occam user group - nevsietier

No. 2 January 1985
CONTENTS
Note from the Editor 2
OCCAM gets a British Computer Society award 2
OCCAM User Group Technical Meeting 2
The next User Group Technical Meeting 4
Update on the OCCAM Programming System 5
The OCCAM Portakit 6
OCCAM compiler available 6
FFT program offered 7
A distributed maxima algorithm 7
A bidirectional protocol for occam 8
Experiences using CSP through to occam (OEK) 10
Five essays on occam 12
OCCAM activities at Loughborough 15
The diagrammatic representation of OCCAM programs 17
OCCAM Program Library 21
Bibliography update 22
OCCAM User Group - list of members 25

David May receiving the British Computer Society Award
for technical innovation from John Butcher MP,
Parliamentary Under-Secretary of State for Industry.

occam is a trade mark of the INMOS Group of Companies

NOTE FROM THE EDITOR

Here at last is the second issue of the newsletter. It is
the same mixture of announcements, lists and longer techni-
cal articles. Two of the latter result from talks given at
the September Technical Meeting. It is hoped that the list
of User Group members will be helpful - this will be kept up
to date in subsequent issues.

Please keep the contributions coming. Those describing prac-
tical experiences with occam will be particularly welcome.
The editor is:

Martin Bolton

Dept of Electrical and Electronic Engineering
University of Bristol

Queen's Building

University Walk

BRISTOL BS8 1TR

OCCAM GETS A BRITISH COMPUTER SOCIETY AWARD

The British Computer Society have made their 1984 Technical
Award to INMOS for OCCAM. The President of the BCS, Dr Ewan
Page, read the following citation at a dinner held at the
Dorchester Hotel, Park Lane, London on 22nd October.

"OCCAM was designed to enable users to program future sys-
tems consisting of hundreds or thousands of interconnected
computing elements. OCCAM adds the idea of a process, which
represents a computer running a program, and interprocess
communication, which represents input and output between
computers, to the essential concepts of present day sequen-
tial languages. The result is a simple and elegant language
which can be used to improve the design and implementation
of current microprocessor applications."

David May of INMOS, the chief architect of OCCAM, received
the award from Mr John Butcher, who was deputising for Mr
Norman Tebbit, Secretary of State for Trade and Industry.

At a meeting held at the Royal Society on 3rd December, Da-
vid gave a technical presentation including a demonstration
of OCCAM programs running on transputer prototypes.

MDP

OCCAM USER GROUP TECHNICAL MEETING

Report by Michael Poole

The first technical meeting of the occam user group was held

at the Watershed, Bristol on 21lst September 1984. This group
is the first special interest group of INMOS customers to be
established and is open to anyone with an interest in occam,
the programming language for the transputer.

About 100 people attended, from universities, polytechnics,
government research and industry. A small number of visitors
from Europe were present.

The meeting took the form of nine lectures by members, each
lasting 20-30 minutes. The speakers discussed their
experience with the occam language both as an aid to design
and programming of forthcoming real systems and as a
theoretical tool for discussing the properties of systems of
concurrent processes and their cooperation.

OCCAM has been designed to facilitate formal reasoning about
programs and deriving from this the ability to transform
programs from one form to another to optimise their
performance on different hardware. Bill Roscoe from Oxford
University discussed the differnt ways of formally
specifying the meaning of programs, and specifically his own
work on algebraic semantics. Richard Bornat from Queen Mary
College discussed a general problem of a process wishing to
send output to another process, but with the option to
proceed on other work if the other cannot receive the
output.

Roland Backhouse from Essex University and John Ainscough
from Brunel University reported on their experiences in the
university teaching environment. Essex have used occam as a
vehicle for teaching the concepts and practice of concurrent
programming, and Roland stressed the importance of providing
students with substantial supporting software for display
management, etc. so they can concentrate their efforts on
the concurrency. John had given a student the task of
writing a complete occam compiler as a final year project,
and it was impressive how someone with little relevant
previous experience was able to create such a compiler which
compiles five times as many lines per minute as the standard
compiler for Pascal on VAX/VMS.

