware.
'tJS& WhQatio.Uh-'IWCI.lJDK Mboatio . iDeM

'USK -l:9ilib.Uh'"
'DfC:LIlD& ·c:q:l.lih.1Dc·

(SOOOIIN"r atalie.ar•• : - Enough for the CGI ..rver
(40001INT h••p.anoa: - Enough tor an inter••Un; tont

The CGI channal. ccae fcc. tIM confi'iflUaUon _"ir~nt,

- th••• IllAY b..~ ~n ...pped onto tranapu.UI' links and.
connact.cl to anoth,u: prO<:<lluor. Altarnatively, they ...y

- c:onneet thi. pl'09ram to another proqraa runll1nQ on u..
- • ..- proc.••or.

1Il1t .• t.t.1c:(,tIIUe.ar.a, atatic.air., q.b
init.baap(gab, boup.ar_ J

- Start the COl ••rver and wait until it h tt..:ai...abd. by
- the application aoft.are, this pr09ram will then taJ:lll1.nate
- .. vall.

9.3 Configuring transputer memory sizes

The amount of memory available on a transputer for program storage is specified
by IBOARDSIZE (single transputer system) or by a configuration desaiption.
When specifying the amount of memory available on agraphics board with contig­
uous DRAM and VRAM, care should be taken to ensure that program code ordata
is nol assigned to VRAM that will be used for graphics operations.

9.4 Opening the graphics board

Before any output can be displayed on amonitor the graphics board must be initial­
ised. This is done by calling flil. openboard with asuitable setofvideo timing pa-

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries 115

rameters. Parameters for various display resolutions and different monitor types
are provided in the include file video. inc. The following example shows the typi­
cal steps taken by an application program dUring initiallsation:

'OSII: -C9Uib.lib-
.~ ·Ciilib.inc·

'INCLtIDII: --..ideo. inc- - ror 1deo taini par_te.ra

PROC eJLaIIIPle{ CHAN or 1oNl' fr eqi, to.Ci1 J

Sbrt the CGI a.rver and declare channe18 to it,
- th... are ·to.Ci1~ and ~frOlll.cii~. A.ltflrnativtlly, th.
- CGI e.rvu may already be runnini 1.ZI. another prograM.

- o.c1an and iftitialia. a "ideo t.1ad.J>'il par_ter block,
- v .102•. 768 b defined in Yideo .1.ZI.c and ~t'i.a • _t
- of par_ten for a 102. by 768 pbel dtaplay.

[VTG.SIUjIl'ft ... ;
[SCREEN.SUEIINT a; - A COl acrMn

"0
... :_ V.102L768

- Initialia. a phyaical ecreen and IIlllp it to rideo
- ram bank O.

fa.initacreen(freal.cii, to.Cii, a, II)

- set the cw:rent drawing acr88Jl te e &tid diaplay it
- on the output _niter.

fa.diaplaybank{ to cqi, 0 - Bank 0 now diaplayed

- CGl drawin; operationa ...ill now be displayed

72 OEK264 01 May 1992

116

9.5 Compiling and linking IMS F003C programs

9.5.1 Compiling

There are no special compilation requirements for programs that use the IMS
FOO3C libraries.

9.5.2 Linking

Software calling procedures from the CGI library should be linked against CGI­
LIB.LIB.

Programs which invoke the CGI server must be 6nked with one of the board sup­
port libraries and also the occam toolset mixed language support library:
CALLe. LIB. In addition, the reduced C runtime library LIBCRED. LIB is also re­
quired. This f~e is normally supplied with an ANSI C toolsel However, because
most occam developers will probably not have a C toolset the library is also sup­
plied with the IMS FOO3C software. It can be found in \F003C\OCCAMLIB

9.6 Example program

The direcloly \i'003C\OCCAMLIB\EXAMPLE5 contains an example program. It Is
desgined to run on a single transputer configuration: one afthe iq Systems graph­
ics boards.

To build and run it, type:

oc example.occ: It.

ilink example. teo cgilib.lib board.lib calle.lib

hostic.lib convert.lib libcred.lib If occama.lnk Ita

(Where ooard is lhe name of a specific graphics board).

icollect example.lku It

iserver Ise Isb example.btl

nOEK 264 01 May 1992

117

10 Further use of the
CGI system

This chapter contains more detailed information cooceming the use ofvarious as-­
peets of the CGI system.

10.1 Using and defining text fonts

Text fonts are downloaded to the CGI server with cgi sett"ont. This defines bit·
maps for the various character cells that make up theton!. Because the CGI sys­
tem uses heapspace to hold afonl definition it should be invoked with enough heap
memory available to hold the largest font to be used. Only one font is held by the
CGI server al a time, it an application requites the use of multiple fonts then it will
have to load each one as and when needed.

A default font is supplied with the IMS FOO3C software. It contains a fixed size
ASCII character set defined within an eight by eight pixel character cell. By includ­
ing the file cqilib. inc, occam programmers will have access to a VAL [] INT
array called FONT. 8 .BY. 8 which contains the font definition. ANSI C program­
mers should include cgi types. h which if compiled with the preprocessor vari­
able _FONT defined will un-eomment an unsigned int array font8byS that
contains an equivalent font.

When downloading a fonl, the cgi setfont function requires various fonl char­
acteristics to be defined. These speaty, for example, the number of 32 bit words
used to hold the bit pattern of a single charader eel. There are four parameters
required 10 define a font

Font parameter Purpose

famw Font area memory width (in bits)
twp, Number of 32 bit words per character
flpw Number of character tines per 32 bit word

ochars Number of characters in the font

The default fonl is supplied with definitions for these values, for example, in Cthey
are: font_fAMW, font_FWPC, font_FLPWand font_NCBARS.

If necessary, Ihe programmer can define addilional fonts or perhaps convert exist­
ing fonts from some other environment into this fonnal. The following example
shows how the font parameters relate to the bit mask used 10 represent each char­
acter eell defined by the font.

