MMOoSs’

IMS F003C
2D graphics

OoCcCam & C Libraries

A software support package
for iq systems’ graphics TRAMs.

(IMS DX05B, DX205, DX214 toolset compatible)

IC77 SGS-THOMSON
Y/ o 111CROELECTRONICS
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 OEK 264 01 May 1992

Copyright © INMOS Limited 1992. This document may not be copied, in whole or
in part, without prior written consent of INMOS.

@
g DLTTmos@, IMS and occam are trademarks of INMOS Limited.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

72 OEK 264 01 May 1992

Contents

1 Introductiontothe IMSF003Cc.cccvvvevean... 1
1.1 ProfequiSiles cowamve s sy s i 1

114 HAWAS - onmmssamm s s s e R e 1

T2 ISOHWEID. . vinmmsmemnmemni e e 1

1.2 Organisation ofthemanual 2

121 Manual conventions 2

2 SoftwarainstallatioN ovaisss sy g 3
3 Overviewofthe IMSFO03Ccvvvvvvrerrvnnnnas 5
31 CGldisplayservercc.ociieiineiinnans 5

3.1.1 ANSI C and OCCAM librariescoovuvunn 8

3.1.2 Graphics board support libraries 8

4 CGlconceptscovviiiimiiniiiieacaennaenanranenn 9
41 The IMS FOO3C CGIlibraryovvvvnvverenenninanans 12

42 BN vt s A S T A S A TR 13

43 Colour reprasentationcveivis suivamna s 15

44 CGldrawingmodesooiriiniiiii it 15
441 PIOESWIES . . o vmmmmemsne s s, s s s e s 15

442 Fillermodesccoveviieiiiioeranaanann 16

443 Pixel replace modes:; o siassiaiassmiisans 17

5 Graphicsboardconceptsccvvvviiiiiiiiiinrinn 19
5.1 Board initialsalion . ..u. .. oisacrsia i re it 20

52 Video memory management ... 21
521 Mapping physical CGI screens to VRAM 22

53 Golaurpalate. .« ..o vevumsmiasemesnas s e s 23

5.4 The iq Systems graphicsboardscovvvvvienn 23
5.4.1 IMS B419 graphics TRAMcooovivnntn. 24

54.2 IMS B437 compact display TRAM 24

6 COllbraries ... civiimsmiaassmivssisianns 25
6.1 Initialisation and termination e 25

6.2 Alphabetical list of CGl primitivescoioiunn 26

7 Graphics board functionscooiiiiiiiinnnn, 95

71 Listof functionsot a5

i Contents
8 ANSICuserguide.......cccieesssonsanncncsaccscsnss 103
8.1 Toolsot SeRCh PallY i c v e risn e e 103
8.1.1 IMS F003C library and includefiles 103

8.2 Invoking the CGl display server 104
821 Single processor, single program 104

8.22 Multiprocessor, multi program 106

8.3 Configuring transputer memory sizes 107

8.4 Opening the graphics boardccoooviiiuiiiin 108

8.5 Compiling and linking IMS FO03C programs 109
8.5.1 COMPIING: oo i iive s e A R s 109

852 NRIAG oo iamaeis s R 109

8.6 EXaMPIBPrOQAM. ..conervavsmomsnamsisesivasmemin s ssres 109

8 OCCIUBOEUNIG vivsosrirsevinsssssrssTsETeE T s 1
9.1 Toolselsearchpath .- :. . viisaegrerioiodin sanioiusaaass m
9.1.1 IMS F003C library and include files 111

9.2 Invoking the CGl display servercccocvveuens 112
9.2.1 Single processor, single program 112

922 Multiprocessor, multiprogram 114

93 Configuring transputer memory Sizescoo0viean 114

94 Opening the graphicsboardcocvviiieininnnn. 114

9.5 Compiling and linking IMS FO03C programs 116
9.5.1 Compiling . .oovvniin i e 116

052 LINMDG e s 116

96 EXBMHE PROQIBIMT oo s s vib s e smams wis.sioe dene s 116

10 Furtheruse ofthe CGlsystem.........cccvvvvivnnninn. 17
10.1 Usinganddefiningtextfontscocovvivivivnciciens 17

10.2 Using CGlscreensforwindowing 19

10.3 Simple animation techniquesccooiann... 122

104 Wiriting a board support ibraryceeeuivnineans 124

Contents i
Appendices

A Directory Stricllure ..ovcvwisinerwsmrnanns wnzoy v s 125

B IMS B419 hardware overviewcovvuirnnnrrrnasss 127

B.1 DeSEABGI osvmw s e Wi R e 127

B.1.1 Intraduehion v ssssrausaanis oy 127

B.1.2 SCLOBN BIZED 1avicaierane bt oo o e eve i Heime sl wiare 128

B.1.3 SubSystemsignals 128

B14 MemoryMap 129

B.15 Pixelclockselectionccoivvviviiiinnn 130

BA6 JUper SeEBHOR oo anmoaem s 130

B.2 Board layout 131

B.2.1 Video andsyncoutputs 132

C IMS B437 hardware overviewcocvvveviannnns 133

C.A1 DESCHPHONT «osnmoumisimmamismmm il s s S s a7 133

G2 MEMOIYMap cuosswimmimsmsnms i s s s AR 134

C.3: DisplayTomals ...ccoreerhasdissiimsorimrmniey i 134

C4. Colour video controlleroeovrnmssnmes vrumesomsmses 134

Cc.5 Control register programmingc.coviieiiriennan 136

CB' HardWare:etrS0r s voes sy sl siv i sy v v 137

C.7 EVONEST . s e s i S S e s N 137

C.8 Board control registers ...t 138

1041 Colour mode selectregister 138

1042 IMS G332resetregister 138

10.4.3 Startup procedurdiscasvvdivivieevae v 139

€0 Nideo outpuls «uws voinsmisaa vmssas i B 139

G0 Boald IByouk s s s e r s SR e s e 140

Cill ACCESSOMES' v vnsnsensmmensss s sbiaesns sy sindse s 140

D RETOIBAEOE :vuw s vna s s vt ¢ o e s wa i 141

Contents

1 Introduction to the
IMS FOO3C

The IMS FO03C s a 2D (two dimensional) graphics package for iq Systems graph-
ics board products. It provides functional conformance with a subset of the Com-
puter Graphics Interface (CGI) standard.

Applications can be developed in the C or occam programming languages for an
arbitrary network of transputers. Graphical output is obtained by installing an ap-
propriate iq Systems graphics board somewhere in the network and programming
it using the IMS F003C software package.

The IMS F003C is compatible with INMOS software development toolsets. Devel-
opers incorporate IMS F003C with their own application sofiware using an appro-
priately selected C or occam toolset.

1.1 Prerequisites

In order to develop applications with the IMS FO03C the following environments
are required.

1.1.1 Hardware

e [BM PC AT or compatible personal computer
+« |MS B008 IBM PC AT TRAM motherboard

o IMS B419 graphics TRAM
OR
e |MS B437 compact display TRAM

1.1.2 Software
+ |IMS D7214 ANSI C Toolset for IBM PC AT

» |IMS D7205 occam Toolset for IBM PC AT

72 OEK 264 01 May 1992

1.2 Organisation of the manual
This manual is split into ten Chapters and four appendices.

Chapter 2 provides step by step instructions for installing the IMS FO03C software
on an IBM PC AT or compatible computer.

Chapter 3 contains an overview of the software components contained in the IMS
F003C package and describes some potential development environments.

A detailed description of CGI concepts is provided in Chapter 4. Readers familiar
with 2D computer graphics systems may choose to overlook this Chapter.

Chapter 5 contains a detailed explanation of graphics board concepts with particu-
lar reference lo iq Systems graphics board products. Again, readers familiar with
these concepts may wish to overlook this Chapter.

An alphabetical description of the CGlI library and graphics board utility functions
can be found in Chapters 6 and 7.

Chapter 8 describes how to develop software using IMS FOO03C in conjunction with
an ANSI Ctoolset. occam toolset users should instead read Chapter 9, which con-
tains an equivalent occam user guide. Both Chapters also contain annotated ex-
ample source code and instructions for compiling and executing examples in-
cluded on the installation disks.

The final Chapter looks into a number of more advanced topics. For example, an
explanation of the text font format and a description of multi-frame animation tech-
niques can be found in this Chapter.

Engineering data for the iq Systems graphics board products supported by IMS
F003C can be found in the appendices. Memory and register address maps are
provided together with more detailed hardware information.

1.21 Manual conventions

Throughout this manual, reference to software routines and constants will be made
using ANSI C syntax. Equivalent occam names may be derived by substituting
occurrences of the’_' (underscore) characterwith a‘. (period) character as appro-
priate.

Source code fragments and operating system command lines will be printed in a
teletype style font.

72 OEK 264 01 May 1992

2 Software installation

The installation of IMS FOO3C requires at least 2Mbytes of free disk space be avail-
able on the host computer system hard disk.

IMS F003C is distributed on two 1.2Mbyte 5 1/4” floppy disks or on two 720K byte
3 1/2" diskettes. The disks can be found in a transparent wallet at the rear of the
manual. Select the appropriate disks for your system.

To install IMS FO03C from floppy disk drive A: onto hard disk drive C: of an IBM
PC AT or compatible computer proceed as follows:

1 Insert the disk labelled DISK 1 of 2, into disk drive A:

2 Change current working directory to C:\.

3 Atthe operating system command prompt, type a:install a c.

4 Respond as appropriate to prompts made by the install program.

5 Insert the second disk (labelled DISK 2 of 2)when prompted.
The installation procedure will create and install IMS FO03C files under the directo-
ry C: \F003C. See Appendix A for details of the directory structure and a list of the
files that should be present after installation.

The file C: \FOO3C\INSTALL2.BAT may be deleted after installation.

72 OEK 264 01 May 1992

72 OEK 264 01 May 1992

3 Qverview of the
IMS FO03C

The IMS FO03C software package consists of the following components:

¢ CGl display server

* ANSI C and occam interface libraries

o Include files

o iq Systems graphics board support libraries
¢ Source code of the board support libraries

» Example source code

31 CGl display server

The CGl display server is a process that runs in parallel with application software
and provides access to a graphics board. It is responsible for programming the
graphics board hardware and for performing CGI operations when requested by
an application program. Graphical output is displayed on an output monitor con-
nected to the graphics board. The CGl display server may be configured to run on
any of the iq Systems graphics boards, it is linked with a board specific library that
provides it a device independent interface to the hardware.

The CGI display server may run in parallel with application software on the same
transputer (the graphics board), or with the application running on an adjacent
transputer network or a mixture of the two. This arrangement is shown in the follow-
ing diagrams, where a mixture of TRAM motherboards, general purpose compute
TRAMSs and graphics TRAMs are used to build various transputer systems capable
of generating graphical output via an attached monitor.

72 OEK 264 01 May 1992

High resolution monitor
IBM PC/AT Host)
7
IMS B419 | Red “
Graphics TRAM Green J

IBM PC AT IMS B419 TRAM

Figure 3.1

This shows an IMS B008 TRAM motherboard and an IMS B419 graphics TRAM.
The graphics TRAM is connected to a high resolution monitor. The application pro-
gram is hosted by an ISERVER running on an IBM PC AT development host and
consists of a number of processes running in parallel with the CGI display server.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 7

High resolution monitor
IBM PC/AT Host 3
L
/
IMSB404| |IMS B404| |IMS B437 [Red __/
Compute || Compute || Display |—Green

TRAM TRAM TRAM Blue S

IMS B008 TRAM motherboard

Host

ts || I fs
to_cgi from_cgi
Compute
TRAMS
Figure 3.2

This also shows an IMS B008 TRAM motherboard. Itis configured with two general
purpose compute TRAMs and an IMS B437 compact display TRAM. Again, the

72 OEK 264 01 May 1992

graphics TRAM is connected to a high resolution monitor. The CGI server runs by
itself on the graphics TRAM while the application program runs in parallel on the
other compute TRAMs. An ISERVER runs on the host.

3.1.1 ANSI C and occam libraries

The IMS F003C ANSI C and occam interface libraries contain an equivalent set
of procedures. They all communicate with the CGI display server over a pair of
transputer channels connected between the server and application software. The
programmer’s interface to the CGI system is defined by these interface libraries.

The libraries contain two sets of procedures. Those prefixed by cgi_ belong to
the family of Computer Graphics Interface primitives. There are a large number of
these and collectively they define a two dimensional graphics package that is func-
tionally conformant with a subset of the CGI standard. The CGI primitives are all
device independent: they require no knowledge of the underlying graphics board
architecture.

The other set of procedures are prefixed by £s_. These implement a device inde-
pendent interface to the graphics hardware. The same procedures are used to pro-
gram the graphics hardware regardless of the actual graphics board being used.
The CGl display server programs the hardware correctly by calling elements of a
board specific support library which is selected according to the graphics board

3.1.2 Graphics board support libraries

The device independent interface to the graphics hardware provided by the CGI

server is implemented by a number of device dependent board support libraries.

Libraries are supplied for a wide range of the iq Systems graphics board products,

Lhe appropriate one is linked with the CGl display server when building an applica-
on.

Monitor resolution and timing characteristics are completely programmable and
the libraries also provide device independent colour palette setup and video
memory management.

The board support libraries are supplied in source code form. If required, a variant
for some other transputer based graphics board can be created by porting the
source provided. This is described in Chapter 10.

72 OEK 264 01 May 1992

4 CGl concepts

IMS FO03C provides a functionally conformant subset of the Computer Graphics
Interface standard (ISO TC97/SC21 N1179). The standard defines the interface
between the device independent and device dependent parts of a two dimensional
(2D) graphics system. IMS FO03C implements the CGI graphical primitive func-
tions, atfribute functions and miscellaneous initialisation and error logging primi-
tives.

CGl defines the functional behaviour of a number of graphical output primitives and
attribute functions, in a way which is encoding and binding independent. This al-
lows the same facilities to be provided in different languages while taking into ac-
count the syntax of that language. IMS FO03C provides such bindings for the ANSI

C and occam programming languages.

CGlI graphical primitive functions are those functions that define the geometric
components of a picture. The graphics primitive functions defined in the CGlI stan-
dard fall into one of the following categories:

¢ Line

s Marker

» Text

+ Filled area

* Image

» Generalised drawing primitive (GDP)

CGl attribute functions determine the appearance of the graphical primitive func-
tions. Attributes are either individual or ‘bundleable’. This means that either an at-
tribute must be applied individually or thatit may be combined with others, and then
applied.

Readers seeking further information on the CGI standard should consult docu-
ment; ISO TC97/SC21 N1179. The following tables show how the various CGl
primitives are implemented by the IMS FO03C libraries.

72 OEK 264 01 May 1992

10

Line functions

Polyline cgi_polyline

Disjoint Polyline cgi disjpolyline

Circular Arc Centre |cgi_arc

Elliptical Arc cgi_arc

Marker function

Poly Marker cgi dot, cgi copy

Text functions

Text cgi_text, cgi_sptext

Append Text cgi_addtext, cgi_addsptext

Restricted Text cgi_text, cgi_sptext, cgi_chrbegin,

cgi_chrspace

Filled area

functions

Polygon cgi_polygon, cgi paint

Polygon Set cgi_polyline, cgi_disjpolyline, cgi_line,

cgi_ftrap

Rectangle cgi_rect, cgi_frect

Circle cgi_circle, cgi_fecircle

gilrcular Arc 3 Point [cgi_arcc, cgi_strokearc, cgi fanfill

ose

Circular Arc Centre |cgi_arce, egi_strokearc, cgi_fanfill
Close

Ellipse cgi_circle, cgi_feircle

Elliptical Arc Close |cgi_arce, cgi_strokearc, cgi_fanfill
Image function

Cell Array cgi_frect, cgi_ftrap, cgi_copy

Table 4.1 CGI graphical primitives vs. IMS F003C

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 1

Line attributes

Text Font Index

Text Precision

Character Expansion Factor
Character Spacing

Text Colour

Character Height

Character Orientation
Character Set Index

Line Type cgi_setlinestyle,

Line Width egi_setdrawmode

Line Colour

Marker attributes

Marker Type cgi_setpelstyle, cgi_copy,
Marker Size egi_zoom

Marker Colour

Text attributes

cgi_setfont

cgi_text, cgi_chrz, cgi_zoom
cgi_chrz, cgi_zoom
cgi_chrspace

cgi_setfcol

cgi_chrz

cgi_setorient

cgi_setfont

Filled area attributes
Interior Style

Fill Colour

Hatch Index

Pattern Index

Pattern Table

Pattern Size

cgi_setfillstyle, egi_setfeol

Table 4.2 CGl attribute primitives vs. IMS FO03C

72 OEK 264 01

May 1992

12

41 The IMS FO03C CGlI library

The IMS F003C CGl functions are supplied in an INMOS TCOFF compatible object
library called CGILIB. LIB. Two variants are provided, one for ANSI C, the other
for occam. The following lists summarise the CGI functions available:

Line functions
cgi_line
cgi_rect
cgi_polyline
cgi_disijpolyline
cgi_polygon
cgi_circle
cgi_arc
cgi_arcc
cgi_strokearc
cgi_dot
cgi_setlinestyle

Text functions
cgi_text
cgi_addtext
cgi_sptext
cgi_addsptext
cgi_chrbegin
cgi_chrspace
cgi_chrz
cgi_setfont

Filled area functions
cgi_cls
cgi_frect
cgi_fecirele
cgi_fanfill
cgi_paint
cgi_ftrap
cgi_fhline
cgi_setfillstyle

72 OEK 264 01

Straight line

Rectangle outline
Consecutive line segments
Straight line segments
Polygon outline

Ellipsoid outline

Partial ellispoid outline
Closed partial ellipsoid outline
Stroke ellipsoid outline
Single point

Setup custom line style

Print text at position

Add text at current position
Print text with spacing control
Add text with spacing control
Set character position

Set character spacing

Print character with scaling
Setup character font

Clear screen

Filled rectangle

Filled ellipsoid

Filled partial ellipsoid
Area flood fill

Filled trapezoid

Filled horizontal lines
Set custom fill pattern

May 1992

IMS F003C 2D graphics occam and C libraries 13

Image functions
cgi_copy
cgi_zoom
cgi_rot
cgi_shear
cgi_search
cgi_setpelstyle

Control functions
egi_init
cgi_terminate
cgi_setdrawmode
cgi_setdrawscreen

cgi_setorient

Error handling
cgi_errstat

4.2 Screens

Image copy

Image copy with zoom
Image rotation

Image shear

Search for colour change
Set custom pel pattern

Initialise CGI system
Terminate CGI system

Set drawing modes

Set current CGI screen

Set text and image orientation

Expound current CGI error

All CGl operations are performed on an abstract data structure called a screen. A
screen represents a bounded two dimensional area that contains the graphical
output of CGl functions. Cartesian coordinates are used to address points located
on a screen and all CGI operations, when applied to a screen, are clipped to its
extent. The CGl system uses the screen abstraction to represent various types of
graphical object. For example, screens are used to hold character images when

expanded from a packed font.

In IMS F003C, the ANSI C and occam implementations of a screen are defined

as follows:

ANSIC struct

occam INT array

struct

{
char *raster;
int xsize;
int ysize;
int stride;

int multiMode;
} screen;

[SCREEN.SIZE]INT screen:

screen [SCREEN.RASTER]
screen [SCREEN.XSIZE]
screen[SCREEN.YSIZE]
screen[SCREEN.STRIDE]
screen[SCREEN . MULTIMODE]

72 OEK 264 01

May 1992

14

raster is the transputer address of a region of memory used to hold a two dimen-
sional image, called a raster. It is xsize pixels wide by ysize pixels high. The
stride value specifies the horizontal stride to take when stepping to an equivalent
position on the next horizontal line. multiMode is used intemally by the CGI sys-
tem.