Don Fay from Queen's University Belfast discussed his
experience with one of occam's intellectual parents (Hoare's
Communicating Sequential Processes, CSP for short) and more
recently with occam. He was concerned with the way each
language tends to influence the way one considers the coding
of a problem, and was very appreciative of the way occam had
clarified things for him. He found several kindred spirits
in the audience, however, when he mentioned his difficulty
in getting occam programs to stop gracefully.

The people with real applications in mind were Mike Reeve
from Imperial College, London and two people from RSRE

Malvern. Mike Reeve is a member of the SERC funded ALICE
project which is concerned to build a novel hardware
solution to the problem of making high speed logical
inferences from a database of facts. He described how the
project had originally aproached INMOS to see if they could
use our CAD tools for special purpose VLSI design but had
been persuaded by Iann Barron to use transputers instead.
They are now in detailed discussion with ICL about the
design and construction of a prototype.

Sue Peeling of RSRE discussed the coding of some simple
sorting algorithms in occam and their consequent execution
time on a transputer. David Broomhead of RSRE considered
some aspects of special pupose solutions to particular
logical inference problems. (It was intriguing to specu-
late what his example concerning recognition of animals
at the zoo hid in the way of a real Ministry of
Defence application).

The meeting was brought to a close by David May of INMOS who
ran through the variety of ways potential customers are
thinking of using arrays of transputers. If his predictions
are anywhere near true there is little doubt that INMOS will
be able to sell as many as they can make (as long as the
price is right). It emerged that many potential users really
want to be able to compute with real (floating point)
numbers, and so David indicated that he was working hard on
design in this area.

David also mentioned his latest work extending the occam
language, and the availability of the occam programming
system and the occam portakit. The meeting closed with an
impromptu demonstration of a prototype transputer processor
(the 543) running an occam program displaying aliens jumping
around a visual display screen] This was the first time such
a demonstration has been given in public.

The general reaction from people who attended the meeting
was favourable and the general feeling was that future
meetings should be longer and have adequate bar facilities
for extended exchange of ideas. Only one thing went wrong -
British Rail managed to lose the line between Paddington and
Reading that morning and some people therefore arrived
rather late.

THE NEXT USER GROUP TECHNICAL MEETING

29th March 1985

The second one-day technical meeting of the OCCAM User Group
will be held at Oxford University on 29th March 1985.

There will be speakers from Oxford University Programming
Research Group, from INMOS and from other OCCAM users.

Further details of the meeting and an invitation to attend
will be sent to all members in February.

UPDATE ON THE OCCAM PROGRAMMING SYSTEM

For a fuller description of these products see the Summer
1984 newsletter.

OPS VAX/VMS avalilable now

First release implements an integer subset of occam, and
omits file folding and separate compilation. These will be
included in the second release, as will 68000 and 8086 code
generation.

Subsequent releases — available free to previous purchasers
- will implément full occam, which will provide multilength
arithmetic, structures and IEEE real arithmetic. In
addition, the full folding mechanisms will be supplied.

OPS VAX/Unix available Q1 1985

Similar facilities to OPS VAX/VMS

INMOS Workstation available Q1 1985

A 68000-based workstation with Winchester, floppy disk,
megabyte of memory and a terminal together with the OPS
software.

Related Products:

OCCAM Evaluation Kit available now

A low cost introduction to occam, available for a number of
small computers.

OCCAM Portable Compiler kit available now
See next item.
OPS/IBM PC available Q2 1985

Implementation of the OPS on an IBM PC or IBM PC XT, wunder
MS-DOS.

Transputer Development System Q3 1985

Software tools for IMS T424 support. Available as an upgrade
to OPS customers, when the cost of the OPS is deducted from
the TDS price

Full details from:
Philip Mattos
INMOS Limited
Whitefriars, Lewins Mead
BRISTOL BS1 2NP

THE OCCAM PORTAKIT

If you have been waiting patiently for an opportunity to try
out occam on your local computer, for which no compiler has
Yet been available, you may be interested in a new software
product from INMOS, the OCCAM portakit. This kit consists of
a magnetic tape and accompanying manuals. All files on the
tape are ASCII text files and include a compiler from occam
into an interpretable intermediate code. All you have to do
to be able to compile and run occam programs 1is to write an
interpreter for this intermediate code which will zrun on
your operating system.