72 OEK 264 01 May 1992

118

In the supplied 8 by 8 pixel font. the character 0 is represented by the following bit
maslc

8

X :XIYIY x:
IX ;X :x. X
IX X X IX X
IX x: y IX)<

8
1)< X X IX)<
X X IX)<

IXIXIXIXIX

~lOure 10.1 Cha~ '0' repl'"osontation in font 8 by 8

This is stored in two 32 bit words: Oxd6cee6?c, which desaibes the top halfofthe
character cell, and Ox007cc6e6 for the bottom half. The origin altha ctlaractercell
is defined to be the top left hand corner. The first word defines lines In horizontal
row order, startingwith the Ieastsignificanl bit. In this example, the least significant
byte althe first word is 0.70, this represents the first raw of the character cell with
the bit mask 01111100.

The complete fonl is represented by an array of 32 bit words, each pair of words
is used to encode the definition of a single character. The byte value of a character
is used as an index into this aray when retrieving a character definition in order
to plot it. The 8 by 8 font is defined by the following font parameters:

Font parameter Value
famw 8 pixels wide

fwpc 2 x 32 bits per character

flpw 4 xcharacter lines pef 32 bit word

nchars 164 characters

72 OEK 26401 May 1992

IMS FOO3C 20 graphics occam and C libraries

10.2 Using CGI screens for windowing

119

The CGI screen abstraction can be used to form the basis of a windowing like,
graphical user interface. Such interlaces typically use two dimensional screen
areas to represent objects such as popup menus, dialogue boxes ortext windows.
These objects can all be implemented using facilities provided by the CGllibf'ary.

The CGI screen structure describes a two dimensional region of raster memory
thai the CGI system performs graphical operations within. The size of the screen
defines the extent of drawing operations: drawing is ctipped to the boundary of the
screen. There are two types of saeen. The first has a raster stored in normal
memory and can never be displayed on a monitor, the second type is designed to
be displayed on a monitor and has a raster stored in vkleo melTlOfY. its screen ~
mensions match the resolution of the monitor. CGI primitives for copying, scaling
or rotating screens can be used to copy a part of one saeen to another.

An existing saeen structure can be used to create another. If the newscreen refers
to an existing, but smaller area of the original, then it can be used to represent a
window. When selected as the current screen, Ihe CGI system will clip all further
drawing operations to its extent. This will create the effect ofdrawing in a bounded
window, the background will be protected. By combining this with the CGI copy or
rotation primitives, simple windowing can be implemented. In the example, the
background area would have 10 be copied elsewhere while the window is manipu­
lated and then copied back again to restore it.

The following example demooslrates some of these techniques:

'inc.lu.s. Qtd.io.h>
'inc.iu.s. <aathf.h>
'inc.lu.s. c..th. h>
'in"lu~ <_td.lib.h>
'in".lu~ <chann_.l.h>
linclu~ <process.h>

'inc.lu.s. <cq1lib.h>
'inc.luda <Yideo.h>
'inc.lu.s. <eo.lours.h>

,"-,-------,---c----,-,---
: _ub_acr.... - cr_tA1 a _lib aer"" fro-. aD ez.1.aUfIq scr~.,

voi.d aub_acr_n(a"r_n ~n_, screen old,
1nt sorg, 1nt yorg.
1nt sa1ra. 1nt ya1rs l

720EK 264 01 May 1992

120

it ((.or9'" old ...11_) I I (yorq)e old fd~.)

return;

'* CUp the D_ aer_n ~ndou to the .. t t of the
old a=_. ~ stride -.t r-.i.rl the ._ as the old
screeD bac&u_ the new raster i. IlOt cont1!JUou... *'

__>r..tar • old raster + (yorq • oldiz.) .. AOr<);
n.->••ir.a • "org + ..ail:. > oldir. ? old.saiiEe 1lO1:'l
na.->yaiza • forg t yairs > olel.yaha ? old.yairs - yorg
nall->str1da • old .•uide;
naw->-ltiMode '" old ..ut.i.Nodol;

/.,-­
. "'0
./

1nt uin ()
I
~•• *c:vJ.;
CbaluMl *to_C9i, ·tr.._t:ql;

to cql • ~oc:();
fra.._e¢ ,. OLanAlloc:ll;

H' ((to cgl NULL) II (tr__0;1 _ NULL)
I -

pr1nU'{ ~r.iled to a110<::&te c:hann.l'n~ I;
&bartO;

c:qi • Prod.lloe(Cg:iS40rver, CGI Snell: SIZE, 2, to_C9i, tr"_C9i J;
lflcql_NULL) --

I
print!(-railed to al10eata proc•••\n-);
.lxlI';tO;

I
Proc:Run (cql I;

/. Initial!.. tbe CGl .~r and open the qnpb.ica bo&rd *'
c:q1 init(to C91);
h_OP-nboarcll to_c<;I1, v);

72 OEK264 01 May 1992

IMS FOO3C 20 graphics occam and C libraries

t. _tpalettll(to_egi, 2, LlllElf_ll., L.llIlM_G, LIHElf_B);
t.:..tpaleU:.e(to_egi, 3, SKYllLUE_ll., SJ:J1U,lJE_lO, SJ:YBUlE_B J;

1* Iniu.l1_ • phydcal .cr.... aDd dbpl.ay It *1

121

E. iJli.t.aC~D(Eroa egi, to egl, ,.1, 0):
prIntE(·Ser.... lnlU.al1.-.d\nr..t.-r _ 0",\& adze _ \<I ydze \<1\0..,

(int) (d.r..terl, d.:uhe, d.y.i&. J;
t._dbpl.ybank(to_c;1, 0);

1* Alloc:.te , new ,ereen, der1ved Erorn al, whieh repre,.nt••
window 11k. vl,wport lnto tha ori;lnal .ereen. *1

.ub_.creen (,.2, al, 100, 200, 200, 200 l;

1* Clear both .creentl. Note the order in which thi. b done.
The back;roUlld acr..n a1 b clHr-.d Ur.t, the window .c:.rean
.2 ia cl_r-.d .tterwarda. *1

cq1 cl.(to_"9:1, .1, 2):
cqi:cbl to_"91, .2, 3);

1* C1e&r bacl.grouIld to LrNDl ·1
1* Clear window acr.... to SItnIWS *1

1* 5&leet th. wiJldow .cr....
write __ teat into it.
Or a _u ..lacUon etc.