X size
XL L]
|
raster memory
y size
stride

Figure 4.1 The CGI screen abstraction

The CGI system maintains the notion of a current drawing screen. This is a screen
that has been identified as a target for future CGI operations: the majority of the
CGil functions implicitly address the current drawing screen. It is assigned with
cgi_setdrawscreen.

Any number of screens may exist in a system and some may be related to others.
For example. to build a windowing system one could use the screen abstraction
to represent the hierarchies that exist between parent windows and their child sub-
windows. The only restriction concerning the use of the screen abstraction is that
the memory associated with a screen must be located on the transputer running
the CGI display server.

A screen may be displayed on an output monitor if its horizontal and vertical dimen-
sions match the physical display resolution. Such a screen is referred to as a physi-
cal screen. Physical screens are usually implemented with video memory on the
graphics board. When displayed on a monitor their cartesian origin (0,0) is lo-
cated at the top left hand corner of the display.

CGi screens can be allocated statically, or dynamically, on the transputer that runs
the CGl display server. A new screen may be derived from an existing one by refer-
encing a sub-area of the existing screen's raster memory. Physical screens are al-

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 15

located dynamically using £s_initscreen and have their rasters stored in video
memory on the graphics board.

4.3 Colour representation

The IMS F003C implementation of CGI uses 8 bit pixels resulting in screens con-
taining up to 256 different colours. Pixel values are used to address a colour palette
which generates the actual display colour from a possibly larger range. The resolu-
tion of the colour palette is graphics board dependent, see section 5.3 for specific
details of this.

4.4 CGldrawing modes

The CGI system may operate in a number of different drawing modes that define
the run-time behaviour of graphical primitives. Drawing modes are concerned with
the following:

* Plot style
» Filler mode
¢ Pixel replace mode

Ultimately, most graphical primitives are implemented by plotting a sequence of
pixels. The pn(el replace mode defines how a pixel is written into screen memory.
The plot style is used to control the generation of pixel values, for example, when
drawing a line, and the fill mode relates to the different methods available for per-
forming area flood fill.

The CGl system applies the current plot style, fill and pixel replace modes implicitly,
during normal operation. They may be initialised with cgi_setdrawmode and de-

pending on the CGI function may combine to produce a resultant visual effect. In
other situations only a subset may have an impact.

441 Plotstyles

Plot styles affect the outcome of the CGI plotting and outline functions, such as
cgi_dot, cgi_circleorcgi_polyline.

When tracing the outline of an object, or when plotting a sequence of straight lines,
the current plot style determines the size, shape and visibility of every point plotted.
There are five plot styles:

= PIXEL
e PEL
e LINESTYLE

72 OEK 264 01 May 1992

16

e LINESTYLE-TRANSPARENT
e LINESTYLE-PEL
PIXEL

A single pixel is plotted to represent each point. This gives solid outlines of mini-
mum display thickness drawn in the current foreground colour. See cgi_setf-

col.

PEL

Each point is represented by a small, two dimensional pattern, called a pel. The
pel pattern is established with cgi_setpelstyle and used whenever a point
would otherwise have been plotted. Pels are useful for repeatedly plotting custo-
mised shapes such as cursors or bullet marks.

The pixel values defined by a pel pattern determine its colour. In the default pixel
replace mode (overwrite) only pixels which have non-zero values are plotted. This
means that if the pel background colour is always zero, then the foreground can
consist of any number of non-zero colours, all of which will be plotted normally. By
selecting an appropriate pixel replace mode the zero-valued background can be
plotted, or the foreground ignored.

LINESTYLE

Aline style is a one dimensional array of pixel values that is used to determine the
value of consecutive points on a line. The CGI system keeps track of which pixel
value to use for the next point and cycles repeatedly through the pixel array assign-
'ngvaluecto new points, A pixel value can be used a variable number of times be-
fore moving on to the next value, this is controlled by the line style zoom factor and
achieves a streich effect. Line styles are initialised with cgi_setlinestyle
which defines the pixel array contents, and its zoom factor.

LINESTYLE-TRANSPARENT

This is a variant of the line style. A transparency effect is achieved by only plotting
points that have non-zero values as defined by the line style array. All other points
are plotted normally. Zero valued pixels define positions where background
colours will be visible through the line style.

LINESTYLE-PEL

Another variant of the line style mode, this combines a line style with a pel pattern.
Non-zero valued points defined by the line style are replaced by the pel pattemn.

4.4.2 Filler modes
The CGl area fill primitives operate according to the current fill mode. This defines

the method for filling areas created by functions such as cgi_frectorcgi_fan-
£il11. There are two fill modes:

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 17

« SOLID
= PATTERN
SOLID

Areas are filled with a solid colour. The colour is defined by the current foreground
colour, see cgi_setfcol,

PATTERN

A customised two dimensional pattern called a fill style is used. This is tiled over
the fill area and clipped 1o it's boundary. The current fill style is infialised with
cgi_setfillstyle to define the pixel values contained in the fill style pattern.
By selecting a suitable pixel replace mode, zero valued pixels may be treated spe-
cially if required, otherwise they are writien to the current screen along with the
non-zero valued pixels.

4,43 Pixel replace modes

The pixel replace modes define how pixels are ultimately written into screen
memory. They are fundamental to the operation of the CGI system: the result of
every CGI primitive in conjunction with the higher level drawing modes is in-
fluenced by the current pixel replace mode. There are three types of pixel replace
mode:

» OVERWRITE

* LOGICAL

+ TRANSPUTER
OVERWRITE
The basic replace mode. Screen memory is overwritten with new pixel values.
LOGICAL
The logical replace modes are implemented by performing a read modify write op-
eration on screen memory. An existing pixel is combined, using a logical operator,

with the new pixel value and the resultant pixel written into screen memory. The
logical modes supported are:

Operator |Result

AND bitwise AND
OR bitwise OR
XOR bitwise XOR
NAND bitwise NAND
NOR bitiwse NOR

72 OEK 264 01 May 1992

18

TRANSPUTER
The transputer replace modes correspond directly to the two dimensional block
move insiructions supported by the transputer. They are:

Operator Result
MOVE2DALL block copy
MOVE2DZERO zero block copy
MOVE2DNONZERO |non-zero block copy

72 OEK 264 01 May 1992

19

9 Graphics board
concepts

The ig Systems graphics board products supported by IMS F003C all have a simi-
lar hardware architecture. They allfeature a transputer (of some sort), have normal
dynamic random access memory for program and data storage and an additional
area of special purpose video memory for image output to a graphics monitor. All
the boards have a colour video controller (CVC) chip capable of driving a wide
range of monitors at different pixel rates and at different display resolutions.

The IMS F003C CGl library contains a number of functions for initialising and con-
trolling the hardware on a graphics board in a device independent way. This allows
software developed for one graphics board to run on another without changing any
source code. The programmer’s interface to the graphics board hardware is de-
fined by the following functions:

Function Description

fs_screenaddr Return the address of a screen’s raster
fs displaybank Display a bank of video memory
fs_initscreen Map a physical screen to video memory
fs_setpalette Set colour palette entry

£s_openboard Device independent board open function
fs_closeboard Device independent board close function
fs_writeregs Write graphics board registers

These functions cause the CGl display server to call a similar set of functions from
a device dependent library that achieve an equivalent effect on whatever graphics
hardware is actually present. The CGl server is linked against a device dependent
library when building an application program for a particular graphics board. De-
vice dependent libraries for the following iq Systems graphics board products are
provided with IMS FO03C:

iq Systems graphics board IMS F003C library
IMS B419 graphics TRAM B419.LIB

IMS B419 graphics TRAM with G300A B419A.LIB

IMS B437 compact display TRAM B437.LIB

72 OEK 264 01 May 1992

20

5.1 Board initialisation

In order to use a graphics board an application mustfirst open it withthe £s_open-
board function. This performs a number of operations to initialise the graphics
hardware ready for use by the CGl system. The mostimportant of these is the intial-
isation of the CVC chip. The CVC chip generates a display on an output monitor
and must be programmed with a number of video timing parameters that specify
the format and timing of signals used to control the monitor. Usually, this will de-
pend on the desired display resolution and the timing characteristics of the chosen
monitor.

The CVC is programmed with the contents of a data structure called the video tim-
ing generator (abbreviated VTG) parameter block. This contains a number of val-
ues that define elements of the video signals used to drive a monitor. The parame-
ters are directly applicable to a range of CVC devices manufactured by INMOS and
used on the iq Systems graphics boards. The ANSI C and occam definitions of
the VTG parameter block are:

ANSI C struct occam INT array
struct [VIG.SIZE]INT vtg:
{
int pll; vtg [VIG. PLL]
int line time; vtg [VIG.LINE.TIME]
int half syne; vtg [VIG.HALF.SYNC]
int back porch; vtg [VIG.BACK. PORCH]
int display; vtg [VIG.DISPLAY]
int short_display; vtg [VIG.SHORT .DISPLAY]
int v_display; vtg [VTG.V.DISPLAY]
int v_blank; vtg [VTG.V.BLANK]
int v_synec; vtg [VTG.V.SYNC]

int v_preequalise; vtg [VIG.V.PREEQUALISE]
int v_postequalise; |vtg[VTG.V.POSTEQUALISE]
int broad pulse; vtg [VIG.BROAD.PULSE]
int mem init; vtg [VIG.MEM. INIT]
int transfer delay; |vtg[VIG.TRANSFER.DELAY]
int mask_register; vtg [VIG.MASK.REGISTER]
int control; vtg [VTG.CONTROL]
} vtg;
ANSI C and occam header files are supplied that define a number of constant

VTG parameter blocks suitable for controlling a range of monitors at a number of
commonly used display resolutions. In most situations, a parameter block that

72 OEK 264 01 May 1992

IMS FO003C 2D graphics occam and C libraries 21

matches the requirements of a particular application can be selected from the
header file and used verbatim. If a suitable parameter block can't be found, or if
special requirements dictate the use of other timing parameters, then consult The
graphics databook [5].

This contains technical information about INMOS CVC devices. It includes an in
depth discussion of video timing mechanisms and how to calculate video timing
parameters. The reader should also consult the appendices, which contain engi-
neering data for the iq Systems graphics board products supported by IMS FO03C.

5.2 \Video memory management

Transputers used on the iq Systems graphics boards have a linear address space.
Within this space lies a region of normal dynamic random access memory (DRAM)
and a region of special video memory (VRAM). The size and location of these
memory areas is dependent on the architecture of the graphics board. The DRAM
is always located at the bottom of the transputer address map (most negative ad-
dress end) and is used for program and data storage. The VRAM is located else-
where, usually at higher addresses, and is used as raster memory to store the out-
put of graphical operations. A monitor display is produced by the CVC which reads
the VRAM continuously to generate the appropriate output signals.

On some graphics boards the two memory areas are separate, on others they may
be configured (with a jumper) to be either contiguous or non-contiguous. Spare vid-
eo memory can be used for additional program and data storage, but only if it is
contiguous with existing DRAM. Other boards have no normal DRAM at all and use
VRAM for program, data and raster storage. The amount of VRAM required to gen-
erate output on a monitor is directly related to the monitor resolution. Since the
CVC hardware allows this to be configured at run-time the available VRAM can
serve a number of purposes:

e Depending on the amount of VRAM present it can be used to store a num-
ber of monitor sized rasters. The graphics hardware is programmed to dis-
play one of these rasters but can be switched, at any time, to display anoth-
er.

 Ifthe VRAM is contiguous with DRAM then part of it may be allocated to
program storage effectively extending the amount of the DRAM available.

Video memory is managed by dividing it up into a number of equal sized regions,
called banks. The size of a bank is determined by the display resolution and
matches exactly the amount of raster memory needed to generate an outputimage
at that resolution. The total number of video banks available on a particular graph-
ics board therefore depends on two factors: the amount of VRAM present and the
configured display resolution.

72 OEK 264 01 May 1992

22

The memory architecture of a typical graphics board is shown in the diagram be-
low:

Bank 0 :] Output to a monitor

DRAM Program and data

Internal RAM

Figure 5.1 Memory architecture of a graphics board

Note that video memory banks are allocated from the top of video memory toward
lower memory addresses. In the diagram, bank number 0 is positioned at the top
most part of VRAM. Other banks are located at ever decreasing addresses be-
neath this. If the VRAM and DRAM are contiguous it is possible to extend the
memory available for program and data storage by using up spare VRAM banks
near the bottom. This is achieved by configuring an application program with a
memory size that includes any spare VRAM banks nominated for program use. It
is the programmer’s responsibility to ensure that such VRAM banks will never be
used for any other purpose.

5.2.1 Mapping physical CGI screens to VRAM

Physical CGl screens have their raster memory allocated from VRAM by initialising
a screen data structure to reference a video memory bank. This is done with
fa_initscreen, given the number of the video memory bank to use for the
screen’s raster it returns a screen structure.

There need be no correspondence between the current CGI drawing screen and
the physical screen displayed on a monitor. Both can be selected independently.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 23

A screen is made visible by programming the graphics hardware to output the cor-
responding video memory bank. £s_displaybank does this.

In the example below, a new screen is allocated and mapped to video memory
bank 0. It is made the current CGI drawing screen and its video memory bank dis-
played on an output monitor. This has the effect of causing the CGI system to dis-
play all subsequent operations instantaneously, on the monitor.

{

screen s;

/* Allocate a physical screen and map it to bank 0 */

fs_initscreen(from cgi, to_cgi, &s, 0);

/* The screen is s.xsize pixels wide by s.ysize pixels
high. These values correspond to the monitor resolution
which is fixed at startup time with fs_openboard() */

/* Assign the screen to the current draw screen */

cgi_setdrawscreen(to_cgi, s);

/* Display the screen on an ocutput moniter */

fs_displaybank(to_cgi, 0); /* Output video bank 0 */

/* Do lots of drawing with the CGI functions ... */

5.3 Colour palette

The INMOS colour video controller chips used on all the iq Systems graphics board
products generate colour displays with a programmable colour look-up table
called a palette. This provides a mapping between pixel values and the actual co-
lour generated on an output monitor. Colour values are described by three num-
bers that specify the red, green and blue components of the colour. For a given pix-
el value, the output colour is programmed with £s_setpalette by specifying
what the red, green and blue colour components should be.

The colour components have an 8 bit resolution. When combined, they describe
a colour from a 24 bit colour space that supports a palette of up to 16 million differ-
ent colours. Because the IMS FO03C CGI system manipulates 8 bit pixel values
the colour palette can contains up to 256 different colours selected from the 16 mil-
lion possible.

5.4 The iq Systems graphics boards
This section describes some specific features of iq Systems graphics boards that

should be considered before using them. More detailed engineering data, on each,
can be found in the appendices.

72 OEK 264 01 May 1992

24

54.1 IMS B419 graphics TRAM

The IMS B419 has 2M bytes of DRAM and 2M bytes of VRAM. There is enough
video memory to support display resolutions of up to 1280 by 1024 pixels with
some left over. (Note that display resolutions any larger than this are not possible
because of the very high pixel data rates required).

There are two variants of the IMS B419. The older has an IMS G300A CVC fitted,
current production versions use the IMS G300B. The corresponding board support
libraries are: B419A.LIB and B419.LIB.

The IMS B419 must be configured to make its DRAM and VRAM contiguous. This
is ajumper option on the board and is described in Appendix B. Making the memory
areas contiguous offers the possibility to extend program and data space into
VRAM as previously described. Note that the board support libraries will not func-
tion correctly unless this is done.

5.4.2 IMS B437 compact display TRAM

The IMS B437 has 1M byte of VRAM and no DRAM. Because of the limited
memory available a trade off situation must be reached to satisfy the requirements
of program storage and the desired monitor resolution. For example, one screen
with a resolution of 1024 by 768 pixels would leave approximately 256K bytes of
memory left for program storage. Typically, the IMS B437 is used in configurations
where only the CGl| server runs on the IMS B437 and application software runs
elsewhere in the transputer network.

The board support library for the IMS B437 is: B437 . LIB.
The special purpose times one pixel clock frequencies available on the IMS B437

are not used by the board support library. For more information on these features
see the Appendix C.

72 OEK 264 01 May 1992

25

6 CGl libraries

6.1 Initialisation and termination
6.1.1 cgi_init
Initialise the CGI server.
C:
void cgi_init(Channel *to _cgi)
occam:.
PROC cgi.init(CHAN OF ANY to.cgi)
Parameters:
Parameter Comment
to_cgi Channel to CGl server
Description:

cgi_init initialises the CGI system to the following state:

No current text font

No current pel, fill or line style patterns

Pixel mode PM_COL

Replace mode RM_COL

Fill mode FM_coL

6.1.2 cgi_terminate
Terminate the CGlI display server.
C:
void egi_terminate(Channel *from cgi, Channel *to cgi)
occam:
PROC cgi.terminate(CHAN OF ANY from.cgi, to.cgi)
Parameters:
[Parameter Comment
from_cgi Channel from CGI server
to_cgi Channel to CGl server

Description:

cgi_terminate terminates the CGl display server.

72 OEK 264 01

May 1992

26

6.2 Alphabetical list of CGI primitives

6.2.1 cgi_addsptext
Append text at current character position, with spacing control.
C:
void cgi_addsptext(
Channel *to_cgi,

int n, char *str,
int *dx, int *dy)

occam:

PROC cgi.addsptext(
CHAN OF ANY to.cgi,
VAL INT n,

VAL []BYTE str,
VAL []INT dx, dy)

Parameters:

Parameter Comment

to_egi Channel to CGl server

n Number of characters to plot

str Character string

dx X axis character spacing distances

dy Y axis character spacing distances
Description:

cgi_addsptext plots n characters from the character string stx according to
the current font description. The first character is plotted at the current character
position which is then incremented by X and Y axis offsets specified by the inter-
character spacing vectors dx and dy, for the character. Subsequent characters are
plotted in the same manner, using the next pair of spacing distances. The cumrent
character position after the operation completes is offset from the first character
plotted by X and Y axis distances equal to the sum of the dx and dy spacing vectors
respectively.

The spacing vectors should be set with respect to the cument orientation, see
cgi_setorient. Characters are plotted according to the current pixel replace
mode, see cgi_setdrawmode.

Characters are reproduced at the size of their font, which should be initialised, see

cgi_setfont. Each pixel of every character plotted is clipped to the cumrent
screen definition, see cgi_setdrawscreen.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 27

For text display, the default pixel replace mode RM_COL, will cause characters to
imprint within a rectangular bounding box of colour 0. In some cases this will not
produce the desired effect. If only the foreground of the text is required and a pixel
overwrite mode rather than a logical operation is desired then select pixel replace
mode RM_NZz. This will cause only those pixels which are non-zero to be plotted.