To make this job as easy as possible the kit includes
example interpreters written in widely available languages
such as Pascal, Fortran and BCPL as well as a formal
definition written in occam itself. Having written such an
interpreter and interpreted the suite of pre-compiled test
programs provided, you are in a position to interpret the
compiler itself in order to compile your own occam programs.
The output from these runs will be the interpretable
versions of your programs which you can then interpret with
your interpreter.

The compiler was itself written in occam and compiled
through itself. The source is included in the kit so that if
you are really adventurous you may consider modifying its
code-generation process to generate code for your target
architecture.

The kit is designed in the first instance for 32-bit
machines with wuniformly addressable address space of about
half a kilobyte. (If you want to try it out on other
machines then it will be at your own risk). Full details are
available from all INMOS sales offices.

MDP

OCCAM COMPILER AVAILABLE

An occam compiler is available, which runs on Prime comput-
ers an generates Prime machine code. The compiler implements
the full language and there are a few extensions, notably
for separate compilation and recursive processes. For furth-
er information, contact Dr. A.J.Fisher, Department of Com—
puter Studies, The University, Hull HU7 7RX.

PORTAKIT INTERPRETER WRITTEN IN C

A portakit interpreter written in C is available from
Michael Harrison, Dept of Computer Science, University of
York, to whom all enguiries should be made.

FFT PROGRAM OFFERED

Owen Ransen of INMOS has written a complete 8-sample FFT in
occam. This has has been run and tested on the VAX OPS. So
1f you want to know how a real FFT can be done, write to
Owen for a copy of his listing.

A DISTRIBUTED MAXIMA ALGORITHM

Richard Taylor, INMOS

There exists a network of transputers where each transputer
contains a number. After the procedure 'maxima' has been ex-
ecuted in each transputer, they will all contain the same
number which is the largest number in any transputer in the
network.

PROC maxima (CHAN Llo, L1i, ~--1link 1
L2o, L2i, ~-link 2
L3o, L3i, --1link 3
L4o, L4i, --link 4
VALUE maxpath, --maximum path length
VAR max) = --local input and
result

SEQ i = [0 FOR maxpath])
VAR maxl, max2, max3, max4d :

SEQ
PAR
Llo ! max
L2o ! max
L3o ! max
L4o ! max
Lli ? maxl
L2i ? max2
L3i ? max3
L4i ? max4

maximum (max, maxl, max2, max3, max4)

The procedure 'maxima' takes as parameters the channels
which are the four links of a transputer (which it is as-
sumed are all connected to other transputers), ‘'maxpath’
which 1is the longest path, counted in a number of links,
between any two transputers in the network and 'max' which
is the local number. The procedure 'maximum' makes its first
parameter the maximum of its five parameters.

The procedure outputs 'max' on all its links and inputs the
maxima of all these numbers. After this has been done 'max-
path' times, 'max' in each transputer will be the same.

A BIDIRECTIONAL PROTOCOL FOR OCCAM

Richard Bornat, Dept of Computer Science and Statistics
Queen Mary College

OCCAM is designed for efficient implementation on a simple

machine. Its communication mechanisms are particularly res-
tricted to fit this straitjacket. By 7requiring one-to-one
channel pairing, message passing becomes almost as easy to

implement as assignment. By 7requiring guarded commands
(ALTs) to have receive guards only, non-deterministic input
becomes hardly more difficult.

It is well known that bidirectional guarded commands allow
some added programming flexibility. A buffer in a pipeline
of processes is most easily programmed with a bidirectional
guarded command, offering simultaneously to receive a new
value from a producer or send a stored value to a consumer.
With unidirectional guarded commands the consumer and buffer
must use some sort of signal-ready protocol, which militates
against the wuse of channels as abstract interfaces to
processes. The buffer is only one example: rings of
processes are another, server processes which attempt to
handle multiple streams of requests with minimal latency are
a third. Although there are often 'ways round' the problem
it would be nice if it didn't exist.