.. the CIlrrent dr,wil'lq acrean and
Thia could be uMd _ • popup window

"'
c;i ,etteol(to_e;1, 2 J;
c;1:••tbcOl(to_<:;i, 0 l;

/* Drawinq colour i, IlOW LINEN */
/* Background <:olo~r i. 0 */

/* Down load a Eont and initl.l1•• te",t attribute. *1

e;i cllrapaee (to e;1, 10, 0) I
egi-.ettont(trom egi, to <:;1, tontBbyS,

- tont-NCHARS,-tont rAMll', tont nrpc, tont_Fl.PW);
c:qi_,etorient(to:c:qi, TX_NORM-J; -

1* A pill.l repl.c:e ..:>de ot __ nOD-z.ro will <:a~.e teat to
be written 'ua the c:urrent tora-qrou.n<1 colour while ignorinq
the hac:JtqrOUDCl (beeau.e the baaqrOUDd colour ia DOW 0). */

eg1_••tdr...... (to_cqi, PH_COL, IIM_IU, 1M_COL)i

/* PriZlt ._ teat in the window, note that it will be clipped
to the _tent ot .2 */

e;i_text(to_cq:1, 20, 20, 13, ·Hello World ,. J;

/* Clo•• th. gr.phic. board and terainat. the ClOl ••rver */

t. clo.eboard(from C91, to cq1 I I
<:;I_t.rminata(trom:eg1, to:cq1)1

72 OEK264 01 May 1992

122

10.3 Simple animation techniques

Provided a graphics board has enough video memory to support more than one
physical CGI screen, simple animation can be achieved. This is done by cycling
the graphics board hardware through the available saeens, displaying each in
tum, whilst changing the contents of the saeen just about to be displayed.

Forexample, a simple cube tike objed coukt be made Iocontinuously spin around
some axis of rotation. To do this, the cube would first have 10 be drawn at a starting
position and displayed. Meanwhile, the CGI system would be instructed to draw
a second cube in another, invisible, screen. II would be drawn with asmall physical
displacement from the first cube. When the second cube is complete the displayed
screen and the invisible screen are toggled: the displayed saeen becomes invis­
ible, and the screen with the new cube, visible. If this process is continued an
animation effed. can be achieved as the cube continuously moves around on the
display.

The ted1nique is best demonstrated with an example. The following program uses
a pair of physical CGI screens to animate a rotating disk, note the use the
cgi fcircle fundion which has ils axis parameters altered atter drawing every
newCircle, this combines to produce a three dimensional effect.

'.-c-• adA.-==--0'
int -.iJl. ()
I

Proc••• ·cgi;
Channll *to_"9i, *1'rCllll_"9i;

'* Declul two .crlHllll in an array, bank will be Ulad to
Ilt-maUl which IcrlHlll il dilplayad, &lid which Icr_D il
drawn into. *'

aer_ 1[21;
inlo ...ia, bank, atep;

VTG v - V_I024_'6B;

'* Allocate channell to lou CGl I.~r *'
to cqi • ChanAlloc () ;
fro._cqi - ChanAllocl);

i1' { Ito o;i _ IftJUl II (fr__eqi _ IftJUl
I -

prinU(-railad to allocat:. chanDel\Il" l;
abortl) ;

'* Allocate and I~ the CGI a.rver *'
cgi • ProcAlloc(CqiS.~r, CGI STACK SIZE, 2, to_cgi, trCllll_"9i l;
it (cgi -= NI1LL l --
I

prillU(-railad to allocat:. prOOlu\D");
abortll ;

72 OEK 264 01 May 1992

W ylin W\n..,

"

lMS F003C 20 graphics occam and C libraries

I
ProcRIul (cqi I;

'* 1a1Ualbe the CGI ••rql' and open the qn.pMc. bouct *'
cql Udt{ to cqi);
t._q.nbnni1 to_cql, ... I;

'* IniU&li.H • p&1%' of phy.lc:&l .=eeu *'
t. iAiuClCee.D(t~ cqi, to cqi, 'arOj, 0);
prIn.ttl .ScI'ean. ini'£iilbed'\nn.tu '" Ods :ub.

(iAtl {aIOl.l'.. terl, .(OJ ...h., .(Ol.ylls.

.r. Udu<;:~(tl'<D cq1, to cql, ,.[11, 1 I;
prL:.tf (·5<;:1'..... i.ll.1E1&11• .d'\=...tel' • O.b ..h ••

liAtl{a(lj.r.aterl, .(lJ ...i •• , .111.yais.

'* setup the pa1.tt. with ._ .iIlt:I1. <;:oloul" *'
.r. a.tpalAtt.(to <;:qi, 0, LINEN R, LINEN G, LINEN B I;
.r.::::a.tpd.tte(to::::eqi, 1, nLLOi R, n~_G, nLtolr_B I;

c",i_,.tfco1(to_cqi, 1 I: '* Ora.in", <;:oloul' 11 YELLOM *'
cqi ch(to cql, .[01, 0);
cqi:<;:l.(to:cql, .[11, 0); /* Cl.ar both .Cr_n. to LINEN *'

asi•• 0;
.tep. 5: /* Ash c1iJIoI.nllon. chan'l" iA • ,tap of 5 ph.h *'
/* Initially, a<:r_nIO] 1. dr._ iDto,d ."r_nlll

i. d1aplayecl. bank 1, u..d to iDdou< _c:h .CIC.... fl... the
.CIC_n al'l'ay. *'

b.t..llt • 0:

t. diJlpl.aybankl to <::ql, bank .. 1);
cqT__tdl:a.aCI'eIPCto_cq1, alb.t..lltl I;

Cl'li_fcll'el'(to_Cl'li, 500, 350, ad., 200 - ax1.I I:

123

bank ". 1;
axiatep:

/* To<N1. b.t..llt *''* Step the circle asl, *'
whil. III '* Do th.1a eoaUlluoul1y *'
I

.r. d1aplllybank (to <:91, bank .. 1 I:
cqT__tdl:aW'Cl'eGIlCto_Cl'li, .[bank) I;

/* 'U.~ the old c1%-c1. fr.. the .<;:~ by cl.uinq it,
and ok.v • ntIV <;:ll'cl•. liter the <;:il'cl. axia .tep if
the axia haa r ••<;:hed the .nd of ita 1'....'1•. *'

cqi eh(to eqi, ,[bankJ, 0 I:
eqi::::tcil'<::1.1 to_<::qi, 500, 350, ••i" 200

it { (as1l = 200) II (as1l _ 01) .tep

axi. I;

-lltep:

bank ". 1;
ax1l +••tap;

72 OEK 264 01

'* TOg'qll bank */'* Step tha clrcl. axil *'

May 1992

124

10.4 Writing a board support library

The source code ofboard support librnries fO(iq Systems graphics board products
supported by the IMS F003C software Is supplied In the directory:
\r003C\BOAROS\SOURCE. This should allow a new version of a board support
library to be aeated fO(some other transpuler based graphics board.