Diagram:
Current screen
A ™
str[2]
str[0] \)
|/ X y
/. N dx[2] /dx[3]
\ dx[1]
% dy[2] dy[3]
££10) / ay[1]
dy[0] 6 t
str[3]
str[1]
n=4
* = current character position
N B

72 OEK 264 01 May 1992

28

6.2.2 cgi_addtext
Append text at current character position.
C:
void cgi_addtext(
Channel *to _cgi,
int n, char *str)
occam:

PROC cgi.addtext(
CHAN OF ANY to.cgi,

VAL INT n,
VAL []BYTE str)
Parameters:
[Parameter Comment
to_cgi Channel to CGI server
n Number of characters to plot
str Character string
Descripti;:)n:

cgi_addtext plots n characters from the character string str according to the
current font description. Characters are plotted at the current character position
which is then incremented by the currently defined X and Y axis inter-character
spacing distances, see cgi_chrspace. The current character position after the
operation completes is offsef from the last character plotted by these distances.

Characters are plotted according to the current pixel replace mode, see cgi_set-
drawmode and the cumrent orientation, see cgi_setorient.

Characters are reproduced at the size of their font which should be initialised, see

cgi_setfont. Each pixel of every character plotted is clipped to the cumrent
screen definition, see cgi_setdrawscreen.

For text display, the default pixel replace mode RM_COL, will cause characters to
imprint within a rectangular bounding box of colour 0. In some cases this will not
produce the desired effect. If only the foreground of the text is required and a pixel
overwrite mode rather than a logical operation is desired then select pixel replace
mode RM_NZ. This will cause only those pixels which are non-zero to be plotted.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 29

Diagram:
Current screen
7 S
o ik Pt ¥ i ¥ T
// \\\ {/ \\\ // \\\ ;/ \\\
/ Y / / 1
| Y \ \ !
str[0] str[l] ste[2] str[3]
/__\- = current character position
! Y = current inter—character spacin
_ i Y,

72 OEK 264 01 May 1992

30

6.23 cgi_arc
Outline part of an axis aligned ellipsoid.
C:
void ecgi_are(
Channel *to _cgi,

int Xe, int ¥c, int A, int B,
int DXs, int DY¥s, int DXe, int DYe)

occam:

PROC cgi.arc(
CHAN OF ANY to.cgi,
VAL INT Xc, Ye, A, B, DXs, DYs, DXe, DYe)

Parameters:
Parameter Comment
to_cgi Channel to CGI server
(Xc, Ye) Centre coordinate
A Length of X direction semi axis
B Length of Y direction semi axis
(DXs,DYs) Start vector
(DXe,DYe) End vector
Description:

cgi_arc plots part of the outline of an axis aligned ellipsoid centred at (Xc,Yc)
and with semi-axis lengths of A and B pixels. Both A and B must be positive, the
larger of the two values is the semi-major axis length, while the lesser specifies the
semi-minor axis length.

(DXs,DYs) and (DXe,DYe) define direction vectors eminating from the centre
of the ellipse that specify which part of its outline to draw. Only points clockwise of
the (DXs,DYs) vector and anti clockwise of (DXe,DYe) are plotted.

The outline is clipped to the current screen definition, see cgi_setdrawscreen.

The current pixel replace and plot modes affect the appearance of the outline, see
cgi_setdrawmode.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

31

Diagram:
Current screen
/ g (DXs ,DYs) N
—
e
o
Ve
/
/
| A
'\‘ (Xc,¥Yc)
\
K
R
L S B
1.2 T (DXe,DYe)
A = Semi Major Axis
\ B = Semi Minor Axis Y,
May 1992

72 OEK 264 01

32

6.2.4 cgi_arcc
Outline part of an axis aligned ellipsoid, closed with chord or segment lines.
C.

void cgi_arce(
Channel *to_cgi,
int Xc, int ¥c, int A, int B,
int DXs, int DYs, int DXe, int DYe,
int CloseMode)

occam:

PROC cgi.arce(
CHAN OF ANY to.cgi,
VAL INT. Xc, Yc, A, B, DXs, DYs, DXe, DYe,

CloseMode)
Parameters:
[Parameter Comment
to_cgi Channel to CGI server
(Xe,Ye) Centre coordinate
A Length of X direction semi axis
B Length of Y direction semi axis

(DXs,DYs) Start vector
(DXe,DYe) End vector
CloseMode Close mode

Description:

cgi_arcc plots part of the outline of an axis aligned ellipsoid centred at (Xe, Ye)
and with semi-axis lengths of A and B pixels. Both A and B must be positive, the
larger of the two values is the semi-major axis length, while the lesser specifies the
semi-minor axis length.

(DXs,DYs) and (DXe,DYe) define direction vectors eminating from the centre
of the ellipse that specify which pari of its oufline to draw. Only points clockwise of
the (DXs,DY¥s) vector and anti clockwise of (DXe,DYe) are ploited.

The partial outline is closed with either a single chord line, joining the two end
points, or a pair of segment lines, connecting each end point to the centre of the
ellipse at (Xe,Ye). The value of CloseMode determines which method is used,
valid values are:

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 33

CloseMode Comment
CM_CHORD Close outline with a chord line
CM_SEGMENT Close outline with two segment lines

The outline is clipped to the current screen definition, see cgi_setdrawscreen.

The current pixel replace and plot modes affect the appearance of the outline, see
cgi_setdrawmode,

Diagram:
Current screen
N
il P (DXs /D¥s)
-
- L \
&£
/
[i
I_n m_
1= (Xe, Ye
\
b
N
N
G B b
e SER Py " ‘
A>B (DXe,DYe)
A = Semi Major Axis
LB Semi Minor Axis .

72 OEK 264 01 May 1992

M4

6.2.5 cgi_chrbegin
Set current character display position,
C:
void cgi_chrbegin(
Channel *to_cgi,
int X, int Y)
occam:
PROC cgi.chrbegin(

CHAN OF ANY to.cgi,
VAL INT X, Y)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

(X,Y) Character position coordinate
Description:

cgi_ sets the current character position to (X, Y). The nexttext opera-
nonwllstanplotﬁngdaradetsatmnsposlhon All text operations, other than
cgi_chrz, update the current character position as characters are plotted.

Setting the current character position to a location outside the extent of the current
screen definition is allowed. However, it should be remembered that all character

plotting operations are clipped to the current screen definition, see cgi_: nt-
drawscreen.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

35

6.2.6 cgi_chrspace
Set current inter-character spacing.
C:

void egi_chrspace(
Channel *to_cgi,
int dX, int dY)

occam:

PROC cgi.chrspace(
CHAN OF ANY to.cgi,
VAL INT dX, dY)

Parameters:
Parameter Comment
to_cgi Channel to CGI server
dx X axis character spacing distance
dy Y axis character spacing distance
Description:

cgi_chrspace sets the current inter-character spacing distances. These values
are used to increment the current character position, in the X and Y axis directions,
after each character is plotted. dx specifies the inter-character spacing distance

in the X axis direction, d¥ specifies the Y axis distance.

The inter-character spacing is independent of the current orientation and font size,

see cgi_setorient and cgi_setfont.

72 OEK 264 01

May 1992

36

6.27 cgi_chrz
Plot character with zoom scaling.
C:
void cgi_chrz(

Channel *to_cgi,

char ch,

int zlenx, int zleny)
occam:

PROC cgi.chrz(
CHAN OF ANY to.cgi,
VAL BYTE ch,
VAL INT zlenx, zleny)

Parameters:
[Parameter Comment
to_cgi Channel to CGI server
ch Character to plot
zlenx Width of scaled character on X axis
zleny Height of scaled character on Y axis
Description:

cgi_chrz plots the single character ch according to the current font description
and with independent scaling in the X and Y axis directions. z1lenx specifies the
width of the character, when plotted, in the X axis direction. The character’s height,
also when plotted, is given by zleny on the Y axis.

Depending on the current font size, see cgi_set£font, reduction or enlargement
can be achieved independently in the X and Y axis directions by setting z1lenx and
zleny appropriately.

The cumrent character position is NOT updated after the character is plotted.

The character is plotted according to the current pixel replace mode, see
cgi_setdrawmode.

For text display, the default pixel replace mode RM_COL, will cause the character
to imprint within a rectangular bounding box of colour 0. In some cases this will not
produce the desired effect. If only the foreground of the character is required and
a pixel overwrite mode rather than a logical operation is desired then select pixel
replace mode RM_NZ. This will cause only those pixels which are non-zero to be
plotted.

Each pixel of the character plotted is clipped to the current screen definition, see
cgi_setdrawscreen.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

37

6.2.8 cgi_circle
Outline an axis aligned ellipsoid.
C:
void cgi_circle(
Channel *to_cgi,
int Xe, int Ye, int A, int B)
occam:

PROC cgi.circle(
CHAN OF ANY to.cgi,
VAL INT Xc, Yc, A, B)

Parameters:
Parameter Comment
to_cgi Channel to CGI server
(Xe,Yc) Centre coordinate
A Length of X direction semi axis
B Length of Y direction semi axis
Description:

egi_eirele plots the outline of an axis aligned ellipsoid centred at (Xc,Ye) and
with semi-axis lengths of A and B pixels. Both A and B must be positive, the larger
of the two values is the semi-major axis length, while the lesser specifies the semi-
minor axis length. An outline of a circle is plotted with a diameter equal to either

A or B, if they have identical values.

The outline is clipped to the current screen definition, see cgi_setdrawscreen.
The current pixel replace and plot modes affect the appearance of the outline, see

cgi_setdrawmode.

72 OEK 264 01

May 1992

Diagram:
Current screen
"~ A
T (Xe, Yc)
B

A>B

A = Semi Major Axis
_B = Semi Minor o
72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

6.2.9 cgi_cls
Clear screen.
C:

void cgi_cls(
Channel *to_ecgi,
screen s, int colour)

occam:

PROC cgi.cls(
CHAN OF ANY to.cgi,
VAL [SCREEN.SIZE]INT s,
VAL INT colour)

Parameters:
[Parameter Comment
to_cgi Channel to CGl server
s Screen to clear
eolour Colour

Description:

cgi_cls clears the entire raster area associated with the screen s to the colour

specified by eolour.
The current fill and pixel replace modes are ignored.

72 OEK 264 01

May 1992

40

6.2.10 cgi_copy
2D region block copy.
C:

void cgi_copy(
Channel *to_cgi,
screen s, int Xs, int ¥s,
int DX, int DY,
screen d, int Xd, int ¥d)

occam:

PROC cgi.copy (
CHAN OF ANY to.cgi,
VAL [SCREEN.SIZE]INT s,
VAL INT Xs, Ys, DX, DY,
VAL [SCREEN.SIZE]INT d,
VAL INT Xd, ¥d)

Parameters:
[Parameter Comment
to_cgi Channel to CGI server
s Source screen
(Xs,Ys) Source coordinate
DX Size of region in X direction
DY Size of region in Y direction
d Destination screen
(Xd, Yd) Destination coordinate
Description:

cgi_copy copies a rectangular, axis aligned, region from the source screen s to
the destination screen d. The size of the region is specified by DX pixels in the X
axis direction and DY pixels on the Y axis.

The coordinate (Xs,Ys) identifies the top left hand comer of the region on the
source screen, it is copied to (Xd, ¥d) on the destination screen.

The region is clipped to the destination screen definition. No scaling is performed.

The cumrent orientation and pixel replace modes affect the resultant display, see
cgi_setorient and cgi_setdrawmode.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 41
Diagram:
e ™
Source screen s
(Xs,¥Ys)
Destination screen d
Dy
(Xd, ¥d)
-
Dx
Dy
-
Dx
_ .
72 OEK 264 01 May 1992

42

6.2.11 cgi_disjpolyline
Draw a sequence of disjoint lines.
C:
void cgi_disjpolyline(
Channel *to_cgi,
int n, int *points)
occam:

PROC cgi.disjpolyline (
CHAN OF ANY to.cgi,

VAL INT n,
VAL []INT points)
Parameters:
[Parameter Comment
to_cgi Channel to CGI server
n Number of (X,Y) points
points Line start and end points
Description:

cgi_disjpolyline draws a sequence of disjoint (unconnected) straight lines
between points defined by the integer vector points. The coordinate of a point
is given by an integer pair (X,Y) and lines are drawn between a pair of coordinates
specifying the line's start and end points. Each coordinate is used only once, as
either a line start or as an end point. The first coordinate contained in points is
always freated as a line start point and the next its corresponding end point. The
number of points is given by n which will usually be even (because a line is de-
scribed by two points). If n is odd a single point is plotted instead of the last line,
if it is 1 only a single point is plotted.

Each line is clipped to the cument screen definition, see cgi_setdrawscreen.

The current pixel replace and plot modes affect the appearance of each line, see
cgi_setdrawmode.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

Diagram:
Current screen

4 =

(points[0], points[1]))
(points[4], points[5])
(points[2], points[3])
(points[6], points[7])
ne=4
N P
May 1982

72 OEK 264 01

-

6.2.12 cgi_dot
Plot a point.

C:

void egi_dot(

Channel *to_cgi,
int X, int Y)

occam:
PROC cgi.dot(

CHAN OF ANY to.cgi,

VAL INT X, Y)

Parameters:
[Parameter Comment
to_cgi Channel to CGl server
(X,Y) Coordinate of point
Description:

cgi_dot plots a single point at (X, Y¥).

The point is only plotted if it lies within the extent of the current screen definition,
see cgi_setdrawscreen.

The current pixel replace and plot modes affect the appearance of the point, see

cgi_setdrawmode.

Diagram:

Current screen

4 &
(X,Y)

\ W,

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 45

6.2.13 cgi_errstat
Expound the current CGl error.
C:

int cgi_errstat(
Channel *from cgi, Channel *to_cgi,
char *errtext, int *errqual)

occam:

PROC cgi.errstat(
CHAN OF ANY from.cgi, te.eqi,
[1BYTE errtext,
INT errtext.len,
INT errno, errqual)

Parameters:
Parameter Comment
from_cgi Channel from CGI server
to_cgi Channel to CGI server
errtext Text string indicating error
errtext.len |Length of error string (OCCAM only)
errno CGI error code (OCCAM only)
errqual CGl error qualifier

Note that egi_errstat returns errno.
Description:
cgi_errstat returns the current CGl error status.

The CGI system records the reason for any error condition it encounters during
normal operation, this consists of an error code and an error qualifier.

The error code errno indicates the reason for the current error and the qualifier
errqual further qualifies it in a context sensitive way. For example, if the current
error code describes an invalid pixel replace mode then the error qualifier will con-
tain the offending mode value.

A textual description of the current error code is returned in errtext, this should
contain at least maxErrString characters of storage. For OCCAM, cgi .erz-
stat returns the length of the error string in exrtext. len. The C variant returns
a normal, null terminated, string.

72 OEK 264 01 May 1992

45

The valid error number codes are:

errno Comment

e OK No eror

e_BADPELMODE Invalid pixel plot mode, see cgi_set-
drawmode

e_BADREPMODE Invalid pixel replace mode, see egi_set~-
drawmode

e_BADFILLMODE Invalid fill mode, see cgi_setdrawmode

e_BADSERARCHDIRN Invalid search direction, see egi_search

e_BADSEARCHTEST Invalid search test criteria, see
cgi_search

e_BADFORIMODE Invalid orientation, see cgi_setorient

The current error code and qualifier will be reset to indicate "No error”.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

47

6.2.14 cgi_fcircle
Plot a filled, axis aligned, ellipsoid.
C:

void cgi_feircle
Channel *to ecgi,
int Xc, int Yc, int A, int B)

occam:

PROC cgi.fecircle(
CHAN OF ANY to.cgi,
VAL INT Xec, ¥c, A, B)

Parameters:
Parameter Comment
to_cgi Channel to CGI server
(Xc, Yc) Centre coordinate
A Length of X direction semi axis
B Length of Y direction semi axis
Description:

egi_fairale plots afilled, axis aligned, ellipsoid centred at (Xe, Ya) and with
semi-axis lengths of A and B pixels. Both & and B must be positive, the larger of
the two values is the semi-major axis length, while the lesser specifies the
semi-minor axis length. A filled circle is plotted with a diameter equal to either & or

B, if they have identical values.

Every point plotted is clipped to the current screen definition, see cgi_set-

drawscreen.

The current pixel replace and fill modes affect the appearance of the ellipse, see

cgi_setdrawmode.

72 OEK 264 01

May 1992

Diagram:

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 49

6.2.15 cgi_fanfill
Plot a partially filled, axis aligned, ellipsoid. Closed with chord or segment lines.

C:

void cgi_fanfill (
Channel *to_cgi,
int Xc, int Yc, int A, int B,
int DXs, int DYs, int DXe, int DYe,
int CloseMode)

occam:

PROC cgi.fanfill (
CHAN OF ANY to.cgi,
VAL INT Xe, Yc, A, B, DXs, DYs, DXe, DYe,

CloseMode)
Parameters:

[Parameter Comment

to_cgi Channel to CGI server
(Xe,Ye) Centre coordinate

a Length of X direction semi axis
B Length of Y direction semi axis
(DXs,DYs) Start vector

(DXe,DYe) End vector

CloseMode Close mode

Description:

cgi_fanfill plots part of afilled, axis aligned, ellipsoid centred at (Xe, Yc) and
with semi-axis lengths of A and B pixels. Both A and B must be positive, the larger
of the two values is the semi-major axis length, while the lesser specifies the semi-
minor axis length.

(DXs,DYs) and (DXe,DYe) define direction vectors eminating from the centre
of the ellipse that specify which part of its interior to fill. Only points clockwise of
the (DXs,D¥s) vector and anti clockwise of (DXe,DYe) are plotted.

The partial ellipse is bounded by either a single chord line, joining the two end
points, or a pair of segment lines connecting each end point to the centre of the
ellipse at (Xc,Yc). The value of CloseMode determines which method is used,

valid values are:

CloseMcde Comment
CM_CHORD Close ellipsoid with a chord line
CM_SEGMENT |Close ellipsoid with two segment lines

72 OEK 264 01 May 1992

50

Every point plotted is clipped to the current screen definition, see cgi_set-
drawscreen.

The current pixel replace and fill modes affect the appearance of the ellipse, see
cgi_setdrawmode.

Diagram:

Current screen

(" = (DXs,DYs) g

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 51

6.2.16 cgi_fhline

Plot a sequence of filled, horizontal, line segments.
C:

void cgi fhline(

Channel *to_cgi,
int Y, int n, int *Xords)

occam:

PROC cgi.fhline(
CHAN OF ANY to.cgi,
VAL INT ¥, n,

VAL []INT Xords)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

Y Line segment Y ordinate

n Number of X ordinates

Xords Segment start and end X ordinates
Description:

cgi_fhline plots a sequence of filled horizontal line segments between points
defined by the integer vector Xords in conjunction with the single Y axis ordinate
Y. The coordinate of a point is given by an integer pair (X,Y) and lines are filled be-
tween a pair of coordinates specifying the line's start and end points on the horizon-
tal line Y. Each coordinate is used only once, as either a line start oras an end point.
When combined with ¥, the first X axis ordinate contained in Xoxds is always
treated as a line start point and the next value used to define its coresponding end
point. The number of X axis ordinates is given by n which must be even (because
a line is described by two points).

Every line filled is clipped to the current screen definition, see cgi_setdraws-
creen.

The current pixel replace and fill modes affect the appearance of each line, see
cgi_setdrawmode.

72 OEK 264 01 May 1992

Diagram:
Current screen
7= ™
(Xords[1],Y) (Xords [3],Y)
(Xords[0],Y) (Xords[2],Y)
Ln = 4
. S

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

53

6.2.17 cgi_frect

Plot a filled, axis aligned, rectangle.