It is possible to construct an occam-like system which al-
lows bidirectional guarded commands, and it is possible to
implement it in occam itself provided that in the occam-like
system also there is only one-to-one 'channel' connection.
Processes in the system which execute a guarded command must
also go through a protocol of message queries and replies to
achieve synchronisation with a partner. The maximum number
of occam messages per guard of the bidirectional command is
6, so the cost is significant but perhaps affordable, if the
application demands it.

In the occam-like system each 'channel' 1is represented by
five occam channels, one connecting two processes and the
other four connecting them to a 'matcher' process which su-
pervises the protocol:

/a \
ml7 N
b ———3cC
F::jinﬁi:fZ/
The protocol itself is a development of one proposed ,by
Buckley and Silberschatz for a bidirectional implementation

of CSP. Processes ready to communicate identify themselves
to a matcher with OFR messages and withdraw with CNCL.

Processes are numbered arbitrarily but uniquely: this
numbering 1is used by matchers to control communication and
to avoid deadlock and livelock cycles. A matcher which has
two ready messages sends the higher-numbered one a RDY mes-
sage: if it replies CMT it is committed to the pairing and
the matcher sends RQ to the partner. If the partner replies
YES the matcher has made a pairing and tells the original
process so with MCH.

The description of the protocol is a couple of state di-
agrams, one for processes and one for matchers. In this
description processes—numbers and channels are treated the
same. In the occam implementation they are of course dis-
tinct.

A process executing a guarded command maintains two data-
structures which describe the state of execution of a guard-
ed command. M; addresses the matcher named in enabled guard
i, g, the state of communication with that matcher:

g, = blank normally
offered when OFR(p) sent
ready when RDY(m;) received
4 x when RQ(m; ,X) received

It is in one of four states:

executing, outside any guarded command

in a guarded command but not committed to any offer
committed to a particular RDY message

paired with a particular offer by YES or MCH

vao Qe

Because of the use of synchronised message-passing and CNCL
messages a process can be sent no messages in E state. The
state-table below refers to four predicates on the contents
of array g:

b: Ei: g =blank

y: Ei: g = x

r: Ei: g =ready

o: Ei: g “=blank
state message change in change in message

received state data sent

Gty - P gi,q:=blank,x m !YES
Gtb - G ; i=offered m !OFR(p)
Gtr - c c:=blank m !{CMT
Pto - P gj:=blank m !CNCL(p)
Pt-o - E - -

GVCVP RQ(m ,X) - g. :=Fx -

lo

GvCvVP RDY (m;) - g::=ready -
c NO G gc:=offered -
C MCH(x) P g, +g:=blank,x -

The effect of the algorithm, if it terminates, is to assign
to 'g' the address of the sucessful process partner. This
value can then be used to send or receive data as appropri-
ate.

A matcher keeps record of offers from two processes P, and P,
. It counts in a variable j the number of offers received
and not yet withdrawn. It has three states:

1 idle, waiting for OFR messages
WO waiting for reply to RDY
W1l waiting for reply to RQ

The state table requires a single predicate:

o: P, > P,y

state message change in change in message
received state data sent

i1tj=210 - WO - P IRDY(m)

1tj=21%"0 - I P, ,B, :=P, ,P, -

IvWOVW1 OFR(x) hE Bh,:=j+l,x -

Wotj=2to CMT Wl - Py 'RQ(m, P,)
WOt(j=1lv o) CMT 1 - P INO
1vWO CNCL(P) i i,B, :=i-1,P, -

IVWO CNCL (P) - J:=9-1 -

Wl CNCL(Py) 1 Ji=j-1 P, INO

Wl YES I 3:=0 Py !MCH(P,)

The protocol can be proved to be deadlock- and livelock-
free, and requires an average of 4.5 messages per guard. It
can be impemented in about 100 lines of occam, similarly
deadlock- and livelock-free.

EXPERIENCES USING CSP THROUGH TO OCCAM (OEK)

Don Fay, Queen's University, Belfast

(This is a summary of the talk given at the September 1984
Technical Meeting)

- 11 -

1. PDP-8 to ICL 1900 link for CSP., Problems centred around
physical and logical allocation of channels using the link.
Some particular problems caused by having to use the ICL
standard interface and its inherent DMA. No significant ex-
ample programmed on this system.