The intertace required by the CGl server defines the functioos that must be pr0­
vided by a board support library. They are:

Function Purpose

FS_SCREEHADDR Return the address of a physical screen

FS_DISPUYBANK Display a bank of video memory
FS_ INITSCREEN Initialise a screen, map it to video memory
FS_ SETPALETTE Program a colour palette location

I'S_OPENBOMD Do device specific Initialisation

FS_CLOSEBOARD Do device specific termination
FS_WRITDEGS Write board conbol registers

The source code is well commented and should contain aD the lnfonnation neces­
sary to port it to another graphics board.

72 OEK 264 01 May 1992

125

A Directory structure I

IMS F003C files are installed within the following directory structure:-

drive: \F003C

/ /
BOARDS ells OCCAMLIB

I I I
SOURCE EXAMPLES EXAMPLES

Which, after a successful installation, should contain the following files:­

drNe:\r003C\CLIB
CGILIB.LIB
CGILIB.H
CGITYPES.H
COLOURS.H
VIOEO.H

drive:\roo3c\cLIS\EXAMPLES
EXAMPLE.C

drive:\F003C\OCCAMLIB
CGILIB.LIB
LIBCRED. LIB
CGILIB.INC
COLOURS. INC
VIDEO. INC

drWe:\F003C\OCCAMLIB\EXAMPLES
EXAMPLE. ace

dnve:\r003C\BOARDS
8419.L18
B419A.LIB
8437.LIB

drive:\F003C\BOARDS\SOURCE
8419.C
B431.C
FSTORE.H
FSTOREI.H

72 OEK264 01 May 1992

126

72 OEK264 01 May 1992

127

B IMS B419 hardware
overview

B.1 Description

The IMS 8419 combines the IMS G300B Colour Video Controller (CVC) with the
IMS T800 32 bit Floating Point Transputer to form a high pelfonnance graphlcs
system. Two Mbytes offour cycle DRAM provides a general purpose store sutri­
cient to run large applications such as windowing environments. Two Mbyles of
Video RAM provide arbitary screen resolutions up to a maximum of 1280 x 1024
8 bit/pixel with unrestricted screen formats at resolutions below this.

Analogue

""'eo
outputs

~~ Sync.hrO~[Slng

1"""'~~cJ r h Sirr
lJnIo

ADBus131:0] 1=:'
IM~~OOB 1---+

IMST800
Con~e<

Transfe< =control l1l?l>/'"'

2 Mbytes DRAM 2 Mbytes Video RAM

Figure 8.1 Block diagram

8.1.1 Introduction

The IMS 6419 is one ofarange oflNMOS TRAnsputerModules (TRAMs). TRAMs
are board level transputers with a simple, standardised interface. They integrate
processor, memory and peripheral functions allowing powerful, flexible, transputer
based systems to be produced with the minimum of design effort'.

1.FlllI!lIfdelaltol 1MT~nl~y _lI'lIM~ _~ lptdIcMlotl"'TAAMl CIOn
t._In IKhniCIIl nol..CWo'n-u-- TfInJPUlw_ (TRoWs) _ ~_An:IltI-.n""""
_ lit"" l'IlfIlt<lll1alloX*. Thl1tInspuloor~ mil' olIO t.,......., T!IlIItbiI ...--. puIIliceIion
IromINMOS.

72 OEK264 01 May 1992

128

The 1M3 8419 implementsa complete high performance graphics subsystem. The
frame store consists of 2 Mbytes of dual ported Video RAM which supports dis­
plays ofarbitrary resolution at 8 bit/pixel. The resolution of the system is program­
mable and is only limited by lhe eves maximum dot rale (100MHz). The eve is
configured by an IMS T800 which is provided with 2 Mbytes of200ns cycle DRAM.
This store is available for screen manipulation workspace and general program
memory. The processor can be used to implement graphic primitives directly or as
an intelligent channel, receiving image data from other transputers via its four bidi·
rectional links at data rates ctup 106.8 Mbytestsec. This makes the IMS 8419 use­
ful for applications from acting as part of an embedded system in industrial control,
to a graphics output for a 3D graphical supercomputer.

8.1.2 Screen sins

Saeen sizes are set by writing 10 a few registers In the G300B eve, and can be
chosen 10 suit the application. Suppose, for instance, an 8.5 x 11 sheet of paper
(in landscape), represented by a ween with 100 pixels per inch. This would need
an 1100 x 850 display, a format nol normally available from a hardware solution.
The G300B gives a line width in multiples of 4 pixels, which makes it simple to pro­
duce this screen. As well as producing special screens such as 11 x 8.5, many of
the standard weens can also be prcxluced; indeed the user can switch between
ween formats, the display clock frequency, and even the soorce of the input clock,
aU by simply changing the G300B registers and otherregisters on the board by soft·
ware.

Some examples of possible ween sizes are given in Table 8.1. All the screens
in the table are for 8 bits per pixel.

Screen Pixels Aspect Ratio Inter·
Size lace
eGA 320 x 240 1.333 00

EGA 640 x 350 1.829 00

VGA 640 x 480 1.333 00

Enh VGA 800 x 600 1.333 00

extVGA 1024 x 768 1.333 00

11 x 8.5 1100 x 650 1.294 00

11 x 8.5 1164 x 900 1.293 00

1024 x 1024 1.0 00

1280 x 1024 1.25 00

A5 1216 x 860 1.414 00

Table B.1 A selection of poSSible screen SIzes

B.1.3 SubSystem signals

The user may require the G300B Graphics TRAM to control a networit of1ransput·
ers and/or other TRAMs. A set of control signals are provijed which enables the

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries 129

master to control these slaves ()(subsystems. The SubSystem port consists of
three signals: SUbSystemReset and SubSystemAnalyse, which enables the
master to reset and analyse its subsystem; and SubSystemnotError, which is
used to monitOl'" the error nag in the subsystem. These signals are accessible to
the processor as a set of memory-mapped registers.