C:

void ecgi_frect(

Channel *to cgi,

int X0, int Y0, int X1, int Y1)

occam:
PROC cgi.frect(

CHAN OF ANY to.cgi,
VAL INT X0, Y0, X1, ¥1)

Parameters:
[Parameter Comment
to_egi Channel to CGI server
(X0,Y0) Corner point coordinate
(X1,Y1) Opposite point coordinate
Description:

egi_frect plots afilled, axis aligned, rectangle between two diagonally opposite

points specified by the coordinates (X0,Y0) and (X1,¥1).

Every point plotted is clipped to the current screen definition, see cgi_set-

drawscreen.

The current pixel replace and fill modes affect the appearance of the rectangle, see

cgi_setdrawmode.

Diagram:

72 OEK 264 01

May 1992

54

Current screen

Py

(X0,Y0)

(X1,Y1)

72 OEK 264 01

May 1992

IMS F003C 2D graphics occam and C libraries 55

6.2.18 cgi_ftrap
Plot a filled trapezoid.

C:

void cgi_ftrap(
Channel *to cgi,
int X1, int Y1, int X2, int Y2,
int X3, int Y3, int X4, int Y4,
int ¥s, int Ye)

occam:

PROC cgi.ftrap(
CHAN OF ANY to.cgi,
VAL INT X1, Y1, X2, Y2, X3, Y3, X4, Y4, Ys, Ye)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

(X1,Y1) First edge: Start point coordinate

(X2,Y2) First edge: End point coordinate

(X3,Y3) Second edge: Start point coordinate

(X4,Y4) Second edge: End point coordinate

Ys Top horizontal Y axis bound

Ye Bottom horizontal Y axis bound
Description:

cgi_£ftrap plots afilled trapezoid. The trapezoid is horizontally bounded by two
non-horizontal edges, filling occurs between the left and right edge lines. The first
edge is specified by a straight line between the points (X1,¥1) and (X2,Y2) and
the second edge by aline between (X3,Y3) and (X4,Y4). Thefill areais vertical-
ly bounded by two horizontal edges. The top edge is described by a horizontal line
with a Y axis value equal to the larger of Ys and the smallest Y1, ¥2, ¥3 or Y4 ordi-
nate. The bottom edge line has a Y axis value equal to the lesser of Ye and the
largest Y1, Y2, ¥3 or Y4 ordinate.

The left and right edge lines may intersect. If they do, an object similar in shape
to an hour glass (two touching triangles) will be plotted.

Every point plotted is clipped to the current screen definition, see cgi_set-
drawscreen.

The current pixel replace and fill modes affect the appearance of the trapezoid, see
cgi_setdrawmode.

72 OEK 264 01 May 1992

Diagram:
Current screen
-~ ™

(X1,Y1)

1 (X4,Y4)
(.

X Y,
72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 57

6.2.19 cgi_line
Draw a straight line between two points.
C:
void cgi_line(
Channel *to_cgi,
int X0, int Y0, int X1, int Y1)
occam:

PROC cgi.line(
CHAN OF ANY to.cgi,
VAL INT X0, YO, X1, Y1)

Parameters:
Parameter Comment
to_cgi Channel to CGl server
(X0,Y0) Start point coordinate
(X1,Y1) End point coordinate
Description:

cgi_line plots a straight line between two points specified by the coordinates
(X0,Y0) and (X1,Y¥1).

Every point plotted is clipped to the current screen definition, see cgi_set~
drawscreen.

The current pixel replace and plot modes affect the appearance of the line, see
cgi_setdrawmode.

Diagram:

72 OEK 264 01 May 1992

Current screen
" N
(X1,Y1)
(X0,Y0)
K. ik
72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 59

6.2.20 cgi_paint

Paint (flood fill) a bounded region.
C
void egi_paint(
Channel *to_cgi,
int Xs, int ¥s, int Bcol)
occam:
PROC cgi.paint(

CHAN OF ANY to.cgi,
VAL INT Xs, ¥Ys, Bcol)

Parameters:
Parameter Comment
to_cgi Channel to CGl server
(Xs,¥s) Interior point coordinate
Beol Boundary colour
Description:

cgi_paint flood fills a bounded region. The region is specified by a boundary of
constant colour Beol and filling starts at an interior point given by the coordinate
(Xs,¥s).Ifthe pixel atthis point already has the value Beol then nofilling occurs.

The current pixel replace and fill modes affect the resultant display, see egi_set-
drawmode.

Filling with the current foreground colour (fill mode FM_COL and plot mode
PM_COL) equal to the defined boundary colour produces a correct result. However,
the use of afill pattern which contains pixels of the boundary colour will almost cer-

tainly fail.

The fill algorithm guarantees correct behaviour when a logical pixel replace mode
is active by plotting each pixel once only, see cgi_setdrawmode.

The fill region is clipped to the current screen definition, see cgi_setdraws-
creenmn.

72 OEK 264 01 May 1992

Diagram:

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

61

6.2.21 cgi_polygon
Outline a polygon.

C:

void egi_polygon (

Channel *to_cgi,
int n, int *points)

occam:

PROC cgi.polygon(
CHAN OF ANY to.cgi,

VAL INT n,
VAL []INT points)
Parameters:
[Parameter Comment
to_cgi Channel to CGI server
n Number of (X,Y) points
points Polygon vertex points
Description:

cgi_polygon plots the outline of a polygon by drawing a sequence of connected,
straight lines, between its vertex points. The polygon’s last vertex point is con-
nected to its first to complete the outline. The coordinate of each point is given by
an integer pair (X,Y) taken from the vector points, the number of points is speci-
fied by n. Lines are drawn in the order defined by each consecutive point contained
inpoints. If only one coordinate is present, or if all the points are coincident, then

a single point is plotted.

The outline is clipped fo the current screen definition, see cgi_setdrawscreen.

The current pixel replace and plot modes affect the appearance of the outline, see

cgi_setdrawmode.

72 OEK 264 01

May 1992

62

Diagram:
Current screen
d (points (2] ,points([3])

(points[0] ,points[1])

(points[4] ,points[5])

(points[8] ,points[9])

St 5 (points[6],points[7]) S

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 63

6.2.22 cgi_polyline

Draw a sequence of connected lines.
C:
void egi_polyline (

Channel *to cgi,

int n, int *points)
occam:

PROC cgi.polyline(
CHAN OF ANY to.cgi,

VAL INT n,
VAL []INT points)
Parameters:
Parameter Comment
to_cgi Channel to CGI server
n Number of (X,Y) points
points Line start and end points
Description:

egi_polyline draws a sequence of straight lines connecting the points defined
by the integer vector points. The number of points is specified by n. The coordi-
nate of a pointis given by an integer pair (X,Y) and lines are drawn between a pair
of coordinates specifying the line's start and end points. The drawing order is de-
fined by each consecutive point contained in points. The resulting, continuous
line, is called a polyline.

The polyline is clipped to the cumrent screen definition, see cgi_setdrawscreen.

The current pixel replace and plot modes affect the appearance of the polyline, see
cgi_setdrawmode.

72 OEK 264 01 May 1992

84

Diagram:
Current screen
= B ¢
(points[0] ,points[1]) (points[4] ,points[5])
(points[2] ,points[3])
(points[8] ,pointsa[9]) (points[6] ,points[7])
\n=5 J

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 65

6.2.23 cgi_rect
Outline an axis aligned rectangle.
C:

void cgi_rect(
Channel *to_cgi,
int X0, int Y0, int X1, int Y1)

occam:

PROC cgi.rect(
CHAN OF ANY to.cgi,
VAL INT X0, Y0, X1, Y1)

Parameters:
[Parameter Comment
to_cgi Channel to CGI server
(X0,Y0) Corner point coordinate
(X1,Y1) Opposite point coordinate
Description:

cgi_rect plots an outline of an axis aligned rectangle between two diagonally op-
posite points specified by the coordinates (x0,Y0) and (X1,¥1).

The outline is clipped to the current screen definition, see cgi_setdrawscreen.

The current pixel replace and plot modes affect the appearance of the outline, see
cgi_setdrawmode.

72 OEK 264 01 May 1992

66

Diagram:
Current screen
f’ ™
(x0,Y0)
(X1,Y1)
. J
72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 67

6.2.24 cgi_rot
2D region block rotation.
C:

void egi_rot(
Channel *to_cgi,
screen s, int Xs, int ¥Ys, int LSX, int LSY,
int Xd, int Yd, float angle)

occam:

PROC cgi.rot(
CHAN OF ANY to.cgi,
VAL [SCREEN.SIZE]INT s,
VAL INT Xs, Ys, LSX, LSY, Xd, Yd,
VAL REAL32 angle)

Parameters:
[Parameter Comment
to_cgi Channel to CGI server
s Screen
(Xs,Ys) Source coordinate
LSX Size of region in X direction
LSY Size of region in Y direction
(Xd, Yd) Destination coordinate
angle Radian angle of rotation
Description:

cgi_rot copies and rotates a rectangular, axis aligned, region from the source
screen s to the current drawing screen. The size of the source region is specified
by DX pixels in the X axis direction and DY pixels on the Y axis. It is rotated through
an angle of angle radians, a positive value denotes an anti-clockwise angle of ro-
tation.

The coordinate (Xs,¥s) identifies the top left hand comer of the region on the
source screen, its rotated copy is plotted at (Xd,¥d) on the current drawing

screen.

The rotated region is clipped to the current screen definition, see cgi_setdraws-
creen.

The current pixel replace mode affects the resultant display, see cgi_setdraw-
mode.

72 OEK 264 01 May 1992

Diagram:
Source screen
(" (Xs,Xs)
LSY
Angle
-4 LSX
(%d, Yd)
LSY

N
72 OEK 264 01

May 1992

IMS F003C 2D graphics occam and C libraries

69

6.2.25 cgi_search

Scan a horizontal line segment for colour change.

C:

int cgi_search(

Channel *from cgi, Channel *to _cgi,
int Xs, int Ys, int Beol,
int sense, int dirn)

occam:
PROC cgi.search(

CHAN OF ANY from.cgi, to.cgi,
VAL INT Xs, Ys, Bcol, sense, dirn,

INT xposn)

Parameters:
Parameter Comment
from_cgi Channel from CGl server
to_cgi Channel to CGI server
(Xs,Ys) Search point coordinate
Beol Colour transition
sense Search criteria
dirn Search direction
xposn X axis result (OCCAM only)

Note that cgi_search returns xposn.

Description:

cgi_search is used to discover where on a horizontal line, a particular colour
change occurs. The start point for the search is specified by the coordinate
(Xs,Ys), the search occurs along a horizontal line drawn through it. The search
proceeds in one of two directions: either to the left of the start point, or to its right,
as specified by dirn. Searching continues until a pixel of the transition colour
Beol is discovered, or until a pixel of some other colour is found. The search crite-
ria sense defines which method to use.

Valid search direction values are:

Search direction Comment

S_LEFT
S_RIGHT

Search left of start point
Search right of start point

72 OEK 264 01

May 1992

70

Valid search criteria values are:
Search test |Comment
S_WHILENOT

Search until a pixel of colour Beol is
discovered

S_WHILEGOT Search until a pixel not equal in colour
fo Beol is discovered

Diagram:

Current screen

g k.

-~ — — — — — —_———— — — — -
S_LEFT (Xs,Ys) S_RIGHT

N .
72 OEK 264 01

May 1992

IMS F003C 2D graphics occam and C libraries

71

6.2.26 cgi_setbcol

Set current background colour.

C:
oid cgi_setbeol (

Channel *to_cgi,

int Beeol)
occam:

PROC cgi.setbcol (
CHAN OF ANY to.cgi,

VAL INT Bcol)

Parameters:
Parameter Comment
to_egi Channel to CGI server
Beol Background colour
Description:

cgi_setbeol sets the current background colour to Beol.

72 OEK 264 01

May 1992

72

6.2.27 cgi_setdrawmode
Set current draw modes for plotting, filling and logical pixel operations.
C:
void cgi_setdrawmode (
Channel *to_cgi,
int pm, int rm, int fm)
occam:

PROC cgi.setdrawmode (
CHAN OF ANY to.cgi,
VAL INT pm, rm, fm)

Parameters:
Parameter Comment
to_cgi Channel to CGl server
pm Plot mode
m Replace mode
fm Fill mode
Description:

cgi_setdrawmode sets the current pixel plot, replace and fill modes to pm, zm
and fm respectively.

The pixel plot mode pm affects the result of most drawing operations, such as
cgi_polyline or cgi_arc. Drawing operations are achieved by plotting a se-
quence of points according to the current plot mode. It defines whether a single
pixel, the current picture element or the current line style pattern is used to deter-
mine how each point should be plotted. Valid pixel plot modes are:

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 73

Plot mode

Comment

PM_COL

PM_LINESTYLE

PM_PEL

PM_LS_PEL

Points are plotted as a single pixel in the current fore
ground colour, see cgi_setfcol

Points are plotted according fo the current line style pat-
tern, see cgi_setlinestyle

PM_LINESTYLETR |As PM_LINESTYLE, except that zero valued linestyle

pattern pixels are not plotted. This achieves a transpar-
ency affect

Single points are represented by the current picture ele-
ment pattern, see cgi_setpelstyle

As PM_LINESTYLE, except that single points defined by
the curent line style pattern are replaced by the current
picture element pattern.

The pixel replace mode rm affects the result of all drawing and fill operations. It de-
fines how pixels are ultimately written into the current frame store and therefore the
colour that each pixel will assume when displayed. Pixels can either be combined
(using a bitwise operator) with the value of a pixel at the same location, or they can
be written directly into the frame store. Valid pixel replace modes are:

Replace mode

Comment

RM_COL

Overwrite mode: pixel defined by the current foreground
colour, see cgi_setfecol

RM_AND Colour defined by the bitwise AND of the new pixel value
and the existing framestore pixel

RM_OR Colour defined by the bitwise OR of the new pixel value
and the existing framestore pixel

RM_XOR Colour defined by the bitwise XOR of the new pixel value
and the existing framestore pixel

RM_NOR Colour defined by the bitwise NOR of the new pixel value
and the existing framestore pixel

RM_NAND Colour defined by the bitwise NAND of the new pixel value
and the existing framestore pixel

RM 2 Overwrite mode: existing framestore pixel only over written
with zero valued new pixels

RM NZ Overwrite mode: existing framestore pixel only over written
with non-zero valued new pixels

RM_ALL Overwrite existing pixel with new pixel value

72 OEK 264 01 May 1992

74

The fill mode £m affects only fill operations, such as cgi_£frect. It defines how
filling should be performed, valid fill modes are:

Fill mode Comment
FM_COL Fill with current foreground colour, see
cgi_setfeol

FM_PATTERN Fill with current fill style, see
cgi_setfillstyle

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

75

6.2.28 cgi_setdrawscreen

Set current drawing screen.

C:

void cgi_setdrawscreen(
Channel *to_cgi,
screen s)

occam:

PROC cgi.setdrawscreen (
CHAN OF ANY to.cgi,
VAL [SCREEN.SIZE]INT s)

Parameters:
Parameter Comment
to_cgi Channel to CGI server
s Screen
Description:

cgi_setdrawscreen sets the current screen. The screen, specified by s, de-
fines the size and location of the frame store raster to use for all subsequent CGI

operations.

72 OEK 264 01

May 1992

76

6.2.29 cgi_setfcol
Set current foreground colour.
C:
void cgi_setfecol (
Channel *to_cgi,
int Feol)
occam:

PROC cgi.setfeol (
CHAN OF ANY to.cgi,

VAL INT Fcol)
Parameters:

[Parameter Comment

to_cgi Channel to CGI server

Fcol Foreground colour
Description:

agi_setfesl sete the current foreground colour to Feol.

72 OEK 264 01

May 1992

IMS F003C 2D graphics occam and C libraries 77

6.2.30 cgi_setfillstyle
Set current customised fill style.
C:

void cgi_setfillstyle(
Channel *to_cgi,
int fxsize, int fysize,
char *fillmap)

occam:

PROC cgi.setfillstyle(
CHAN OF ANY to.cgi,
VAL INT fxsize, fysize,
VAL []BYTE fillmap)

Parameters:
Parameter Comment
to_cgi Channel to CGl server
fxsize Width of fill style on X axis
fysize Height of fill style on'Y axis
fillmap Fill style pixel map

Description:

cgi_setfillstyle sets the current fill style. Fill styles are represented by a two
dimensional pattern which is used to tile a screen area during patterned fill opera-
tions: the pattern is replicated over the screen area to be filled. The size of the fill
pattern is given by £x=i ze pixels in the X axis direction, and £ysize pixels along
the Y axis. The fill style is described by the vector £i11map which should contain,
in horizontal line order, each row of pixels that make up the custom fill pattern. The
maximum width and height of a fill pattern is maxFil1Size pixels.

Note that the current fill style is only used for fill operations if the current fill mede
is FM_PATTERN, see cgi_setdrawmode.

The current pixel replace mode affects the resultant display: pixels defined by the
fill pattern are plotted according to the current pixel replace mode. See cgi_set-
drawmode.

72 OEK 264 01 May 1992

78

6.2.31 cgi_setfont
Set current text font.

C:

int cgi_setfont(
Channel *from cgi, Channel *to_cgi,
unsigned int *packfont,
int nchars, int famw, int fwpc, int flpw)

occam:

PROC cgi.setfont(
CHAN OF ANY from.cgi, to.cgi,
VAL INT[] packfont,
VAL INT nchars, famw, fwpc, flpw,

BOOL ok)
Parameters:
Parameter Comment
from cgi Channel from CGl server
to_cgi Channel to CGl server
packfont Encoded font
nchars Number of characters in font
famw Width of unpacked character in bits
fwpc Number of 32 bit words per character
flpw Number of encoded rows per 32 bit word
ok Success status (OCCAM only)

Note that cgi_set£ont retums non-zero if the font was loaded successfully, zero
otherwise. cgi.setfont retumns the boolean variable ok to indicate success or
failure.

Description:

cgi_set£font loads a font description into the CGI server. Only one font may be
active at any one instant so this operation will overwrite any existing font descrip-
tion held by the server. If there is insufficient memory for the new font cgi_set-
font will return an error status.

Fonts are described by an integer vector which contains a packed representation
of each character contained in the font. A font can contain any number of charac-
ters only limited by the memory restrictions of the CGI server. A bit mask is used
to represent each character cell, this has a constant width and height for all the
characters of the same font. Bits are listed in horizontal scan line order for each
character: a one bit represents a coloured pixel and a zero bit the background. The

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 79

bit masks for each character are packed into a number of 32 bit words, these are
then concatenated to produce the packed font. The order defines how characters
are retrieved from the font: the integer value of a character is used as the index of
the comesponding character cell within the font array, if ASCII text representation
is required then the font should contain character descriptions at positions that cor-
respond to the ASCII encoding.

packfont is an integer vector that describes a font containing nchars charac-
ters. Character cells are described by the parameters famw, fwpc and £1pw. The
width of the font is given by £amw, this specifies the number of bits to use per hori-
zontal row. Each bit defines whether a foreground or background pixel is plotted.
£wpc is the number of 32 bit words required to encode one character celland £1pw
is the number of horizontal rows encoded per word.

All text operations use the current font description.

Section 10.1 'Using and defining text fonts’ describes this in more detail.