2. Digital differential analyser in OCCAM. This technique can
be wused to generate functions as solutions of differential
equations. It is particularly suitable with fixed point ar-
ithmetic where incremental changes of functions are re-
quired.

OCCAM processes are used to implement an array of integra-
tors together with a "plugboard" process. The plugboard
represents the interconnections of the integrators. A furth-
er process 1is needed to fan out a control signal. At the
time of the talk there was a problem getting all processes
to synchronise their termination.

3. Image display hardware scheme

A brief summary was given of the paper which is published in
Microprocessors and Microsystems, Vol. 8, No. 1, Jan/Feb
1984.

4. FFT

An O(1l), wavefront array implementation of the FFT was
described in outline. (Log2n) X 2 levels of hardware would
be required. There is potential for considerable parallelism
within each level, although there is no need for this to be
implemented in separate hardware. The OCCAM channels are
used as pipes, with all data transfers in a forward direc-
tion - no control or data is sent in a reverse deirection.

2 5. Using OCCAM to describe an existing bounded buffer
imlementation

Using OCCAM to describe an existing algorithm led to clumsy
OCCAM code. The moral seems to be to redesign from scratch
using OCCAM concepts. Particular problems occur when the al-
gorithm described includes interrupts.

For further details, please write to Mr Fay. (address in
member list)

- 12 -

FIVE ESSAYS ON OCCAM

P.H.Welch, GEC Avionics, Rochester

Occam is a language for designing and implementing concurrent
systems. It is characterised by the simplicity and power of
its concepts together with an efficient execution model.
Nevertheless, there are areas of the language where some
enhancements, balanced by some further simplifications, may be
worthwhile. These essays discuss several possible amendments
aimed at increasing the clarity, security and flexibility of
the language without damaging its performance. They also seek
to encourage a functional style of systems' design as opposed
to the procedural mechanism derived from traditional
sequential programming languages and computer architectures.

1. Channel parameters

Specify which channel parameters of a PROC are for input and
which are output. This is vital piece of the semantics of a
PROC which needs needs to be known simply in order to produce
syntactically 1legal code. Currently, this information is
available from comments (unreliable), identifier names (also
unreliable) or by examining the PROC body (ok, if you are a
compiler, but breaking an important principle of information
hiding).

For example :-

PROC nos --> (CHAN out) =
-—- out! 0; 1; 2; 3; . .

o s .

PROC pair.sum (CHAN in) --> (CHAN out) =
-— in? x0; x1; x2; x3; e e .
-— out! (x0 + x1); (x1 + x2); (x2 + x3); e e

The additional information contained in the specification
enables the compiler to produce more useful error diagnostics.
Consider the following PROC, where we have neutral channel
names and no comments :-

PROC integrate (CHAN sally) --> (CHAN fred) =

An attempt to 'sally!' or 'fred?' in its body can be rejected
straight away. With current notation, such an inconsistency
would not be found until ‘'integrate' was applied and, then,
its cause would not be pinpointed.

A similar syntax is used to instantiate these PROCs :-

- 13 -

PROC squares --> (CHAN sue) =
CHAN a, b:
PAR
nos --> a
integrate (a) --> b
pair.sum (b) —--> sue:

It is now transparent, just from the specificatioq lines of
'nos', 'integrate' and 'pair.sum', that the network is legally
connected. Currently, illegal networks are only detectable by
having access to the bodies of their component processes.
This runs counter to the principles of information hiding
(which are 1likely to be particularly relevant to the
construction of large parallel systems).

2 .Functional system building

Conventional notation for system building in Occam has a
procedural style. Connections have to be made through
explicitly declared channels and the programmer finds himself
needing to draw pictures to give himself a chance of getting
them correct. With the separation of input from output
channel parameters (Modification 1), a freer functional style
of system building can be adopted. Some lower-level details
(like explicit channels and PAR directives) can be omitted.
Program semantics, transformation and derivation becomes
easier since we are able to concentrate more on the code
(algebra) and less on the pictures. For example :-

PROC squares --> (CHAN sue) =
pair.sum (integrate (nos)) --> sue:

The compiler has to work harder but there is no run-time
penalty. The semantic clarity of the functionally expressed
networks is such that we might be able to stop drawing so many
networks to aid our design. Indeed, network diagrams might be
rendered as obsolete a technique as sequential flow-diagrams
and for the same reason - we have a better means of

expression.