Register Hardware byte ad- Asserted
dress state

SubSystemReset CNr only) #OOOOOOOO 1
SubSystemAnalyse (Wr only) .00000OO4 1

SubSystemEtror (Rd only) 1100000000 1

Table 8.2

8.1.4 Memory Map

The video memory (VRAM) on the IMS 8419 can be arranged to be either contigu­
ous with the DRAM CJ(separalely mapped. The IMS F003C requires thallhe VRAM
must be contiguous with the DRAM: so JP4 must be fitted, and JP5 removed when
the IMS 8419 is installed. The resulting memory map is shown in Figure B.2.

5FFFFFFF

G300B

:1FW,m'F
Sub-system Reg

.OOOOOOOO
#803FFFFF

VRAM

80200000
801FFFFF

DRAM

80001000
Internal RAM

80000000
Contiguous

Figure B.2 Address map

Users are advised not to access the IMS G300B directly, but to use the routines
provided by the IMS FOO3C.

72 OEK264 01 May 1992

130

8.1.5 Pixel clock selection

The IMS G300B requires adock 10 control the movementofpixel data, and gener­
ate timing signals. It has a phase-locked loop (PlL) which can generate the high
frequency pixel clock from a low frequency input clock. The PlL can generate fre­
quencies from 25MHz upwards.

The IMS 8419 provides a choice of docking schemes which are described Indetail
in the IMS 8419 hardware reference guide. The IMS FOO3C uses the 5MHz TRAM
dock in conjunction with the IMS G300's on-ehip phase locked loop. This allows
the use of any dock frequency which is a multiple of 5MHz from 25MHz ­
100MHz. If any other clock frequency is required, the nearest multiple of 5MHz
should be used. This has been found to give satisfactory resulls with all types of
video monitor, and screen resolution.

8.1.6 Jumper selection

Five jumper links are used to select the IMS G300B clock source and to configure
the memory map of the IMS 8419. Jumpers are labelled JPx where ajumper is ei­
ther installed Of absent between two pin posts.

Jumper Function

JPl ANiays remove on IMS 6419--4
JP2 Do not fit
JP3 Atways fit

JP4 Select contiguous VRAM
JP5 Select non-conliguous VRAM

Table B.3

For IMS FOO3C compatibility, JP4 must be fitted and JP5 removed.

72 OEK 264 01 May 1992

IMS F003C 20 graphics occam and C libraries 131

B.2 Board layout

2MbVRAM
2Mb DRAM

c': ··
~ ~ ~ ~ ~ ~ ~

·· ·· ·· •
; ·
·· ·• ·• ·· ··• ·· ·
·

IIMS TBOO I IIMS G300 I

;
· ··· ·· l-· ·· ·

•.. ··. ·.. ·· ··· ·I 5MHzsystem

· Clock ·• ··· ··

~ ~ ~ ~ ~ ~ ~
·· •· •· ·

; ·• ·· •· ·• •
DO

;

U U U U U

RGBCVC
S S B
Y Y L
N N A
C C N

K

Figure B.3

72 OEK264 01 May 1992

132

8.2.1 Video and sync outpuls

The G300B eve can be programmed to generate timing which complies with both
the RS170a aod ElA-343 video standard. The outputs are designed 10 drive a75R
lioo directly. The RGB analogue outputs and synchronising signals are on five 5MB
connectors as shown below. lIthe display monitor accepts composite sync on one
of Its video Inputs the sync outputs may be left unconnected. 8MB identification
from top 10 bottom of the board. Sync. information Is output on all three video sig­
nals.

1 Composite blank InpuVOutput

2 Vertical Sync Output

3 Composite Of Horizontal Sync OUtput

4 Blue Output 75R

5 Green Output 75R

6 Red Output 75R

720EK 264 01 May 1992

133

C 1M3 8437 hardware
overview

C.1 Description

The lMS 8437 consists of an IMS T805 transputer, with 1Mbyte of dual port video
RAM wfljch is directly addressed by the transputer, and an IMS G332 colour video
controller which is connected to the serial ports of the video RAMs.

The IMS G332 can be programmed by the transputer to generate almost any re­
quired video timing and display resolution; the only restriction being that maximum
clock frequencies and memory size limits are not exceeded. Because of its ability
to drive many types ofdisplay monitOf' at awide range of resolutions, the IMS 8437
is suitable for a variety applications. It is able to generate high resolution displays,
VGA-type displays and TV standard images with correct sync patterns and inter­
lacing. The 15 and 16 bit/pixel true colour modes provide highly realistic colourren­
diUon.

The IMS 8437 can be used with the IMS 6429 to build a high perfonnance Image
processing system, which fits on a single IMS B008 PC add·in card or IMS B014
VME card. It is also suitable for use in any transputer application where graphical
output is required and space is limited.

Transputer
links

Frame-inactive

Pixel dock
generator

IMSG332
eve

SYNC
A
G
B

72 OEK264 01

Figure C.1 Block diagram

May 1992

134

C.2 Memory map

Featur. Address

DRAM (1~) Ox60001000 •
0X80100FFF

IMS G332 OxOOOOOOOO -
Ox3FFFFFFF

Board control Ox40000000 •
Ox4OOOOO1F

Table C.l IMS 8437 Memory Map

Users are advised thai it is not necessary to write to the IMS G332 or the board
control registers directly. They should use the IMS F00310 program the IMS G332.

C.3 Display formats

Pixelwidthscan be 1,2,4,8,15or 16 bits. The 1,2,4, and 8 bitmodes are pseudo<:o­
lour modes which use lhe IMS G332's Colourlook-Up Tableto select from amuch
larger colour space (8 bitslDAC). The 15and 16 bit modes drive the DACs directly
(but use the Look-Up Tables to perform gamma-correction). In the 15 and 16 bit
modc:s, the pixel clock speed is limited to a maximum of 50MHz. This is more than
adequate for producing full colour displays al VGA and TV standard resolutions.
The required pixel width is selected by programming the IMS G332, ard board
control register 5. Pixels are displayed from consecutively addressed words In
memory, starting at the address specified by TopOfScreenILineStart. The formal
of pixels within each word is thai the pixels are output to the screen starting from
the least-significant end of the word.