72 OEK 264 01 May 1982

80

6.2.32 cgi_setlinestyle
Set current customised line style.
C:

void egi_setlinestyle(
Channel *to_cgi,
int n, char *ls,
int zoomFac)

occam:

PROC cgi.setlinestyle(
CHAN OF ANY to.cgi,
VAL INT n,

VAL []BYTE ls,
VAL INT zoomFac)

Parameters:
Parameter Comment
to_cgi Channel to CGI server
n Length of line style
1s Line style pixel map
zoomFac Zoom factor
Description:

cgi_setlinestyle sets the current line style. Line styles are represented by a
one dimensional vector of pixels. During drawing operations, the current line style
vector can be used to define the value of the next pixel to plot. Pixels are taken from
the line style vector and used to plot a specific number of subsequent points, as
defined by the line style zoom factor. When a pixel value has been exhausted the
next pixel from the line style vector is used, if it was the last pixel then the first pixel
is re-used.

1s describes a line style of length n pixels. The maximum length of a line style is
maxLineStyle pixels, the minimum length is 1.

The number of times a line style pixel is plotted is given by the zoom factor zoom-
Fac.

Note that the current line style is only used for drawing operations if the current pix-
el plot mode specifies one of the line style plot functions, see cgi_setdrawmode.

The current pixel replace mode affects the resultant display: pixels defined by the

line style are plotted according to the current pixel replace mode. See cgi_set-
drawmode.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

81

6.2.33 cgi_setorient

Set current orientation for text and copy operations.

C:

void cgi_setorient(
Channel *to_cgi,
int orient)

occam:
PROC cgi.setorient(

CHAN OF ANY to.cgi,

VAL INT orient)

Parameters:
[Parameter Comment
to_cgi Channel to CGI server
orient Orientation
Description:

cgi_setorient sets the current orientation mode to orient. This specifies one
of eight, axis aligned, orientations to apply when plotting characters or performing
two dimensional block copy operations (see cgi_copy). Valid orientation values

are:
Orientation |Comment
TX_NORM Normal orientation
TX_90 Rotate 90 degrees clockwise
TX_180 Rotate 180 degrees clockwise
TX_270 Rotate 270 degrees clockwise
TX_NORMFLIP |Flip top to bottom
TX_90FLIP Rotate 90 degrees clockwise, then flip
top to bottom
TX_180FLIP Rotate 180 degrees clockwise, then
flip top to bottom
TX 270FLIP Rotate 270 degrees clockwise, then
flip top to bottom
72 OEK 264 01

May 1992

82

6.2.34 cgi_setpelstyle
Set current customised pel style.
C:
void cgi_setpelstyle(
Channel *to_cgi,
int pxsize, int pysize,
char *pelmap,
int xorg, int yorg)
occam:

PROC cgi.setpelstyle(
CHAN OF ANY to.cgi,
VAL INT pxsize, pysize,
VAL []BYTE pelmap,

VAL INT xorg, yorg)

Parameters:
Parameter Comment
to_cgi Channel to CGI server
pxsize Width of pel style on X axis
Pysize Height of pel style on Y axis
pelmap Pel style pixel map
(xorg,yorg) |Offset to centre of Pel

Description:

cgi_setpelstyle sets the cumrent pel style. Pel styles are represented by a two
dimensional pattern which is copied into the current screen where a single point
would otherwise have been plotted. Every operation that is implemented by draw-

ing a sequence of points, such as egi_line, can be configured to plot the pel style
pattern instead.

The size of the pel pattern is given by pxsize pixels in the X axis direction, and
pysize pixels along the Y axis. The pel style is described by the vector pelmap
which should contain, in horizontal line order, each row of pixels that make up the
custom pel pattern. The maximum width and height of a pel pattern ismaxPelSize
pixels.

The pel style has a single point, located within its bulk, that identifies an origin. Pels
are plotted such that their origins are positioned at the coordinate of the replaced
point. (xorg,yorg) defines the origin of the Pel style as an offset from the base
of its two dimensional pattern, (top left hand corner).

The current pixel replace mode affects the resultant display: pixels defined by the
pel style are plotted according to the current pixel replace mode. See egi_set-
drawmode.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 83

Note that the current pel style is only used for drawing operations if the current pixel
plot mode specifies one of the pel functions, see egi_setdrawmode.

Diagram:

Current screen

i g

pxsize
i {Xorg, Yorg)
pysize
]
_ o
May 1992

72 OEK 264 01

84

6.2.35 cgi_shear
2D region block shear.
C:

void cgi_shear(
Channel *to_cgi,
screen s, int Xs, int Ys, int LSX, int LSY,
int Xd, int Yd,
int LDXx, int IDXy, int LDYx, int LDYy)

occam:

PROC cgi.shear(
CHAN OF ANY to.cgi,
VAL [SCREEN.SIZE]INT s,
VAL INT Xs, Ys, LSX, LSY, Xd, ¥d,
LDXx, LDXy, LDYx, LDYy)

Parameters:
[Parameter Comment
to_cgi Channel to CGI server
s Screen
(Xs,Ys) Source coordinate
LsSX Size of region in X direction
LSY Size of region in Y direction
(Xd, ¥d) Destination coordinate
LDXx,LDXy LSX shear control
LDYx,LDYy LSY shear control
Description:

cgi_shear copies and shears a rectangular, axis aligned, region from the source
screen s to the current drawing screen. The size of the source region is specified
by LsX pixels in the X axis direction and LSY pixels on the Y axis. Itis sheared ac-
cording to the value of the four shear control parameters: LDXx, LDXy, LDYx and
LDYy. LDXx and LDXy control the amount and direction of the shear along the
LsX line: LDXx is the component of shear in the X axis direction, LDXy is the Y axis
component. Similarly, LDYx and LDYy control the shear along the LSY line, LDYx
is the X axis component and LDYy is the Y axis part. Each pair of shear control pa-
rameters define a right-angled triangle with axis aligned sides, the hypoteneus
lines define the direction of the sheared horizontal or vertical edges of the original,
rectangular, region.

The coordinate (Xs,Ys) identifies the top left hand comer of the region on the
source screen, its sheared copy is plotted at (Xd,Yd) on the current drawing
screen.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 85

The sheared region is clipped to the cument screen definition, see
cgi_setdrawscreen.

The current pixel replace mode affects the resultant display, see
cgi_setdrawmode.

Diagram:

Current screen E
N | LDxy

72 OEK 264 01 May 1992

86

6.2.36 cgi_sptext
Plot text at specified position, with spacing control.
C:

void cgi_sptext(
Channel *to_cgi,
int X, int Y,
int n, char *str,
int *dx, int *dy)

occam:

PROC cgi.sptext(
CHAN OF ANY to.cgi,
VAL INT X, Y, n,
VAL []BYTE str,
VAL []INT dx, dy)

Parameters:

Parameter Comment

to_cgi Channel to CGI server

(X,Y) Start coordinate

n Number of characters to plot

str Character string

dx X axis character spacing distances
dy Y axis character spacing distances
Description:

cgi_sptext plots n characters from the character string str according to the
current font description. The first character is plotted at the current character posi-
tion, which is initially set to (X, ¥). Itis then incremented by X and Y axis offsets
specified by the inter-character spacing vectors dx and dy, for the character. Sub-
sequent characters are plotted in the same manner, using the next pair of spacing
distances. The current character position after the operation completes is offset
from the first character plotted by X and Y axis distances equal to the sum of the
dx and dy spacing vectors respectively.

The spacing vectors should be set with respect to the current orientation, see
cgi_setorient. Characters are plotted according to the current pixel replace
mode, see cgi_setdrawmode.

Characters are reproduced at the size of their font, which should be initialised, see
cgi_setfont. Each pixel of every character plotted is clipped to the current
screen definition, see cgi_setdrawscreen.

For text display, the default pixel replace mode RM_COL, will cause characters to
imprint within a rectangular bounding box of colour 0. In some cases this will not

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 87

produce the desired effect. If only the foreground of the text is required and a pixel
overwrite mode rather than a logical operation is desired then select pixel replace
mode RM_NZ. This will cause only those pixels which are non-zero to be plotted.

Diagram:
Current screen
P ™
dxz[0
ayto] 7 ~1 &H
- T gy(1]
6.3y & WPlbeel L A
t strll] ><
ax[2] /
str[0] dy{Zi/ str[2]
€ Tax[3] t
dy[3]
i str[3]
» = current character position
_ S
May 1992

72 OEK 264 01

88

6.2.37 cgi_strokearc

Outline part of an axis aligned ellipsoid, closed with chord or segment lines.

C:

void ecgi_strokearc(
Channel *to_cgi,
int Xc, int Yo, int A, int B,
int DXs, int DYs, int DXe, int DYe,
int CloseMode)

occam:

PROC cgi.strokearc(
CHAN OF ANY to.cgi,
VAL INT Xc, Ye, A, B, DXs, DYs, DXe, DYe,
CloseMode)

Parameters:
[Parameter Comment
to_cgi Channel to CGI server
(Xe, Ye) Centre coordinate
A Length of X direction semi axis
B Length of Y direction semi axis
(DXs,DYs) Start vector
(DXe,DYe) End vector
CloseMode Close mode for arc
Description:

cgi_strokearc performs the same function as egi_arce. However, when
drawing with a defined line style, cgi_strokearc achieves a more pleasing re-
sult. This is because cgi_strokearc uses a non-optimal algorithm and calcu-
lates individual points rather than using a faster (less accurate) technique.

72 OEK 264 01

May 1992

IMS F003C 2D graphics occam and C libraries

89

Diagram:
Current screen
4 (DXs,DYs) h
P e A
S
y CM_SE
/ N\

/

/ 5,

A CM_CHO

= (Xc,Yc)

\

\
N
®,
~~ B
T e, W e AN
A>B (DXe,DYe)
A = Semi Major Axis
\ B = Semi Minor Axis J
May 1992

72 OEK 264 01

90

6.2.38 cgi_text
Plot text at specified position.

C:

void cgi_text(
Channel *to_cgi,
int X, int ¥,
int n, char *str)

occam:

PROC cgi.text(
CHAN OF ANY to.cgi,
VAL INT X, Y, n,
VAL []BYTE str)

Parameters:
Parameter Comment
to_cgi Channel to CGI server
(X,Y) Start coordinate
n Number of characters o plot
str Character sfring
Description:

egi_text plots n characters from the character string str according to the cur-
rent fontdescription, Characters are plotted at the current character position which
is then incremented by the currently defined X and Y axis inter-character spacing
distances, see cgi_chrspace. The current character position after the operation
completes is offset from the last character plotted by these distances.

Characters are plotted according to the current pixel replace mode, see cgi_set-
drawmode and the cumrent orientation, see cgi_setorient.

Characters are reproduced at the size of their font, which should be initialised, see
cgi_setfont. Each pixel of every character plotted is clipped to the cument
screen definition, see cgi_setdrawscreen.

For text display, the default pixel replace mode RM_COL, will cause characters to
imprint within a rectangular bounding box of colour 0. In some cases this will not
produce the desired effect. If only the foreground of the text is required and a pixel
overwrite mode rather than a logical operation is desired then select pixel replace
mode RM_NZ. This will cause only those pixels which are non-zero fo be plotted.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

91

-

Diagram:
Current screen
%
7 i P ool ¥
;/ \\\ // \\\ / : / \\\
I! ‘r: Tf '|" \
(x,¥) t ‘ 6 ‘ >< ‘ t !
str[0] strll] str[2] str[3]
n =4
3 L& = current character position
= current inter—character spacing p
May 1992

72 OEK 264 01

92

6.2.39 cgi_zoom
2D region block copy with zoom scaling.
C:

void cgi_zoom(
Channel *to_cgi,
screen s,
int Xs, int ¥s, int LSX, int LSY,
screen d,
int Xd, int Yd, int LDX, int LDY,
int interpolate)

occam:

PROC egi.zoom(
CHAN OF ANY to.cqgi,
VAL [SCREEN.SIZE]INT s,
VAL INT Xs, Ys, LSX, LsY,
VAL [SCREEN.SIZE]INT d,
VAL INT Xd, Yd, LDX, LDY, interpolate)

Parameters:
Parameter Comment
to_cgi Channel to CGl server
s Source screen
(Xs,¥Ys) Source coordinate
LSX Size of source in X direction
LSY Size of source in Y direction
d Destination screen
(Xd, ¥d) Destination coordinate
LDX Size of destination in X direction
LDY Size of destination in Y direction
interpolate |Interpolated zoom flag
Description:

cgi_zoom copies a rectangular, axis aligned, region from the source screen s to
the destination screen d. it performs arbitrary scaling independently in the X and
Y axis directions to achieve a zoom effect.

The size of the source region is specified by LSX pixels in the X axis direction and
LSY pixels on the Y axis. It is scaled to fit the size of the destination region given
by LDX pixels in the X axis direction and LDY pixels on the Y axis.

The coordinate (Xs,Ys) identifies the top left hand comer of the region on the
source screen, it is copied to (Xd,Yd) on the destination screen.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 93

interpolate controls whether an interpolated zoom will be performed. If it has
the value zero, no interpolation will be performed. If it is non-zero an interpolation
algorithm will be applied when copying pixels to the destination screen.

The scaled source region is clipped to the destination screen definition.
The current pixel replace mode affects the resultant display, see cgi_setdraw-
mode.

Diagram:

Source screen s

(Xs,¥s) Destination screen d

Lsui V
] (Xd, ¥d)

-3
7
LDY

N

72 OEK 264 01 May 1992

72 OEK 264 01 May 1992

95

[Graphics board
functions

7.1 List of functions

711 fs_screenaddr
Return the raster address of a screen.
C:

char *fs_screenaddr (
Channel *from cgi, Channel *to cgi,
int bank) =
Note:
There is no equivalent occam variant of this function because the language does
not support indirect addressing.

Parameters:
Parameter Comment
from_cgi Channel from CGl server
to egi Channel to CGlI server
bank Bank number
Description:

fs_screenaddr retums what would be the raster address of a physical screen
if mapped to video memory bank bank. If called from the same processor as the
CGl server this can be used for directly accessing the raster memory associated
with a physical screen.

72 OEK 264 01 May 1992

96

71.2 fs_displaybank
Display a video memory bank.
C:
void fs_displaybank (
Channel *to_cgi,
int bank)
occam:

PROC fs.displaybank (
CHAN OF ANY to.cgi,
VAL INT bank)

Parameters:
[Parameter Comment
to_cgi Channel to CGI server
bank Bank number
Description:

fs_displaybank programs the graphics hardware to display a particular bank
of video memory. The output subsequently generated on a monitor will
to the contents of the video memory bank identified by bank.

Physical CGl screens, which have their raster memory areas represented by video
memory banks, are displayed in this way. See £s_initscreen.

The video memory bank displayed by fs_displaybank need not correspond to
the current CGI drawing screen, see cgi_setdrawscreen.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries ar

7.1.3 fs_initscreen

Initialise a physical CGI screen.

C:

void fs_initscreen(
Channel *from cgi, Channel *to_cgi,
screenptr s,
int bank)

occam:

PROC fs.initscreen(
CHAN OF ANY from.cgi, to.cgi,
[SCREEN.SIZE] INT s,
VAL INT bank)

Parameters:
Parameter Comment
from cgi Channel from CGI server
to_cgi Channel to CGl server
s Screen
bank Bank number
Description:

fs_initscreen creates and initialises a physical CGl screen ready for graphics
operations. It is returned in s. The horizontal and vertical dimensions of the screen
are determined by the graphics board display resolution, this is fixed when initialis-
ing the graphics board with £s_openboard. All physical screens have the same
dimensions.

The physical screen has its raster memory area mapped to the video memory bank
specified by bank. Depending on the display resolution and the total amount of vid-
eo memory available, a variable number of video memory banks will be present.
If the bank number is out of range then the screen returned will be mapped to bank
zero (which is always available) and its X and Y axis dimensions set to zero. This
renders the screen useless for normal CGI operations.

The screen can be made visible by displaying the video memory bank associated
with it, see cgi_displaybank.

72 OEK 264 01 May 1992

98

7.1.4 fs_setpalette
Set colour palette entry
C:
void fs_setpalette(
Channel *to_cgi,
int clutno, int red, int green, int blue)
occam:

PROC fs.setpalette(
CHAN OF ANY to.cgi,
VAL INT clutno, red, green, blue)

Parameters:
Parameter Comment
to _cgi Channel to CGI server
clutno Colour palette index
red Red colour component
green Green colour component
blue Blue colour component

Description:

cgi_setpalette programs one entry in the colour palette. The CGl system uses
a fixed size colour palette containing maxPalette colour entries. Each entry is 24
bits wide and consists of a red, a blue and a green component. The entry fo pro-
gram is given by clutno and the comesponding colour components by red,
green and blue,

Colour component values range between 0 and 255. Small values indicate a low
intensity and larger values a higher intensity.

The include files: colours.h and colours. inc contain red, green and blue co-
lour component definitions for a number of interesting colours.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 99

71.5 fs_openboard
Initialise a graphics board for use.
C:

void fs_openboard(
Channel *to_cgi,
VIG vtg)

occam:

PROC fs.openboard(
CHAN OF ANY to.cgi,
VAL [VTG.SIZE]INT vtg)

Parameters:
Parameter Comment
to_cgi Channel to CGI server
vtg Video timing parameters
Description:

£s_openboard initialises a graphics board. It causes the CGlI display server to
perform whatever device dependent actions are necessary to setup the graphics
board ready for use, a graphics board must be opened before it can be used for
displaying the output of CGI operations.

A single parameter is required: vtg. This should contain monitor and display reso-
lution specific video timing parameters to initialise the CVC on the graphics board.
Itis important that these parameters match the capabilities of an attached monitor.
Chapter 5 has a more detailed description of this. The include files: video.h and
video.inc contain a number of constant video parameter block definitions that
may be applicable.

In normal circumstances the control register field of the parameter block should be
setto zero. This will cause the device dependentlibrary assoicated with a particular
graphics board to program the CVC control register in a board specific way. This
can be overridden by specifying a non-zero value to write to the control register.
In ANSI C, the field is vtg.control, in 0cCam it is vtg [VTG.CONTROL].

72 OEK 264 01 May 1992

100

7.1.6 fs_closeboard

Terminate use of a graphics board.

C:

void fs_closeboard(Channel *from cgi, Channel *to_cgi)
occam:

PROC fs.closeboard(CHAN OF ANY from.cgi, to.cgi)
Parameters:

Parameter Comment

from_cgi Channel from CGl server

to_cgi Channel to CGl server
Description:

egi_closeboard performs whatever device dependent operations are neces-
sary to terminate use of the graphics board. The actual actions taken will depend
on the graphics hardware being used.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 101

7.1.7 fs_writeregs
Write graphics board registers.
C.
void fs_writeregs(
Channel *to_cgi,
int n, int *registers, int *contents)
occam:

PROC fs.writeregs(
CHAN OF ANY to.cgi,

VAL INT n,
VAL []INT registers, contents)
Parameters:
Parameter Comment
to_cgi Channel to CGI server
n Number of registers
registers Register addresses
contents Register contents
Description:

fs_writeregs causes the CGl display server to program graphics board regis-
ters. This allows full access to the hardware control registers of any graphics board
in a device dependent way. registers should contain the addresses of the
graphics board registers to program, they will be written with the contents of con-
tents. The number registers to program is given by n.

72 OEK 264 01 May 1992

102

72 OEK 264 01 May 1992

103

8 ANSI C user guide

This chapter contains a user guide for ANSI C toolset developers. It provides all
the information necessary to develop graphics software for a transputer system,
incorporating an iq Systems graphics board, with the IMS FO03C and an ANSIC
toolset. It should be read in conjunction with the appropriate toolset documenta-
tion.