3. Input channel buffers

When writing at a low-level (i.e. "2", "!", ":="), many
variables need to be declared just to catch input data before
processing. Often, the original input values do not need to
be retained beyond this processing.

To save the programmer the need to declare such 1local
variables, associate with each channel a "buffer" variable of
the same name. To indicate the structure of the algorithm,
let an input process always "guard" another (indented)
process. ‘

For example :-

- 14 -

PROC succ (CHAN in) --> (CHAN out) =
WHILE TRUE
in?
out! in + 1:

The concept of input buffers and input operations guarding
another process frees the programmer from controlling explicit
variables. Updatable variables are a concept derived from the
von-Neuman sequential machine and their existence constitutes
a temptation to the programmer to continue with previous modes
of thought. Programming without variables or assignment leads
to clearer algorithms that are free from side-effects. 1In the
case of low-level Occam cycles, these concepts lead to a more
expressive language and a more efficient implementation. The
language may be simplified by the removal of variables, ANY
and the assignment process.

4. Synchronisation control

Allow "negative" channels with an opposite hand-shake protocol
to permit output guards. Allow "free" channels with no
synchronisation. Such channels complement conventional
("positive") channels, have simple and direct implementations
and model common real-world objects (e.g. a particular free
channel, TIME, already exists in the language).

We show that free channels may be simulated using negative
channels and negative channels by positive channels. However,
for reasons of clarity and performance, it might be an idea to
support these ideas directly within the language.

5. Types

Introduce strong typing, packages, polymorphism and higher
order processes. For a language which claims to be a language
of "information", Occam makes us express that information at a
very low level - namely words and word vectors. This is quite
forgiveable in the short (and medium?) term since Occam
tackles a problem of computing (concurrency and non-
determinism) that is much less well understood than types.
Eventually, though, for designing and implementing very large
systems, we are likely to need the extra security, ease of
writing and clarity provided by some form of (strong) typing.

Polymorphic and higher order types are possible, without
spoiling the simple and fast execution model of Occam. The
compiler will have to work harder but it might be worthwhile.
The language is looking quite functional.

SUMMARY

The proposed amendments have been motivated by the desire to
increase the confidence of the system designer (customer,
tester, maintainer). The method has been to increase our
powers of expression for the specification ((l), (4) and (5))
and implementation ((2), (3), (4) and (5)) of objects. A
major benefit is that the specification, by capturing more

ls

intormation, becomes more independent (and, thus, separable)
from the implementation. This is very important to the human
trying to design (or understand the design of) a system
containing such objects. To use an object, he need only
understand what the object does, not how it does it. Having
the specification in a formal notation (as opposed to natural
language documentation) decreases ambiguity and increases the
support the compiler can give for checking consistency within
the design.

A final thought: the choice of SEQ/PAR, VALUE/CHAN or
PACKAGE/PROC are different reflections of the same issue. 1Is
this really just an implementation detail? Is it possible to
conceive of a further simplification to the language that
frees the programmer from this decision, leaving this for
separate target <configuration instructions given to the
compiler and from which the program itself is independent?

(The full paper is available from the author, whose address
appears in the member list)

OCCAM ACTIVITIES AT LOUGHBOROUGH

R.P.Stallard, Dept of Computer Studies
University of Technology, Loughborough

Work on multiprocessor systems at Loughborough University in
the Department of Computer Studies began in 1978 with a dual
processor Interdata system. Since then a four processor
Texas Instruments 990/10 shared memory system has been in-
stalled. Much of the multiprocessor research at Loughbor-
ough has centred on the efficient implementation of numeri-
cal algorithms on different types of parallel computer ar-
chitecture. The only programming languages used have been
extended versions of FORTRAN permitting parallel execution
and synchronization between processors. These languages
suffer from all the pitfalls of botching a sequential
language to run in parallel.