C.4 Colour video controller

The IMS 6437 uses an IMS G332 Colour Video Controller. This device generates
fully programmable video timing which allows the IMS 8437 to drive a wide variety
of display monitors with a wide variety of display resolutions. Examples of typical
fOOTlats which are supported by the IMS 8437, and the amountofmemOl)' remain­
ing for program use, are:

• 1 screen of 1024 X 768 by 8 bit pixels, 256k IX09ram space

3 screens of 640 x 480 by 8 bit pixels, 124k program space

1 screen of 640 x 480 by 15116 bit pixels, 424k program space

Table C.2 gives parameter lists for programming the IMS G332 to drive two typical
monitors and display resolutions. The first is for ahigh resolution 8-bit/pixel display,
on a monitor with 48kHz horizontal scan rate. The other is fer a lnJe-colourdisplay

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries '35

on a monitor with 31.2SkHz horizontal scan rate. For details of how to delennioe
the correct parameters fOf other combinations of monitor and resolution, refer to
the IMS G332 datasheet (3].

Register 1024x768x8 640x480x15

Vertical Scan 6<J 6<J
Horizontal Scan 48kHz 31.25kHz

PixelOodc 6<J.OMHz 25.0MHz
Half Sync 12 9

Back Porch 24 18
Display 256 ,6<J
Short display '00 6<J
Broad Pulse 132 82
VSync • •
VPreEqualise • •
VPostEqualise • •
VBlank 48 64

VDisplay 1536 96{)

UneTime 312 200
UneStart · ·
Memlnit 490 240
TransferOelay 22 ,.
Boot Location 44 37
Control Register A #342015 #442015

Control Register B 0 0

Table C.2 Example parameter lists

The LineStartlTopOfScreen register must be programmed with the byte offset of
the live saeen from the boltom 0' memory. For example, it the screen has been
placed at machine address #80020000, these registers mustbolh be programmed
with #20000. The video RAM serial output shift register on the IMS 8437 is 512
words (2048 byles) long. Hence, the IMS G332 must be configured to increment
the VRAM transfer address by 512 after each transfer. This is independent 0' the
pixel width selected. Note that the sum of Memlnit and TransferDelay should
equal the length of the video RAM serial output shift register in pixels divided by
four. The requirement for each pixel width is summarised in Table C.3. The times
defined by the other datapath registers are always specified In multiples offour pix­
els: i.e. in periods of PixelClockI4.

72 OEK 264 01 May 1992

136

Pixel Meminil .. TransferDelay
Width

15116 256
8 512
4 1024
2 2048

1 4096

Table C.3

C.S Control register programming

There are some features afthe IMS G332 which must always be operated in a par­
ticular wayan the IMS B437. These are set by programming Control Register A
at start up, and are summarised in Table C.4. Control register B must always be
programmed with O. In particular, note that on the IMS 8437, the IMS G332 must
always be operated in interleaved mode: this has no effect 00 howthe video timing
parameters arecalculated. Control register bits which are not specified in the Table
wiD depend on the type of monitor being dnven, number of bits per pixel, cursor
enable/disable, etc. Users are recommended to use the routines provided in the
main part of this user manualla program Ihe IMS G332.

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries

Bit Function Program With

0 Enable VTG
1 Enable Interlace
2 Interlace Formal
3 Mode o(master)

4 Plain Sync

5 separate Sync o(composite)

• Sync On Video

7 Pedestal

• Blank UO o (output)

• Blank Functioo 0
10 Force Blanking o(Unblanked)
11 Disable Blanking o(enabled)

12 Address Increment 0
13 Address Increment 1
14 Disable Xfer cycles 0
15 Pixel delay 0,. Pixel delay 0
17 Pixel delay 0
1. Enable Interleaving 1,. Delayed Sampling 0
20 Bitslpixel

21 Bits/pixel
22 Bits/pixel
23 Disable Cursor

Table C.4 IMS G332 Control Register A

C.6 Hardware cursor

137

The IMS G332 provides a 64 x64 hardware cursor, the location of which is speci­
fied by the Cursor Position register in the IMS G332. The cursor may be blanked
by setting bit 23 in IMS G332 control register A.

C.7 Events

The IMS 8437 uses the IMS T805's Event Channel input to allow application soft­
ware to synchronise 10 the vertical f1yback portion of the video display cycle. The
rising edge of the IMS G332's Framelnactive signal sets the evenllatch which as­
serts EventReq to the IMS T80S. The event latch is cleared by EventAck from the

72 OEK 264 01 May 1992

138

transputer which QCClJrs when a user-provided event handler process Is sched­
uled, and also by a hardware reset applied 10 the IMS 8437.

Software can synchronise to Framelnactlve by performing 8 channel input from
the IMS T805's Event channel. It is recommended that all accesses to the lMS
G332 are performed during vertical blanking.

C.8 Board control registers

This sel ot8 one·bit registers is used to set up the board, reset the IMS G332, and
select between true colour and pseudo-colour modes. All of these functions must
be set up as pa1 of an initialisalion procedIXe, while the IMS G332 is not active.
Hence, registers G-6 shook! only be ¥lTitten while the 1M3 G3321s held in reset;
ie when register 7 is O. The recommended startup procedU"e is described below.

Register Number Function Address
0 Control 0 Ox40000000
1 Control 1 Ox40000004
2 Con"" 2 Ox40000008
3 Con"" 3 Ox4OOOOOOC
4 Con"" 4 OX40000010
5 Colour Mode OX40000014
6 Control strobe Ox40000018
7 ReseilMS G332 Ox4000001C

Table C.5 Board Control Registers

10.4.1 Colour mode select register

The lMS 9437 operates in two distinct modes: pseudo-colour mode, and true c0­

lour mode. The pseudo-colour modes use 1,2,4 or 8 bils/pixel; the true colour
modes use 15 or 16 bits/pixel. These modes are selected by programming the
IMS G332 and also by board control register 5. This register must be written with
o to use any of the pseudo-colour modes, and with 1to use either of the true colour
modes. The register is deared (to pseudo-<:olour mode) by an external hardware
reset to the IMS 8437.