8.1 Toolset search path

T_he toolset search path ISEARCH should be setup to include the following directo-
nes:

e drive:\FO03C\CLIB
= drive:\FOO3C\BOARDS
For example, with:

SET ISEARCH=C:\F003C\CLIB\ C:\F003C\BOARDS\

8.1.1 IMS F003C library and include files
The following libraries will then be on the search path:

Library Purpose

CGILIB.LIB ANSI C CGl library

B419.LIB IMS B419 board support library
B419A.LIB IMS B419 (G300A) board support library
B437.LIB IMS B437 board support library

and the following header files:

Include file Purpose

cgilib.h CGl library prototypes
cgitypes.h CGI constant and type definitions
colours.h Colour definitions

video.h Video timing parameters

72 OEK 264 01 May 1992

104

8.2 Invoking the CGI display server
The CGI display server has the following entry point:
CgiServer(Process *p, Channel *to_cgi, Channel *from cgi)

It must be invoked as a transputer process from a program running on a suitable
graphics board. The channels to_cgi and £rom_cgi are used to connect the
server to application software running on the same fransputer, or on some other
transputer located elsewhere in the network.

The CGlI server can be used in the following ways:

¢ By starting it from a C program and allowing the same program to engage
in graphics operations. This is a single processor example where the ap-
plication software and the CGI server run in parallel on the same transput-
er.

« By moving the invocation of the CGI server into a separate program and
using the toolset configuration tools to place programs on different trans-
puters. This technique can be used to build single and multiprocessor ap-
plications.

8.21 Single processor, single program

In this example, the CGl server s started with ProcRun and the main program con-
tinues in parallel. The main program calls functions from the CGl library to interact
with the server, it can subsequently stop the server by calling cgi_terminate.

#include <stdio.h>
#include <process.h>
#include <channel.h>

#include <cgilib.h>
#include <cgitypes.h>

int main()

Process *cgi;
Channel *to_cgi, *from cgi;

/* Allocate the CGI channels */

to_cgi = ChanAlloc():;
from_cgi = ChanAllec():

if ((to_ecgi == NULL) || (from_egi == NULL))
{
printf(“Failed to allocate channel\n”);
abort();

1
/* Allocate the CGI server process */

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 105

/* The CGI server stack size is given by CGI_STACK SIZE
from the header file <cgitypes.h>. The server requires two
parameters: the "to_cgi” and “from_cgi” channels. */

cgi = ProcAlloc(CgiServer, CGI_STACK SIZE, 2, to_cgi,
from cgi);

if (cgi == NULL)

{
printf("Failed to allocate process\n”);
abort() ;

}

/* Start the CGI server, the main program continues */

ProcRun(cgi);

/* Use functions from the CGI linrary to interact with the
CGI server. The first initialises the CGI system, others
are used to perform graphics operations. The CGI server
can be terminated with “cgi_terminate”. */

egi_init(to_cgi); /* Initialise the CGI system */

/* Open the graphics board and do lots of graphics ...
close the graphics board when done */

/* Bpplication finished, time to terminate the CGI server */

cgi_terminate(from cgi, to_cgi):

72 OEK 264 01 May 1992

106

8.2.2 Multiprocessor, multi program

This example has two programs running in parallel. One is responsible for running
the CGl server and the other is an application which communicates with the server
using placed transputer channels. The toolset configuration utilities are used to de-
clare and place the programs, and the channels connecting them, onto the avail-
able hardware.

#include <stdio.h>

#include <process.h>
#include <channel.h>

#include <misc.h> /* For get param() */

$include <cgilib.h>
#include <cgitypes.h>

int main ()
{

Process *cgi;
Channel *to_cgi, *from cgi;

/* Get the CGI channels from the configuration environment,
these may have been mapped onto transputer links and
connected to another processor. Alternatively, they may
connect this program to another program running on the
same processor. */

to_cgi = get_param(3);
from_cgi = get param(4); /* Defined by interface mapping */

/* Allocate the CGI server process */

/* The CGI server stack size is given by CGI_STACK SIZE
from the header file <cgitypes.h>. The server requires two
parameters: the “to_cgi” and “from_cgi” channels. */

cgi = ProcAlloc(CgiServer, CGI_STACK SIZE, 2, to_cgi,
from cgi);

if (cgi == NULL)
printf(“Failed to allocate process\n”);
abort() ;

/* Start the CGI server and wait until it is terminated by
the a.pplj.c;ation software, this program will then terminate
as well *

ProcPar(cgi, NULL);

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 107

This could be simplified by calling the CGI server function inline. If this is done the
process descriptor parameler Process *p must be passed to the function ex-
plicitly. It can be set to any value, for example:

#include <stdio.h>
#include <channel.h>

#include <misc.h> /* For get param() */

#include <egilib.h>
#include <cgitypes.h>

int main()
{
Channel *to_cgi, *from cgi;
/* Get the CGI channels from the configuration enviromment,
these may have been mapped onto transputer links and
connected to another processor. Alternatively, they may

connect this program to another program running on the
same processor. */

to_cgi = get param(3);
from cgi = get_param(4); /* Defined by interface mapping */

/* Start the CGI server and wait until it is terminated by
the application software, this program will then terminate
as well */

CgisServer(NULL, to_cgi, from cgi);

}

8.3 Configuring transputer memory sizes

The amount of memory available on a transputer for program storage is specified
by IBOARDSIZE (single transputer system) or by a configuration description.
When specifying the amount of memory available on a graphics board with contig-
uous DRAM and VRAM, care should be taken to ensure that program code or data
is not assigned to VRAM that will be used for graphics operations.

72 OEK 264 01 May 1992

108

8.4 Opening the graphics board

Before any output can be displayed on a monitor the graphics board must be initial-
ised. This is done by calling £s_openboard with a suitable set of video timing pa-
rameters. Parameters for varying display resolutions and different monitor types
are provided in the include file video.h. The following example shows the typical
steps taken by an application program during initialisation:

#include <stdio.h>

#include <process.h>

#include <channel.h>

#include <cgilib.h>
#include <cgitypes.h>

#include <video.h> /* For video timing parameters */
int main ()
{
/* Start the CGI semr and allocate channels to it,
these are "to_cgi” and "from cgi” hltemtivuly, the
CGI server may already be mnning in another program */
/* Declare and initialise a video timing parameter block,
V_1024_768 is defined in <video.h> and specifies a set
of parameters for a 1024 by 768 pixel display. */
VIG v = v_1024_768
screen 8; /* A CGI screen */
/* Initialise the graphics board */
fs_openboard(to_cgi, v);

/* Initialise a physical screen and map it to video
ram bank 0. */

fs_initscreen(from cgi, to_cgi, &s, 0);

/* Set the current drawing screen to s and display it
on the output monitor. */

cgi_setdrawscreen(to_cgi, s); /* Now drawing in s */
fs_displaybank(to_cgi, 0); /* Bank 0 now displayed */
/* CGI drawing operations will now be displayed ... */

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 109

8.5 Compiling and linking IMS F003C programs

851 Compiling

There are no special compilation requirements for programs that use the IMS
FO003C libraries.

Adefault font can be enabled by including the header file cgi types h and compil-
ing with the preprocessor flag _FONT defined. For example, with

icc example.c /t8 /D_FONT

This uncomments an unsigned int array called font8by8 that contains a
simple font definition for use with cgi_setfont.

8.5.2 Linking

Software calling functions from the CGlI library should be linked against cGI-
LIB.LIB.

Programs which invoke the CGI server must be linked with one of the board sup-
port libraries.

8.6 Example program

The directory \FO03C\CLIB\EXAMPLES contains an example program. It is des-
gined to run on a single transputer configuration: one of the iq Systems graphics
boards.

To build and run it:

icc example.c /ta /D_FONT

ilink example.tco cgilib.lib board.lib /f startup.lnk /ta
(Where board is the name of a specific graphics board).

icollect example.lku /t

iserver /se /sb example.btl

72 OEK 264 01 May 1992

10

72 OEK 264 01 May 1992

m

9 occam user guide

This chapter contains a user guide for occam toolset developers. It provides all
the information necessary to develop graphics software for a transputer system,
incorporating an iq Systems graphics board, with the IMS FO03C and an occam
toolset. It should be read in conjunction with the appropriate toolset documenta-

tion.

9.1 Toolset search path

Tha toolset search path ISEARCH should be setup to include the following directo-

nes:

» drive:\F0O03C\OCCAMLIB

e drive:\FO03C\BOARDS

For example, with:

SET ISEARCH=C:\F003C\OCCAMLIB\ C:\F003C\BOARDS\

9.1.1 IMS F003C library and include files

The following libraries will then be on the search path:

Library Purpose

CGILIB.LIB occam CGl library

LIBCRED.LIB Reduced C runtime library

B419.LIB IMS B419 board support library
B419A.LIB IMS B419 (G300A) board support library
B437.LIB IMS B437 board support library

and the following header files:

Include file Purpose

egilib.inc CGl constant definitions

colours.inc Colour definitions

video.inc Video timing parameters
72 OEK 264 01

May 1992

112

9.2 Invoking the CGI display server

The reader may need to refer to the chapter entitled Mixed language programming
in the appropriate occam toolset user manual when reading this section.

The CGl display server is implemented as a C function, when calling it from an OC-
cam program it has the following entry point:

CgiServer(VAL INT gsb, p, CHAN OF ANY to.cgi, from.cgi)

It must be invoked by a program running on a suitable graphics board. The chan-
nels to.cgi and £rom. egi are used to connect the server to application software
running on the same transputer, or on some other transputer located elsewhere
in the network.

Because the CGl server is implemented in C it requires the invoking occam pro-
gram to setup a C environment. Support for this is provided by the occam loolset
with the CALLC. LIB library. This contains a number of procedures for setting up
and initialising a C function call from occam.

The CGl serverrequires a static and a heap area. These are allocated from an INT
array declared by the calling occam program. The array must be big enough to
hold the static variables used by the CGI server and provide enough space for a
heap. The heap is used to allocate dynamic storage for loadable fonts (see
cgi.setfont), it should be large enough to hold the biggest font required by an
application. The static space required by the CGI server is constant and can be
satisified with a 5000 word INT array, additional space in the array will be used for
the heap. The workspace requirement of the CGI server is specified by a compiler
#PRAGMA in the include file egilib.ine.

The CGI server can be used in the following ways:

« Byrunning it in parallel with an application contained in the same program.
This is a single processor example where the application software and the
CGI server run in parallel on the same transputer.

» By moving the invocation of the CGI server into a separate program and
using the toolset configuration tools to place programs on different trans-
puters. This technique can be used to build single and multiprocessor ap-
plications.

9.2.1 Single processor, single program
In this example, the CGI server is run in parallel with the application from a single

program. The application calls procedures from the CGl library to interact with the
server, it can subsequently stop the server by calling cgi.terminate.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 13

Itlsl “hostio.lib”
§INCLODE "hostio.ine”

#0SE “callc.1ib” —— occam toolset library

fuse ~ :
#INCLUDE "cgilib.inc*

PROC example(CHAN OF ANY fs, ta, []INT free.mem)

INT gsb, static.size: =-— For the static area
CHAN OF ANY to.cgi, from.cgi:

5EQ

== Determine the exact amount of static space required by
== the CGI server.

init.static([free.mem FROM 0 FOR 0], static.size, gab)
IF
(static.size > (SIZE free.mem))
SEQ

so.write.string.nl(fs, ts, “No memory for CGI statics”)
so.exit(fs, ts, -pczum.)
CADSEERROR () =-— Stop the transputex
TROE
SKIP

—— Abbreviate the static and heap areas from the free.mem
—— INT array. "static.size” gives the amount of static space
== required. The rest of free.mem is used as heap space.

static.area IS [free.mem FROM 0 FOR static.size]:
bheap.area IS [free.mem FROM static.size FOR
(S5IZE free.mam) - static.size]:

SEQ
== Initialise the static and heap areas.
INT unused.size: — Don’'t need the size

init.static(static.area, unused.size, gsb)
init.heap(gsb, heap.area)

=— Run the CGI server in parallel with application software
PAR
CgiServer(gsb, 0, to.cgi, from.cgi)
SEQ
-- Use procedures from the CGI library to interact with the
—— CGI server. The first initialises the CGI system, others are
== used to perform graphics operations. The CGI server can be
== terminated with "cgi.terminate”,

cgi.init(to.cgi) =- Initialise the CGI system

-- Application has finished, time to terminate the CGI server
egi.terminate(from.cgi, to.cgi)

72 OEK 264 01 May 1992

114

9.2.2 Multiprocessor, multi program

This example has two programs running in parallel. One is responsible for running
the CGI server and the other is an application which communicates with the server
using placed transputer channels. The toolset configuration utilities are used to de-
clare and place the programs, and the channels connecting them, onto the avail-
able hardware.

#USE “hostio.lib”

#INCLUDE "hostio.inc”

#USE "callc.lib” —— occam toolset library

#USE "cgilib.lib”
fINCLUDE “"egilib.inc”

PROC example(CHAN OF ANY fs, ts, from.cgi, to.cgi)

INT gsb, static.size: -— For the static area

[S000]INT static.area: -— Enough for the CGI server
[4000] INT heap.area: -—- Enough for an interesting font
SEQ

The CGI channels come from the configuration enviromnment,
these may have been mapped onto transputer links and
connected to another processor., Alternatively, they may

connect this program to another program running on the
same processor.

~— Initialise the static and heap areas

init.statie(static.area, static.size, gsb)

init.heap(gsb, heap.area)

—— Start the CGI server and wait until it is terminated by
-— the application software, this program will then terminate
-— as well.

CgiServer(gsb, 0, to.cgi, from.cgi)

9.3 Configuring transputer memory sizes

The amount of memory available on a transputer for program storage is specified
by IBOARDSIZE (single transputer system) or by a configuration description.
When specifying the amount of memory available on a graphics board with contig-
uous DRAM and VRAM, care should be taken to ensure that program code or data
is not assigned to VRAM that will be used for graphics operations.

94 Opening the graphics board

Before any output can be displayed on a monitor the graphics board must be initial-
ised. This is done by calling £s . openboard with a suitable set of video timing pa-

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 115

rameters. Parameters for various display resolutions and different monitor types
are provided in the include file video . inc. The following example shows the typi-
cal steps taken by an application program during initialisation:

#USE “cgilib.lib”

#INCLUDE "cgilib.inc”

#INCLUDE “videc.inc” — For video timing parameters

PROC example(CHAN OF ANY from.cgi, to.ecgi)
— Start the CGI server and declare channels to it,
- these are “to.cgi” and “from.cgi”. Alternatively, the
—— CGI server may already be running in another program.
— Declare and initialise a video timing parameter block,
-— V.1024.768 is defined in video.inc and specifies a set
— of parameters for a 1024 by 768 pixel display.

[VIG.SIZE] INT v:
[SCREEN.SIZE]INT s: - A CGI screen

SEQ
v := V.1024.768
— Initialise the graphics board
fs.openboard(to.cgi, v)

— Initialise a physical screen and map it to video
— ram bank 0.

fs.initscreen(from.cgi, to.cgi, s, 0)

-- Set the current drawing screen to s and display it
— on the output monitor.

cgi.setdrawscreen(to.cgi, s) — Now drawing in s

fs.displaybank(to.cgi, 0) — Bank 0 now displayed

—— CGI drawing operations will now be displayed ...

72 OEK 264 01 May 1992

116

9.5 Compiling and linking IMS F003C programs

9514 Compiling

There are no special compilation requirements for programs that use the IMS
FOO3C libraries.

9.52 Linking

Software calling procedures from the CGl library should be linked against cGI-
LIB.LIB.

Programs which invoke the CGI server must be linked with one of the board sup-
port libraries and also the occam toolset mixed language support library:
CALLC.LIB. In addition, the reduced C runtime library LIBCRED .LIB is also re-
quired. This file is normally supplied with an ANSI C toolset. However, because

most occam developers will probably not have a C toolset the library is also sup-
plied with the IMS F003C software. It can be found in \F003C\OCCAMLIB

9.6 Example program
The directory \ FO03C\OCCAMLIE\EXAMPLES contains an example program. Itis
desgined to run on a single transputer configuration: one of the iq Systems graph-
ics boards.
To build and run it, type:
oc example.occ /ta
ilink example.tco egilib.lib board.lib callec.lib

hostio.lib convert.lib libcred.lib /f occama.lnk /ta
(Where board is the name of a specific graphics board).
icollect example.lku /t

iserver /se [sb example.btl

72 OEK 264 01 May 1992

117

10 Further use of the
CGl system

This chapter contains more detailed information concerning the use of various as-
pects of the CGI system.

10.1 Using and defining text fonts

Text fonts are downloaded to the CGI server with cgi_set£font. This defines bit-
maps for the various character cells that make up the font. Because the CGI sys-
tem uses heap space to hold a font definition it should be invoked with enough heap
memory available to hold the largest font to be used. Only one font is held by the
CGI server at a time, if an application requires the use of multiple fonts then it will
have to load each one as and when needed.

A default font is supplied with the IMS FO03C software. It contains a fixed size
ASCII character set defined within an eight by eight pixel character cell. By includ-
ing the file egilib. ine, OCccam programmers will have accesstoa VAL []INT
array called FONT . 8 .BY . 8 which contains the font definition. ANSI C program-
mers should include egitypes.h which if compiled with the preprocessor vari-
able _FONT defined will un—comment an unsigned int array font8by8 that
contains an equivalent font.

When downloading a font, the cgi_setfont funclion requires various font char-
acteristics to be defined. These specify, for example, the number of 32 bit words
used to hold the bit pattern of a single character cell. There are four parameters
required to define a font:

Font parameter |Purpose

famw Font area memory width (in bits)

fwpc Number of 32 bit words per character
flpw Number of character lines per 32 bit word
nchars Number of characters in the font

The default font is supplied with definitions for these values, for example, in C they
are: font FAMW, font FWPC, font FLPW and font_ NCHARS.

If necessary, the programmer can define additional fonts or perhaps convert exist-
ing fonts from some other environment into this format. The following example
shows how the font parameters relate to the bit mask used to represent each char-
acter cell defined by the font.

72 OEK 264 01 May 1992

118

In the supplied 8 by 8 pixel font, the character 0 is represented by the following bit
mask:

8

Figure 10.1 Character ‘0’ representation in font 8 by 8

This is stored in two 32 bit words: 0xd6cecé7c, which describes the top half of the
character cell, and 0x007ecc6e6 for the bottom half. The origin of the character cell
is defined to be the top left hand corner. The first word defines lines in horizontal
row order, starting with the least significant bit. In this example, the least significant
byte of the first word is 0x7¢, this represents the first row of the character cell with
the bit mask 01111100.

The complete font is represented by an array of 32 bit words, each pair of words
is used to encode the definition of a single character. The byte value of a character
is used as an index into this array when refrieving a character definition in order
to plot it. The 8 by 8 font is defined by the following font parameters:

[Font parameter |Value

famw 8 pixels wide

fwpc 2 x 32 bits per character

flpw 4 x character lines per 32 bit word
nchars 164 characters

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 119

10.2 Using CGI screens for windowing

The CGI screen abstraction can be used to form the basis of a windowing like,
graphical user interface. Such interfaces typically use two dimensional screen
areas to represent objects such as popup menus, dialogue boxes ortext windows.
These objects can all be implemented using facilities provided by the CGl library.