For a variety of reasons I decided to write an occam com-
piler for the Department's VAX/UNIX system in the language
'C'. Initially a system to execute on the VAX was written
but execution on the actual parallel system is envisaged.

Objectives of the compiler design were principally for flex-
ibility and for speed of object execution. Flexibility was
achieved by using the UNIX compiler and lexical analyser
utilities (yacc and 1lex) and by favouring straightforward
coding without space/time optimizations. A dynamic stack
based mechanism is used for space allocation when calling
procedures (as opposed to using textual subsitituton). Pro-
cess descriptors are also allocated on the stack, this
method reduces run time space requirement and permits rela-
tively easy language extension for dynamic space allocation

16

features, but has the extra cost (on a single processor) of
managing a single shared stack between multiple allocator
and deallocator processes. The 1internal occam pocess
scheduler 1is kept as simple as possible to minimize context
switch time. The basic scheduling policy is for active
runnable processes to explicitly wake up suspended processes
rather than scanning dormant processes repeatedly.

Another aim was to provide occam as just another language
under UNIX. All standard UNIX utilities are able to manipu-
late occam source text so that the standard text editors
(vi, ed) can be wused. Occam programs can use redirected
input/output and pipelines just like other UNIX programs.

Although compiler validation is never entirely possible the
current version does not suffer from any known bugs and has
passed the code generation tests kindly supplied by INMOS
(these tests did uncover some rather obscure bugs that were
totally unrelated to the purpose of the tests). A research
student has started to use the occam compiler for programs
that model the execution of systolic arrays.

The compiler has taken about five man-months of effort to
write, supporting the view that occam is a comparatively
simple language to implement. The only language definition
document was the INMOS occam booklet.

There are, however, some local language restrictions. The
implemented. These are slices, prioritized ALT and the
whole of the configuration section. Slices will be imple-
mented although there are difficulties in ensuring correct
usage as slice sizes are permitted to be variable.

Several local lahguage extensions have been added (although
normal INMOS proto-occam can still be used). These are
currently:-

Variable PAR Replicator Counts
The space allocation scheme permits dynamic creation of
processes without any additional repercussions, more than
10,000 processes have been created and run in a single
program.

Recursive Procedure Calls.
The stack procedure call mechanism enables recursive
calls to be treated just 1like ordinary calls to pro-

cedures.

Multiple Occam Source File Compilation and Provision of Li-
braries.
A program can be split into several separate source files
and separately compiled. Libraries of commonly used pro-
cedures can be referenced explicitly rather than build-
ing special procedure names into the compilation stage.

- 17 -

It is also possible to include subroutine libraries writ-
ten in 'C' (and via 'C' other languages). This has been
done by declaring procedures to be 'external’ (defined in
another file) or and accessible to other files).

Normal 'PROC' declarations are local to the source file.
Full cross file parameter type checking is enforced.

The object program generated by the compiler is in fact
standard 'C' 1language source and the UNIX 'C' compiler is
used to generate object and link in the run time support
routines (also written in 'C'). The standard 'curses' pack-
age is used for cursor movement commands (provided by the
standard occam library) so that run time execution should be
terminal type independent. Implementation on other UNIX
4.1/4.2 systems should be straightforward, but different
word lengths and program size limits could cause problems.
The current slowest stage in occam compilation is the 'C’
compiler stage because a lot of 'C' is produced for each oc-
cam source line. A future facility could provide direct
compilation from occam to VAX assembler.

The run time support facilities enable 'CTRL C' to be used
at any time to interupt program execution and inspect the
status of the processes. Facilities currently include set-
ting spy and break points in the object (given the required
source line number) to trace program execution, controlling
process, stack and clock tracing, the ability to abort or
restart program executon and checking that subscripts are
valid on all channels and variable vectors.

Future work at Loughborough on occam will hopefully include
formal analysis programs to explore livenesses, data depen-
dencies and potential program transformation of occam pro-
grams.

THE DIAGRAMMATIC REPRESENTATION OF OCCAM PROGRAMS

Alistair Munro, Computer Centre, University of Bristol

Introduction

SADIST is a means for representing the structure of a con-
current system. It recognises two components: processes,
which may be nested hierarchically, and channels, that form
an irregular interconnection between them. It presents the
system to the user as a set of diagrams in which processes
are represented by boxes and channels by lines between them.