10.4.2 IMS G332 reset register

The IMS G332 can be reset at any time by writing Oto board control register7, wait­
ing for a minimum of 20IlS, and then writing 110 this register. The IMS G332is held
WI the reset state until this register is written with 1. This register is deared (to 0)
by an extemal hardware reset 10 the IMS 9437, holding the IMS G332 in reset

72 OEK264 01 May 1992

IMS F003C 20 graphics occam and C libraries 139

10.4.3 Startup procedure

The recommended initialisation procedure for the IMS 8437 is as follows:

Assert reset to the IMS G33210 stop all of its activity, by writing 0 10 boi:wd
control register 7. The IMS G332 will be in the reset slate after a harware
reset to the board, but it is recommended that it should always be reset ex­
plicitly

2 Write 0 to control register 6.

3 Write the pattern 01000 to registers G--4 respectively.

4 Write 1 to control register 6.

5 Write 0 to control register 6.

6 Write the appropriate value to the Colour Mode register.

7 De-assert reset to the IMS G332, by writing 1 to board control register 7.

8 Continue with the initialisation procedure for the IMS G332, as described
in the IMS G332 data sheet.

e.9 Video outputs

The video outputs are terminated by 750 to ground on the IMS 8437, to match a
terminated 750 line. Clamping diodes to both supply rails protect the IMS G332
video outputs against the application of hostile voltages. The IMS 8437 drives
1.OV video signals (including sync) into a property terminated 750 line. TlYee
SMR connectors carry the Red. Green, and B1uevideo signals, with sync available
on all outputs. Another SMR conneclOf callies the composite sync output from the
IMS G332 which allows monitors that require a separate sync input to be driven
easily. Sync output on the video signals can be turned off by appropriate program­
ming of the IMS G332.

72 OEK 264 01 May 1992

140

C.10 Board layout

~on [Q][Q][Q][Q]
rna '" SyncS GR

I'MSG~21
1Mbyte

IIMSToosl
VRAM

Figure C.2 IMS 6437 board layout

C.11 Accessories

The IMS 8437 is supplied with a set of four cables which fit the SMR connectors
on the IMS 6437 and are terminated at their free end with BNC male COMedOrs.
The cables are 1m in length.