The CGI screen structure describes a two dimensional region of raster memory
that the CGI system performs graphical operations within. The size of the screen
defines the extent of drawing operations: drawing is clipped to the boundary of the
screen. There are two types of screen. The first has a raster stored in normal
memory and can never be displayed on a monitor, the second type is designed to
be displayed on a monitor and has a raster stored in video memory. its screen di-
mensions match the resolution of the monitor. CGI primitives for copying, scaling
or rotating screens can be used to copy a part of one screen to another.

An existing screen structure can be used to create another. If the new screen refers
to an existing, but smaller area of the original, then it can be used to represent a
window, When selected as the current screen, the CGI system will clip all further
drawing operations to its extent. This will create the effect of drawing in a bounded
window, the background will be protected. By combining this with the CGI copy or
rotation primitives, simple windowing can be implemented. In the example, the
background area would have to be copied elsewhere while the window is manipu-
lated and then copied back again to restore it.

The following example demonstrates some of these techniques:

#include <stdioc.h>
#include <mathf.h>
#include <math.h>
#include <stdlib.h>
#include <channel.h>
#include <process.h>

#include <cgilib.h>
#include <video.h>
#include <colours.h>

,i
* sub_screen - create a sub screen from an existing screen

*

void sub_screen(screen *new, screen old,
int xorg, int yorg,
int xsize, int ysize)

/* Ensure that the new screen fits on the old one */

72 OEK 264 01 May 1992

120

if ((xorg >= old.xsize) || (yorg >= old.ysize))
return;

/* Clip the new screen dimensions to the extent of the
old screen. The stride must remain the same as the old
screen because the new raster is not contiguous. */

new->raster = old.raster + (yorg * old.xsize) + x=org;
new->xsize = xorg + xsize > old.xsize ? old.xsize - xorg : xsize;
new->ysize = yorg + ysize > old.ysize ? old.ysize - yorg : ysize;
new->stride = old.stride;
new->multiMode = old.multiMode:

1

/*

* main

.

*/
int main ()
{

Process *cgi;
Channel *to_cgi, *from egi;

VIG v = V_1024_768;
screen sl, s2; /* Declare two screen structures */
/* Allocate channels to the CGI server */

to_ecgi = ChanAlloe():
from cgi = ChanAlloc();

if ((to_cgi = NULL) || (from cgi == NULL))
{
printf(“Failed to allocate channel\n”);
abort();
/* RAllocate and start the CGI server */
cgi = ProcAlloc(CgiServer, CGI_STACK SIZE, 2, to_cgi, from cgi);
if (cgi = NULL)
{
printf("Failed to allocate process\n”);
abort ()
)
ProcRun(cgi);
/* Initialise the CGI server and open the graphics board */

cgi_init(to_cgi);
fs_openboard(to_cgi, v);

/* Program some simple colours into the palette */

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 121

fs_setpalette(to cgi, 2, LINEN R, LINEN G, LINEN B);
fs_setpalette(to_cgi, 3, SKYBLUE R, SKYBLUE G, SKYBLUE B):

/* Initialise a physical screen and display it */

fs_initscreen(from cgi, to egi, &sl, 0);

p:mtﬂ “Screen inzt.i.nlisad‘mlt-r Ox%x xsize = %d ysize %¥d\n”,
(int) (sl.raster), sl.xsize, sl.ysize);

fs_displaybank(to_cgi, 0);

/* Allocate a new screen, derived from sl, which represents a
window like viewport into the original screen. */

sub screen(&s2, sl, 100, 200, 200, 200);
/* Clear both screens. Note the order in which this is done.

The background screen sl is cleared first, the window screen
s2 is cleared afterwards. */

egi_cls(te egi, s1, 2); /* Clear background to LINEN */
cgi_cls(to_cgi, s2, 3); /* Clear window screen to SKYBLUE */

/* Select the window screen as the current drawing screen and
write some text into it. This could be used as a popup window
or a menu selection etc. */

ecgi_setdrawscreen(to_cgi, s2):

cgi_setfcol(to_cgi, 2); /* Drawing colour is now LINEN */
cgi_setbcol(to_egi, 0); /* Background colour is 0 */

/* Down load a font and initialise text attributes */

cgi_chrspace(to_cgi, 10, 0);

cgi_setfont(from cgi, to_cgi, font8by8,

font 1 ._NCHARS, “font ._FAMW, font FWPC, font FLEW);
cgi setorient(to_cgi, TX NORM);

/* A pixel replace mode of move non-zero will cause text to
be written in the current foreground colour while ignoring
the background (because the background colour is now 0). */

cgi_setdrawmode(to _cgi, PM COL, RM NI, FM COL);

/* Print some text in the window, note that it will be clipped
to the extent of s2 */

cgi_text(to_cgi, 20, 20, 13, “Hello World !");
/* Close the graphics board and terminate the CGI server */

fs_closeboard(from _cgi, to_cgi);
cgi terminate(from cgi to_cgi);

72 OEK 264 01 May 1992

122

10.3 Simple animation techniques

Provided a graphics board has enough video memory to support more than one
physical CGI screen, simple animation can be achieved. This is done by cycling
the graphics board hardware through the available screens, displaying each in
turmn, whilst changing the contents of the screen just about to be displayed.

For example, a simple cube like object could be made to continuously spin around
some axis of rotation. To do this, the cube would first have to be drawn at a starting
position and displayed. Meanwhile, the CGI system would be instructed to draw
asecond cube in another, invisible, screen. It would be drawn with a small physical
displacement from the first cube. When the second cube is complete the displayed
screen and the invisible screen are toggled: the displayed screen becomes invis-
ible, and the screen with the new cube, visible. If this process is continued an
animation effect can be achieved as the cube continuously moves around on the
display.

The technique is best demonstrated with an example. The following program uses
a pair of physical CGl screens to animate a rotating disk, note the use the
cgi_£eircle function which has its axis parameters altered after drawing every
new circle, this combines to produce a three dimensional effect.

int main ()
{

Process *cgi;
Channel *to_cgi, *from egi;

/* Declare two screens in an array, bank will be used to
alternate which screen is displayed, and which screen is
drawn into. */

screen s[2];
int axis, bank, step;

VIG v = V_1024_768;
/* Allocate channels to the CGI server */

to_cgi = ChanAlloe();
from egi = ChanAlloc();

-i[-f ((to_cgi == NULL) || (from cgi == NULL))

printf("Failed to allocate channel\n”);
abort();
1

/* Allocate and stZTT the CGI server */

cgi = ProcAlloc(CgiServer, CGI_STACK SIZE, 2, to_cgi, from cgi);
if (cgi = NULL)

{

printf(“Failed to allocate process\n”);
abort();

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 123

)
ProcRun(cgi);

/* Initialise the CGI server and open the graphics board */

egi_init(to egi);
fs_openboard(to cgi, v);

/* Initialise a pair of physical screens */

fs initscreen(from cgi, to cgi, &s[0], 0);

printf(“Screen mﬁalj’.ud\'nn’sm 6:& xsize = %d ysize %d\n”,
(int) (s[0] .raster), s[0] .xsize, s[0].ysize);

fs initscreen(from cgi, to cgi, &s[1], 1);

printf("Screen inifialised\nraster = Oxix xsize = %d ysize %d\n”,
{int) (s[1] .raster), s[l].xsize, s[1].ysize);

/* Setup the palette with some simple colours */

fs_setpalette(to_cgi, 0, LINEN R, LINEN G, LINEN B);
fs_setpalette(to_cgi, 1, YELLOW R, m.:ﬁu , YELLOW B);

cgi_setfcol(to_cgi, 1); /* Drawing colour is YELLOW */

egi_cls(to_cgi, sa[0], 0);
cgi_cls(to_egi, s[1], 0); /* Clear both screens to LINEN */

axis = 0;
step = 5; /* Axis dimensions change in a step of 5 pixels */

/* Initially, screen[0] is drawn into, and screen[1]
is displayed. bank is used to index each screen from the
screen array. */

bank = 0;

fs displaybank(to cgi, bank * 1);
cgl_setdrawscreen(to_cgi, s[bank]);

cgi_fcircle(to_cgi, 500, 350, axis, 200 — axis);

bank “= 1: /* Toggle bank */
axis += step; /* Step the circle axis */

while (1) /* Do this continucusly */
{

fs displaybank(to_cgi, bank “ 1);
._setdrawscreen(to_cgi, s(bank]);

/* Wipe the old circle from the screen by clearing it,
and draw a new circle. Alter the circle axis step if
the axis has reached the end of its range. */

cgi_cls(to_cgi, s[bank], 0);
cgi_fcircle{ to_cgi, 500, 350, axis, 200 - axis);

if ((axis == 200) || (axis == 0)) step = —-step;

bank *= 1; /* Toggle bank */
axis 4= step; /* Step the circle axis */

72 OEK 264 01 May 1992

124

10.4 Writing a board support library

The source code of board support libraries foriq Systems graphics board products
supported by the IMS F003C software is supplied in the directory:
\F003C\BOARDS\ SOURCE. This should allow a new version of a board support
library to be created for some other transputer based graphics board.

The interface required by the CGI server defines the functions that must be pro-
vided by a board support library. They are:

Function Purpose

FS_SCREENADDR |Return the address of a physical screen
FS_DISPLAYBANK |Display a bank of video memory
FS_INITSCREEN |lnitialise a screen, map it to video memory
FS_SETPALETTE |Program a colour palette location
FS_OPENBOARD Do device specific initialisation
FS_CLOSEBOARD |Do device specific termination
FS_WRITEREGS Write board control registers

The source code is well commented and should contain all the information neces-
sary to port it to another graphics board.

72 OEK 264 01 May 1992

125

A Directory structure

IMS F003C files are installed within the following directory structure:—

drive: \F003C
Vi \
Ve
BOARDS CLIB OCCAMLIB

./’

SOURCE EXAMPLES EXAMPLES

Which, after a successful installation, should contain the following files:—

drive: \FO03C\CLIB
CGILIB.LIB
CGILIB.H
CGITYPES.H
COLOURS .H
VIDEO.H

drive; \FOO3C\CLIB\EXAMPLES
EXAMPLE.C

drive: \FO03C\OCCAMLIB
CGILIB.LIB
LIBCRED.LIB
CGILIB.INC
COLOURS . INC
VIDEO, INC

drive: \F003C\OCCAMLIB\EXAMPLES
EXAMPLE . OCC

drive: \FO03C\BOARDS
B419.LIB
B419A.LIB
B437.LIB

drive: \F003C\BOARDS\SOURCE
B419.C
B437.C
FSTORE .H
FSTOREI.H

72 OEK 264 01 May 1992

126

72 OEK 264 01 May 1992

127

B IMS B419 hardware
overview

B.1 Description

The IMS B419 combines the IMS G300B Colour Video Controller (CVC) with the
IMS T800 32 bit Floating Point Transputer to form a high performance graphics
system. Two Mbytes of four cycle DRAM provides a general purpose store suffi-
cient to run large applications such as windowing environments. Two Mbytes of
Video RAM provide arbitary screen resolutions up to a maximum of 1280 x 1024
8 bit/pixel with unrestricted screen formats at resolutions below this.

Isi
S0
[
I An‘::’ogua
Links > video
. ADBus[31:0] | M 00B ——*
<~ IMST800 Ve outputs
-
Ti pu-[
= Ira%r"s —
A
2 Mbytes DRAM 2 Mbytes Video RAM

Figure B.1 Block diagram

B.1.1 Introduction

The IMS B419is one of arange of INMOS TRAnsputer Modules (TRAMs). TRAMs
are board level transputers with a simple, standardised interface. They integrate
processor, memory and peripheral functions allowing powerful, ﬂexible, transputer
based systems to be produced with the minimum of design effort!.

1.Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification of TRAMs can
be found In technical notes Dual-in-Line Transputer Modules (TRAMs) and Module A m-m ara | in-
cluded later in this The Tr v may also be req . This is as o sep P

from INMOS.

72 OEK 264 01 May 1992

128

The IMS B419implements a complete high performance graphics subsystem. The
frame store consists of 2 Mbytes of dual ported Video RAM which supports dis-
plays of arbitrary resolution at 8 bit/pixel. The resolution of the system is program-
mable and is only limited by the CVCs maximum dot rate (100MHz). The CVC is
configured by an IMS T800 which is provided with 2 Mbytes of 200ns cycle DRAM.
This store is available for screen manipulation workspace and general program
memory. The processor can be used to implement graphic primitives directly or as
an intelligent channel, receiving image data from other transputers via its four bidi-
rectional links at data rates of up to 6.8 Mbytes/sec. This makes the IMS B419 use-
ful for applications from acling as part of an embedded system in industrial control,
to a graphics output for a 3D graphical supercomputer.

B.1.2 Screen sizes

Screen sizes are set by writing to a few registers in the G300B CVC, and can be
chosen to suit the application. Suppose, for instance, an 8.5 x 11 sheet of paper
(in landscape), represented by a screen with 100 pixels per inch. This would need
an 1100 x 850 display, a format not normally available from a hardware solution.
The G300B gives a line width in multiples of 4 pixels, which makes it simple to pro-
duce this screen. As well as producing special screens such as 11 x 8.5, many of
the standard screens can also be produced; indeed the user can switch between
screen formats, the display clock frequency, and even the source of the input clock,
all by simply changing the G300B registers and otherregisters on the board by soft-
ware.

Some examples of possible screen sizes are given in Table B.1. All the screens
in the table are for 8 bits per pixel.

Screen Pixels Aspect Ratio [Inter-
Size lace
CGA 320 x 240 1.333 no
EGA 640 x 350 1.829 no
VGA 640 x 480 1.333 no
Enh VGA 800 x 600 1.333 no
Ext VGA 1024 x 768 |1.333 no
11 x85 1100x 850 |1.294 no
11x85 1164x900 |[1.293 no

1024 x 1024 (1.0 no
1280x 1024 [1.25 no
A5 1216 x860 [1.414 no

Table B.1 A selection of possible screen sizes

B.1.3 SubSystem signals

The user may require the G300B Graphics TRAM to control a network of transput-
ers and/or other TRAMs. A set of control signals are provided which enables the

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

129

master to control these slaves or subsystems. The SubSystem port consists of
three signals: SubSystemReset and SubSystemAnalyse, which enables the
master to reset and analyse its subsystem; and SubSystemnotError, which is
used to monitor the error flag in the subsystem. These signals are accessible to
the processor as a set of memory-mapped registers.

B.1.4 Memory Map

[Register Hardware byte ad- Asserted
dress state
SubSystemReset (Wr only) #00000000 1
SubSystemAnalyse (Wr only) |#00000004 1
SubSystemError (Rd only) #00000000 1
Table B.2

The video memory (VRAM) on the IMS B419 can be arranged to be either contigu-
ous with the DRAM or separately mapped. The IMS FO03C requires that the VRAM
must be contiguous with the DRAM; so JP4 must be fitted, and JP5 removed when
the IMS B419 is installed. The resulting memory map is shown in Figure B.2.

5FFFFFFF
G300B
£
Sub-system Reg
7 #
4 # 803FFFFF
VRAM
80200000
801FFFFF
DRAM
80001000
Internal RAM # 80000000
Contiguous

Figure B.2 Address map

Users are advised not to access the IMS G300B directly, but to use the routines

provided by the IMS FO03C.

72 OEK 264 01

May 1992

130

B.1.5 Pixel clock selection

The IMS G300B requires a clock to control the movement of pixel data, and gener-
ate timing signals. It has a phase-locked loop (PLL) which can generate the high
frequency pixel clock from a low frequency input clock. The PLL can generate fre-
quencies from 25MHz upwards.

The IMS B419 provides a choice of clocking schemes which are described in detail
in the IMS B419 hardware reference guide. The IMS FO03C uses the 5SMHz TRAM
clock in conjunction with the IMS G300's on-chip phase locked loop. This allows
the use of any clock frequency which is a multiple of 5MHz from 26MHz —
100MHz. If any other clock frequency is required, the nearest multiple of 5MHz
should be used. This has been found to give satisfactory results with all types of
video monitor, and screen resolution.

B.1.6 Jumper selection

Five jumper links are used to select the IMS G300B clock source and to configure
the memory map of the IMS B419. Jumpers are labelled JPx where a jumper is ei-
ther installed or absent between two pin posts.

Jumper |Function
JP1T_ |Always remove on IMS B4194
JP2 |Do not fit
JP3 |Always fit
JP4 |Select contiguous VRAM
JP5 |Select non—contiguous VRAM

Table B.3
For IMS FO03C compatibility, JP4 must be fitted and JP5 removed.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries

131

B.2 Board layout

IMS T800

IMS G300

. 2Mb VRAM
2Mb DRAM

R G B €C V C
S § B

i S A

N N A

cC C N

K

Figure B.3
72 OEK 264 01 May 1992

132

B.2.1 Video and sync outputs

The G300B CVC can be programmed to generate timing which complies with both
the RS170a and EIA-343 video standard. The outputs are designed to drive a 75R
line directly. The RGB analogue outputs and synchronising signals are on five SMB
connectors as shown below. If the display monitor accepts composite sync on one
of its video inputs the sync outputs may be left unconnected. SMB identification
from top to bottom of the board. Sync. information is output on all three video sig-
nals,

1 Composite blank Input/Qutput
2 Vertical Sync Output
3 Composite or Horizontal Sync Output
4 Blue Output 75R
5 Green Output 75R
6 Red Output 75R

72 OEK 264 01 May 1992

33

C IMS B437 hardware
overview

C.1 Description

The IMS B437 consists of an IMS T805 transputer; with 1Mbyte of dual port video
RAM which is directly addressed by the transputer, and an IMS G332 colour video
controller which is connected to the serial ports of the video RAMs.

The IMS G332 can be programmed by the transputer to generate almost any re-
quired video timing and display resolution; the only restriction being that maximum
clock frequencies and memory size limits are not exceeded. Because of its ability
to drive many types of display monitor at a wide range of resolutions, the IMS B437
is suitable for a variety applications. It is able to generate high resolution displays,
VGA-type displays and TV standard images with correct sync pattemns and inter-
lacing. The 15 and 16 bit/pixel true colour modes provide highly realistic colour ren-
dition.

The IMS B437 can be used with the IMS B429 to build a high performance image
processing system, which fits on a single IMS B008 PC add-in card or IMS B014
VME card. It is also suitable for use in any transputer application where graphical
output is required and space is limited.

Tran -
" ST
I I]J Frame—inactive | p—
B wegn [~
__J Vid IMS G332 |
IMS T805 - | | data cve [g

Figure C.1 Block diagram

72 OEK 264 01 May 1992

134

C.2 Memory map

Feature Address
DRAM (1Mb) 0x80001000 -
0x80100FFF
IMS G332 0x00000000 -
0x3FFFFFFF
Board control 0x40000000 -
0x4000001F

Table C.1 IMS B437 Memory Map

Users are advised that it is not necessary to write to the IMS G332 or the board
control registers directly. They should use the IMS F003 to program the IMS G332.

C.3 Display formats

Pixel widths can be 1,2,4,8,15 or 16 bits. The 1,2,4, and 8 bit modes are pseudo-co-
lour modes which use the IMS G332's Colour Look-Up Table to select from a much
larger colour space (8 bits/DAC). The 15 and 16 bit modes drive the DACs directly
(but use the Look-Up Tables to perform gamma-correction). In the 15 and 16 bit
modes, the pixel clock speed is limited to a maximum of 50MHz. This is more than
adequate for producing full colour displays at VGA and TV standard resolutions.
The required pixel width is selected by programming the IMS G332, and board
control register 5. Pixels are displayed from consecutively addressed words in
memory, starting at the address specified by TopOfScreen/LineStart. The format
of pixels within each word is that the pixels are output to the screen starting from
the least-significant end of the word.