72 OEK 264 01 May 1992

141

o References I
'----------

1 Dua~Jn-line Transputer Modules (TRAMs), INMOS Technical note 29,
INMOS ltd.

2 The TransputerDevelopmenlandiq SyslemsDalaboolc, INMOS ltd, 1991

3 IMS G332 Colour Video CcnlrolJer datasheet, INMOS ltd 1991.

4 Crystal Osci/lator Module (Appendix A3J, IMS 8419-4 Graphics TRAM
User Manual, INMOS Limited, 1990.

5 Graphics Databook, 2nd Edition, INMOS Limited, 1990.

72 OEK 264 01 May 1992

sales OffIces

EJJBOJ!<- ~ ~~

""'''''''
YIIII"-"5

~lIoI _F._~

1011»-11_'
-~~

_m
~~~

__~SG$At£1
101_""'''''''' -~---.. -~ .....,. 1OI11'lIfI'_

1oI(~".IO.:U_)5<" NIiTHERl.ANDS CALIFORNIA

"""1_'l'5-0Z,_ 5f&I.o\MIINDIIClVI:/l :IlXIEMI_,-_., _.•
"'O.I_OrM

FI/lLAND
1oIIJ'-<o)*"l'~

_ ..... CAf2ro' "*-. TX 1I<lOO
l_......"1 _~11. '101 (Il'I"'-«l11 101 (210)_'002-, _'IJ'''''''UII:I:i xa.~_.101 '1'56" U/4!f'AClFlC_u,•• ~~ ---- __CAlli,,,,

"""""',~ "-_1,...._.50'0- 101 toOII.~.12 _:lin IDGlClIf"

-~- .... _"UXIO_''''''' _1"._<:'-
,._-~...

- QO-:Ilim'_' ~

ZDo-1#.____

1111 Pl-I)" ...n n -- _s_a
w II~ 1il7'».l1--- _.co_ _ 111"'-" n:.ou:s

_1»-')"00"'" ""'_.5 _1I~m.".fI

101 po....I.".5 ~--._- _2_n:::<::n
-~,

20.___

_ ("")OOJU"" FLORIDA .~
'IIl(:Jll •.I'5.00.

IC2COnl__ ZlJIdf___e-
_ '1000" SWEDE/l
_.' IJJI !IIl.Z2.1I31

e--Cofl>ot..._. ''',0..-0 _ E...

""f<1' K." llIolo l-",*llO 1oI1IIS1-1).·..•
G-ER...../ly 1lo .. 1P_..... 'J_Ilo>,c»< 1IooI_.fl3:1011 _ aMUOIESH.ll

T"l_~ "loon !l!I'-lnJ _ (1I!i2~)M.58!M

_flWOO'URT _ UOflT>lSWS_.m -(-.111- ....
1oI~23l"U2 ,,- _O(lIIItt__._- ,w"",,,,,,, ~G__ --_(~D'II!i' •nIG" _GAXIlIl• "'-..---_.._,-

~ 101 (4;Io<l:fC1-r... _'_e.-_.- a-~_ .... ---_. ... 1t~.-..s2 ~
.. .,..,,,-- _ .._STIIOt --- _ 10'-"""'''

~ .....~ -('~"'" --. _.,'St'"-_. __ UWtn-o",-.....- UniIooII\ingclono .... En ToIll'01l'''_lll1O "...._."O'OSltQTR ........._ ...........,.Yl. 1I10Ul.1I'_ ......./lOYVI" --.-. l/lou.t<,t, ""'._---.g
-..-.,...- -- 813--". V..........corv
... 1·....")·'_ ' .. 1....>01 ...... "'.,--., ---T_, "1""'1 _ ""II _,"'&So» "0 IU-~ S!o3-Om
_'141-611,1111:1<' -1_-' ToI p"JO.......TO:l ------. _(I1~W-JOl;'

• - _n ......,..,
~~.

.....~y$lA
1011_"_ """-

11,00II__

1'W.All_'''''-- ""'13&01.0..-.0 -- .I.... _O-Q
-'~')-

R__
_ .....m ~f(lI'\2XI___--- ~
.. lI'n2S-OllOO -'_a.11:o ""~")~ JoIlOOlnlllS101(_""')__ __\1IttI""'__
~

_ ....lUW..__'0 - ">11." ~"""l1IOoO_'_·In,.. _ ,,-a,_,ZI-:':lJl, -= ~

7tII.1II1TCWlT ~ ~."'"~ ---To' (1l31061-OOJO
lIMij ....... - __2

OO"O~.• 35 11VJoI~1O/l, OIlT"RlO T" 115) 08210 "'''('11-111)_' 301.....,51 _ ,_ RS S52Q' fSGIES
T..... n",. ,,, ("')"l-OSOI! ..I..NESOTA '_,(50)<110240
T_: 140-'") .'001 T_......~ fa,teooor"""_
nA~Y

_"1
,-~

'" --....*- ,~

--~ --..,,-- "'~'21""- .~-

v.._____

....-u1NG~1IlS
~1•. T..___-- 'CI:O.l.- ... _ ...~ JoI ~n6-0'"

"~_U'I'O~
-~- --~

_·to:ItOUG:~TW_ :uou,-UOtO. I·HaI.'....... ---- "",---_._l»-2l-..c1 --- """SAl£$~In"$T"'':'t

--~.etD Ct4Al.EIXNO 1Il1lUlO
~

_.•.. _T_IIO"
\/liN '-"1 ---. /lEW YORII 1-'1-'0'_
'" (31--1')11'114 _.~. 1-4._0000l -,_ 311<'1 _ .... ,""'.--6,)01

_,~'Y'~ ToI.II'~lSllO-<'~,_ (:IO--6'IIIU05
' .. 12D'l~NiM '''"'')'_11 __.. 111-3I:llelH'l1


	Contents
	1 Introduction to the IMS F003C
	1.1 Prerequisites
	1.1.1 Hardware
	1.1.2 Software

	1.2 Organisation of the manual
	1.2.1 Manual conventions


	2 Software installation
	3 Overview of the IMS F003C
	3.1 CGI display server
	3.1.1 ANSI C and occam libraries
	3.1.2 Graphics board support libraries


	4 CGI concepts
	4.1 The lMS F003C CGI library
	4.2 Screens
	4.3 Colour representation
	4.4 CGI drawing modes
	4.4.1 Plot styles
	4.4.2 Filler modes
	4.4.3 Pixel replace modes


	5 Graphics board concepts
	5.1 Board initialisation
	5.2 Video memory management
	5.2.1 Mapping physical CGI screens to VRAM

	5.3 Colour palette
	5.4 The iq Systems graphics boards
	5.4.1 IMS B419 graphics TRAM
	5.4.2 IMS B437 compact display TRAM


	6 CGI libraries
	6.1 Initialisation and tennination
	6.2 Alphabetical list of CGI primitives
	6.2.1 cgi_addsptext
	6.2.2 cgi_addtext
	6.2.3 cgi_arc
	6.2.4 cgi_arcc
	6.2.5 cgi_chrbegin
	6.2.6 cgi_chrspace
	6.2.7 cgi_chrz
	6.2.8 cgi_circle
	6.2.9 cgi_cls
	6.2.10 cgi_copy
	6.2.11 cgi_disjpolyline
	6.2.12 cgi_dot
	6.2.13 cgi_errstat
	6.2.14 cgi_fcircle
	6.2.15 cgi_fanfill
	6.2.16 cgi_hline
	6.2.17 cgi_frecl
	6.2.18 cgi_ftrap
	6.2.19 cgi_line
	6.2.20 cgi_paint
	6.2.21 cgi_polygon
	6.2.22 cgi_polyline
	6.2.23 cgi_rect
	6.2.24 cgi_rot
	6.2.25 cgi_search
	6.2.26 cgi_setbcol
	6.2.27 cgi_setdrawmode
	6.2.28 cgi_setdrawscreen
	6.2.29 cgi_setfcol
	6.2.30 cgi_setfillstyle
	6.2.31 cgi_setfont
	6.2.32 cgi_setlinestyle
	6.2.33 cgi_setorient
	6.2.34 cgi_setpelstyle
	6.2.35 cgi_shear
	6.2.36 cgi_sptext
	6.2.37 cgi_strokearc
	6.2.38 cgi_text
	6.2.39 cgi_zoom


	7 Graphics board functions
	7.1 List of functions
	7.1.1 fs_screenaddr
	7.1.2 fs_displaybank
	7.1.3 fs_initscreen
	7.1.4 fs_setpalette
	7.1.5 fs_openboard
	7.1.6 fs_closeboard
	7.1.7 fs_writeregs


	8 ANSI C user guide
	8.1 Toolset search path
	8.1.1 IMS F003C library and include files

	8.2 Invoking the CGI display server
	8.2.1 Single processor, single program
	8.2.2 Multiprocessor, multi program

	8.3 Configuring transputer memory sizes
	8.4 Opening the graphics board
	8.5 Compiling and linking IMS F003C programs
	8.5.1 Compiling
	8.5.2 Linking

	8.6 Example program

	9 occam user guide
	9.1 Toolset search path
	9.1.1 IMS F003C library and include files

	9.2 Invoking the CGI display server
	9.2.1 Single processor, single program
	9.2.2 Multiprocessor, multi program

	9.3 Configuring transputer memory sizes
	9.4 Opening the graphics board
	9.5 Compiling and linking IMS F003C programs
	9.5.1 Compiling
	9.5.2 Linking

	9.6 Example program

	10 Further use of the CGI system
	10.1 Using and defining text fonts
	10.2 Using CGI screens for windowing
	10.3 Simple animation techniques
	10.4 Writing a board support library

	A Directory structure
	B IMS B419 hardware overview
	B.1 Description
	B.1.1 Introduction
	B.1.2 Screen sizes
	B.1.3 SubSystem signals
	B.1.4 Memory Map
	B.1.5 Pixel clock selection
	B.1.6 Jumper selection

	B.2 Board layout
	B.2.1 Video and sync outputs


	C IMS B437 hardware overview
	C.1 Description
	C.2 Memory map
	C.3 Display formats
	C.4 Colour video controller
	C.5 Control register programming
	C.6 Hardware cursor
	C.7 Events
	C.8 Board control registers
	C.8.1 Colour mode select register
	C.8.2 IMS G332 reset register
	C.8.3 Startup procedure

	C.9 Video outputs
	C.10 Board layout
	C.11 Accessories

	D References