C.4 Colour video controller

The IMS B437 uses an IMS G332 Colour Video Controller. This device generates
fully programmable video timing which allows the IMS B437 to drive a wide variety
of display monitors with a wide variety of display resolutions. Examples of typical
formats which are supported by the IMS B437, and the amount of memory remain-
ing for program use, are:

» 1 screen of 1024 x 768 by 8 bit pixels, 256k program space
« 3 screens of 640 x 480 by 8 bit pixels, 124k program space
+ 1 screen of 640 x 480 by 15/16 bit pixels, 424k program space
Table C.2 gives parameter lists for programming the IMS G332 to drive two typical

monitors and display resolutions. The first is for a high resolution 8-bit/pixel dispiay,
on a monitor with 48kHz horizontal scan rate. The other is for a true-colour display

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 135

on a monitor with 31.25kHz horizontal scan rate. For details of how to determine
the correct parameters for other combinations of monitor and resolution, refer to
the IMS G332 datasheet [3].

Register 1024x768x8 | 640x480x15
Vertical Scan 60 60
Horizontal Scan 48kHz 31.25kHz
Pixel Clock 60.0MHz 25.0MHz
Half Sync 12 9
Back Porch 24 18
Display 256 160
Short display 100 60
Broad Pulse 132 82
VSync 6 6
VPreEqualise 6 6
VPostEqualise 6 6
VBlank 48 64
VDisplay 1536 960
LineTime 312 200
LineStart g "
Meminit 490 240
TransferDelay 22 16
Boot Location 44 37
Control Register A | #342015 #442015
Control Register B 0 0

Table C2 Example parameter lists

The LineStart/TopOfScreen register must be programmed with the byte offset of
the live screen from the bottom of memory. For example, if the screen has been
placed at machine address #80020000, these registers must both be programmed
with #20000. The video RAM serial output shift register on the IMS B437 is 512
words (2048 bytes) long. Hence, the IMS G332 must be configured to increment
the VRAM transfer address by 512 after each transfer. This is independent of the
pixel width selected. Note that the sum of Meminit and TransferDelay should
equal the length of the video RAM serial output shift register in pixels divided by
four. The requirement for each pixel width is summarised in Table C.3. The times
defined by the other datapath registers are always specified in multiples of four pix-
els: i.e. in periods of PixelClock/4.

72 OEK 264 01 May 1992

136

Pixel | Meminit + TransferDelay
Width
15/16 256

8 512

4 1024

2 2048

1 4096

Table C.3

C.5 Control register programming

There are some features of the IMS G332 which must always be operatedin a par-
ticular way on the IMS B437. These are set by programming Control Register A
at start up, and are summarised in Table C.4. Control register B must always be
programmed with 0. In particular, note that on the IMS B437, the IMS G332 must
always be operated in interleaved mode: this has no effect on how the video timing
parameters are calculated. Control register bits which are not specified in the Table
will depend on the type of monitor being driven, number of bits per pixel, cursor
enable/disable, etc. Users are recommended to use the routines provided in the
main part of this user manual to program the IMS G332.

72 OEK 264 01

May 1992

IMS F003C 2D graphics occam and C libraries 137

[Function Program With
Enable VTG
Enable Interlace
Interlace Format
Mode 0 (master)
Plain Sync
Separate Sync 0 (composite)
Sync On Video
Pedestal
Blank I/O 0 (output)
Blank Function 0
Force Blanking 0 (Unblanked)
Disable Blanking |0 (enabled)
Address Increment |0
Address Increment |1
Disable Xfer cycles |0
Pixel delay 0
Pixel delay 0
0
1
0

:;mmwmmhmwacgl

b b wh bk wh =
~N O kW N

Pixel delay

Enable Interleaving
Delayed Sampling
Bits/pixel

Bits/pixel

Bits/pixel

23 |Disable Cursor
Table C.4 IMS G332 Control Register A

NRBE

C.6 Hardware cursor

The IMS G332 provides a 64 x 64 hardware cursor, the location of which is speci-
fied by the Cursor Position register in the IMS G332. The cursor may be blanked
by setting bit 23 in IMS G332 control register A.

C.7 Events

The IMS B437 uses the IMS T805's Event Channel input to allow application soft-
ware to synchronise to the vertical flyback portion of the video display cycle, The
rising edge of the IMS G332's Framelnactive signal sets the event latch which as-
serts EventReq to the IMS T805. The event latch is cleared by EventAck from the

72 OEK 264 01 May 1992

138

transputer which occurs when a user-provided event handler process is sched-
uled, and also by a hardware reset applied to the IMS B437.

Software can synchronise to Framelnactive by performing a channel input from
the IMS TB05's Event channel. It is recommended that all accesses to the IMS
G332 are performed during vertical blanking.

C.8 Board control registers

This set of 8 one-bit registers is used to set up the board, reset the IMS G332, and
select between true colour and pseudo-colour modes. All of these functions must
be set up as part of an initialisation procedure, while the IMS G332 is not active.
Hence, registers 0-6 should only be written while the IMS G332 is held in reset;
ie when register 7 is 0. The recommended startup procedure is described below.

Register Number |Function Address
0 Control 0 0x40000000
1 Control 1 0x40000004
2 Control 2 0x40000008
3 Control 3 0x4000000C
4 Control 4 0x40000010
5 Colour Mode 0x40000014
6 Control strobe | 0x40000018
7 Reset IMS G332 | 0x4000001C

Table C.5 Board Control Registers

10.4.1 Colour mode select register

The IMS B437 operates in two distinct modes: pseudo-colour mode, and true co-
lour mode. The pseudo-colour modes use 1,2,4 or 8 bits/pixel; the true colour
modes use 15 or 16 bits/pixel. These modes are selected by programming the
IMS G332 and also by board control register 5. This register must be written with
0 to use any of the pseudo-colour modes, and with 1 to use either of the true colour
modes. The register is cleared (to pseudo-colour mode) by an external hardware
reset to the IMS B437.

10.4.2 IMS G332 reset register

The IMS G332 can be reset at any time by writing 0 to board control register 7, wait-
ing for a minimum of 20ys, and then writing 1 to this register. The IMS G332 is held
in the reset state until this register is written with 1. This register is cleared (to 0)
by an external hardware reset to the IMS B437, holding the IMS G332 in reset.

72 OEK 264 01 May 1992

IMS F003C 2D graphics occam and C libraries 139

10.4.3 Startup procedure
The recommended initialisation procedure for the IMS B437 is as follows:

1

o ~N o o s W N

C.9

Assert reset to the IMS G332 to stop all of its activity, by writing 0 to board
control register 7. The IMS G332 will be in the reset state after a harware
resel to the board, but it is recommended that it should always be reset ex-

plicitly.

Write 0 to control register 6.

Write the pattern 01000 to registers 0—4 respectively.

Write 1 to control register 6.

Write 0 to control register 6.

Write the appropriate value to the Colour Mode register.

De-assert reset to the IMS G332, by writing 1 to board control register 7.

Continue with the initialisation procedure for the IMS G332, as described
in the IMS G332 data sheet.

Video outputs

The video outputs are terminated by 75Q to ground on the IMS B437, to match a
terminated 752 line. Clamping diodes to both supply rails protect the IMS G332
video outputs against the application of hostile voltages. The IMS B437 drives
1.0V video signals (including sync) into a properly terminated 75Q line. Three
SMR connectors carry the Red, Green, and Blue video signals, with sync available
on all outputs. Another SMR connector carries the composite sync output from the
IMS G332 which allows monitors that require a separate sync input to be driven
easily. Sync output on the video signals can be tumed off by appropriate program-
ming of the IMS G332.

72 OEK 264 01 May 1992

140

C.10 Board layout

onnigion GEelE
SyncB GR
= IMS G332
1Mbyte ¥
VRAM [
IMS T805

Figure C.2 IMS B437 board layout

C.11 Accessories

The IMS B437 is supplied with a set of four cables which fit the SMR connectors
on the IMS B437 and are terminated at their free end with BNC male connectors.
The cables are 1m in length.

72 OEK 264 01 May 1992

141

D References

1 Dual-In-line Transputer Modules (TRAMs), INMOS Technical note 29,
INMOS Ltd.

2 The Transputer Development andiq Systems Databook, INMOS Ltd, 1991
3 IMS G332 Colour Video Controller datasheet, INMOS Ltd 1991.

4 Crystal Oscillator Module (Appendix A.3), IMS B419—4 Graphics TRAM
User Manual, INMOS Limited, 1990.

5 Graphics Databook, 2nd Edition, INMOS Limited, 1990.

72 OEK 264 01 May 1992

Sales Offices

DENMARK

2730 HERLEV
Heriev Torv, 4

Tol [M B4.85.33

Tl 354
Twletax; :45—42: B4BEO4

FINLAND
LOHJA SF-08150
2

Tel 1215511
Teistax: 12 15568

FRANCE

$4253 GENTILLY Cadex
7, Awenus Gaiieni - BP 83
Tl (33-1) 4T HOTETS
Teex

B3Z5TO STMHD
Teletax (33-1) 47 407990
67000 STRASBOURG
20, Piscs oes Halles
Tel, (33) BB.75.50.66
Telax: BTOD0TF
Talatax; (13) 8822 26 32

GERMANY
6000 FRANKFURT
Gulieulstrasse

Tolstax (43-83) 4505454
Teistex B3T107=5TDISTR
5000 HANNOVER 51
Rolenburgerstrassa, 28A
Tol (45-511) 816660
Tobex: 176118418

Tolefax: (45-511) 6151243

2500 m!ﬂn
Erlensiegensirasse,

Tol. (45-511) 58883-0
Tetex: 525243

Talefar (43-511) SS80701

Tol (43-T11) 692041
Tolax 721748
Talofax: (45-711) 601408

ITALY

20090 ASSAGO (M1}

Vie Mianoficn — Strada d -
Paazzo AMA

Ted (35-7) B3213 1 (10 bnas)
Telex 330131 - 330141
SGSAGR

Teistax (35-7) B250445
40033 CASALECCHIO DI RENO
B0}

Via R Fuani, 12

Tel (35-51) 591914

Toiox: 512442
Talefax (38-51) 591306

00161 ROMA
Via A Toronia, 15

Tel (35-6) 8443341
Telgx 620853 SGSATE |
Teiefax (16-6) B4ssdTe

NETHERLANDS
5652 AM EINDHOVEN

Meerenakkerweg, 1
Tel :31-40} 550015

ol (34-1) 4143300 - 4143381
Telelsr (M-3) 2021457
28027 MADRID

Calle Abacete, §

Tl (34-1) 4051815

Telex' 27060 TCCEE

Telatax {34-1) 4031134
SWEDEN

516421 KISTA
Bargarfiordsgatan, 13 - Box 1064
Tel (45-8) 7939220

Telax 12078 THSWS

Teistax (45-8) 7504950

SWITZERLAND

85413 SAO PAULD

R Henngue

286-C03

Tel (55-11) BE3-5455

Telex (391) 1137588 "UMBR
ar"

Telstax 11-551-128-22387

CANADA

BRAMPTON, ONTARIO

341, Main 5t. Norin

Tl (416) 455-0505

Taietax: 416-455-2606

usa

KORTH & SOUTH AMERICAN
MARKETING HEADOQUARTERS
1000, East Bed Foad

Proena, A 85022

(1-502) B67-8100

SALES COVERAGE BY STATE

ALABAMA

303, Williams Avenue.
Suite 1031,

Hunisvile. AL 35801-5104
Tel (205) 5335695

ARIZONA
1000, East el Rioad
Prosnc, AZ 85022
Tel. (602) B67-6100

CALIFORNIA

200 Easl Sandpointa,
Suite 120,

Santa Ana, CA 52707
Tal (714) 9576018

2055, Gateway Place,

Sule 300
San José. CA 95110
Tel (s08) 42122

COLORADO

1658, 5 Flasron C1
Bouloer, CO B30T
T (303) 4459000

FLORIDA

Tol (407) 5977233

GEORGIA

6325, G Antande Bhva
Nercross. GA 30071
Tl (404} 242 ~Tdad

ILLINOIS

500, vorth Meachiam

Sute 304,

Schaumburg, ILL 601734841
Tel, (708} 517-1890

INDIANA

1718, South Plate 51
Kekama, IN 46902
Tal. (317) 453-4700

MASSACHUSETTS
55, Owd Sediord Road
Lincoin Mo
Limcsin, MA 1TTY
Tel (817) 2550000

MICHIGAN
ATIST, N Lawrel Park Drve
Suite 253,

Tal. (313) 4624030

MINNESOTA
7805, Teiegraph Road
Suite 112

38

L MIN 554
Tel (812) 544-0098
NEW JERSEY

Stafordsrure Professonal CY
1307, White Horse Rood Bisg F
Voornses, NJ 08043

Tl (505 TT2-8222

NEW YORK

24, Austin Court
Poughkeepsie, NY 12603-3633
Tol (914) 454-8813

NORTH CAROLINA
4505, Far Maadow Lane
Sutte 220

Raiegh, NC
Tel (919) 7878555

TEXAS

1310, Ewcironics Dive
Carmoliton, TX 75006
Tol (214) 466-7402

Telstax: (61-2) 127 6176
HONG KONG

WANCHAI

Zind Fioor - Hopewsdl Centro
183, Quean's Road Easl

Tel, (B62-5) BE 156788

Tolex. 60955 ESGIES HX
Tetatax: (852-5) BE565AG

INDIA
NEW DELHI 110001
Lason

Ofice
B2 Upper Ground Fioor
‘Wortd Trade Cangre
Lane
T 3715
Teiax 031-565815 STMI N
Teletax 715192

KOREA
SEOQUL 11

8th Floar Shinwon
B23-14, Yukeam-Dang
Kang-Nam-Gu

Tel (B2-2) 553-0399
Tolox: SGSKOR K20008
Telofax (82-2) S52-1051

MALAYSIA

PULAL PINANG 10400

A Floor, Sute 403
Bangunan FOP, 1230 Jaan An-

o0
Tel (D4) 3TSTIS
Teletax (04) 379815

SINGAPORE

SINGAPORE 2056

28 Ang Mo Kio - Industrial Park, 2
Tel (B5) 48214 11

Telex RS 55201 ESGIES
Telafax. (85) 4820240

TAIWAN

TAIPEI

12 Fioor

571, Tun Hua South Road
Tei (B86-7) T55-4111
Telex 10310 ESGE TW
Teletar (886-2) T55-4008)

JAPAN

TOKYO 108

teszal Taxanawa Bia &F
2-16-10 Takanaws
Menato-ku

Tel, (81-1) 32804125
Talatax: (81-3) 12804131

	Contents
	1 Introduction to the IMS F003C
	1.1 Prerequisites
	1.1.1 Hardware
	1.1.2 Software

	1.2 Organisation of the manual
	1.2.1 Manual conventions

	2 Software installation
	3 Overview of the IMS F003C
	3.1 CGI display server
	3.1.1 ANSI C and occam libraries
	3.1.2 Graphics board support libraries

	4 CGI concepts
	4.1 The lMS F003C CGI library
	4.2 Screens
	4.3 Colour representation
	4.4 CGI drawing modes
	4.4.1 Plot styles
	4.4.2 Filler modes
	4.4.3 Pixel replace modes

	5 Graphics board concepts
	5.1 Board initialisation
	5.2 Video memory management
	5.2.1 Mapping physical CGI screens to VRAM

	5.3 Colour palette
	5.4 The iq Systems graphics boards
	5.4.1 IMS B419 graphics TRAM
	5.4.2 IMS B437 compact display TRAM

	6 CGI libraries
	6.1 Initialisation and tennination
	6.2 Alphabetical list of CGI primitives
	6.2.1 cgi_addsptext
	6.2.2 cgi_addtext
	6.2.3 cgi_arc
	6.2.4 cgi_arcc
	6.2.5 cgi_chrbegin
	6.2.6 cgi_chrspace
	6.2.7 cgi_chrz
	6.2.8 cgi_circle
	6.2.9 cgi_cls
	6.2.10 cgi_copy
	6.2.11 cgi_disjpolyline
	6.2.12 cgi_dot
	6.2.13 cgi_errstat
	6.2.14 cgi_fcircle
	6.2.15 cgi_fanfill
	6.2.16 cgi_hline
	6.2.17 cgi_frecl
	6.2.18 cgi_ftrap
	6.2.19 cgi_line
	6.2.20 cgi_paint
	6.2.21 cgi_polygon
	6.2.22 cgi_polyline
	6.2.23 cgi_rect
	6.2.24 cgi_rot
	6.2.25 cgi_search
	6.2.26 cgi_setbcol
	6.2.27 cgi_setdrawmode
	6.2.28 cgi_setdrawscreen
	6.2.29 cgi_setfcol
	6.2.30 cgi_setfillstyle
	6.2.31 cgi_setfont
	6.2.32 cgi_setlinestyle
	6.2.33 cgi_setorient
	6.2.34 cgi_setpelstyle
	6.2.35 cgi_shear
	6.2.36 cgi_sptext
	6.2.37 cgi_strokearc
	6.2.38 cgi_text
	6.2.39 cgi_zoom

	7 Graphics board functions
	7.1 List of functions
	7.1.1 fs_screenaddr
	7.1.2 fs_displaybank
	7.1.3 fs_initscreen
	7.1.4 fs_setpalette
	7.1.5 fs_openboard
	7.1.6 fs_closeboard
	7.1.7 fs_writeregs

	8 ANSI C user guide
	8.1 Toolset search path
	8.1.1 IMS F003C library and include files

	8.2 Invoking the CGI display server
	8.2.1 Single processor, single program
	8.2.2 Multiprocessor, multi program

	8.3 Configuring transputer memory sizes
	8.4 Opening the graphics board
	8.5 Compiling and linking IMS F003C programs
	8.5.1 Compiling
	8.5.2 Linking

	8.6 Example program

	9 occam user guide
	9.1 Toolset search path
	9.1.1 IMS F003C library and include files

	9.2 Invoking the CGI display server
	9.2.1 Single processor, single program
	9.2.2 Multiprocessor, multi program

	9.3 Configuring transputer memory sizes
	9.4 Opening the graphics board
	9.5 Compiling and linking IMS F003C programs
	9.5.1 Compiling
	9.5.2 Linking

	9.6 Example program

	10 Further use of the CGI system
	10.1 Using and defining text fonts
	10.2 Using CGI screens for windowing
	10.3 Simple animation techniques
	10.4 Writing a board support library

	A Directory structure
	B IMS B419 hardware overview
	B.1 Description
	B.1.1 Introduction
	B.1.2 Screen sizes
	B.1.3 SubSystem signals
	B.1.4 Memory Map
	B.1.5 Pixel clock selection
	B.1.6 Jumper selection

	B.2 Board layout
	B.2.1 Video and sync outputs

	C IMS B437 hardware overview
	C.1 Description
	C.2 Memory map
	C.3 Display formats
	C.4 Colour video controller
	C.5 Control register programming
	C.6 Hardware cursor
	C.7 Events
	C.8 Board control registers
	C.8.1 Colour mode select register
	C.8.2 IMS G332 reset register
	C.8.3 Startup procedure

	C.9 Video outputs
	C.10 Board layout
	C.11 Accessories

	D References