The motivation is to make the interconnection structure
visible, and to show the designer where cycles exist. Cycles

- 18 -

of communication between processes are the source of many
problems in concurrent systems, and faulty design can lead
to deadly embrace deadlocks. They may intersect, or be nest-
ed within one another, and they are difficult to detect in a
source program.

The sections of the paper describe the details of the SADIST
representation of the programming language occam, and the
implementation of the method on the PERQ single user system.

SADIST

A system is presented diagrammatically as a hierarchical
structure of processes linked by communications channels. A
diagram is composed of boxes that represent processes, and
lines that represent channels; other information about the
system is included as text, labelling the boxes and 1lines,
(Fig 1). The frame labelled "current level"™ contains
processes with communications channels. Some of these ter-
minate outside the frame, and represent channels entering
from the level above.

A hierarchical structure of diagrams is called a model. The
current level of Fig l¥contains "nested models", represent-
ing the sub-trees. The processes in the current level are
the roots of the nested models, and access to them occurs
through partly-concealed frames surrounding the current one.
The current level is the root node of a process in the level
above, which is represented by a similar, partly-concealed
frame.

The hierarchy can be understood by relating the model struc-
ture to that of an occam program. The model contains two
networks. First, it is a tree of nodes representing the

processes of the program. A second irregular network of
channels joins the terminal nodes.

Process Tree

The tree of processes consists of terminal nodes and non-
terminal nodes. A diagram may contain a mixture of both.

Terminal nodes

Most of the terminal nodes are the primitive processes of
the program.

* Fig 1 i on page 30

- 19 -

Where a process identfier is encountered it is treated as a
terminal node too, although it is really the attachment of a
subtree if considered in terms of the passing of control.
Declarations have to be treated in two ways: VAR and CHAN
statements are terminal nodes.

Non-terminal nodes

Most non-terminal nodes are constructs. SEQ and PAR nodes
contain nested models that may be further constructs or
primitives. Conditionals and guarded processes are con-
sidered to be non-terminal nodes within IF and ALT nodes
respectively. A PROC declaration is the root of a separate
sub-tree and is therefore non-terminal node too.

Channel Network

Channels have a source and a destination. Most of them will
be contained within the model. There are a few external
channels that are connected to the world outside the model.
These may include those that have no source or destination
because of programming errors.

Lines are attached to specific edges of a box depending on
their function. Inputs enter a box from the left; outputs
emerge from the right. Lines representing inputs in guards
enter the top edge of a box, and are referred to as "con-
trol" channels.

The ends of channels are input and output primitives, that
is, terminal nodes of the tree, if they are contained within
the model. Each pair of output/input nodes will share a
non-terminal node on the path back to the root of the model.
The line is extended back up through each of the node di-
agrams until the shared node is reached and the final join
is made at this point. External and partially connected
channels are brought up through the tree to the nearest root
node. This may be the root of a PROC declaration or of the
system.

Channels may be shared, by an error of programming, and this
is shown by forks or joins in the affected lines.

Representation of Replicators

SEQ, PAR, IF and ALT constructs may be replicated if there
is some regularity in the component processes and their in-
terconnection. This is represented by creating two boxes
within the root node of the replicator model. One of these
is the first process; the second is the last in the chain.
Channels that interconnect them are drawn once only.

Naming Scheme

The text labeling is derived from the occam source. The nam-
ing of processes is determined by their position in the
tree. Channel naming is based on the relation positions of
lines on a specific box edge, numbering them clockwise round
the box.

The processes in a diagram are not ordered in any way. Their
positioning may be chosen to suit their interconnection
structure and minimise the confusion of crossing lines, but
has no significance as far as the order of execution of
processes is concerned. This should not be important in a
concurrent system in any case.

SADIST Implementation
The SADIST programs are:

a compiler that translates occam source into the inter-
nal network representation.

a generator that translates the network database into
an occam program.

a generator that translates the network database into
an intermediate graphics language for subsequent pro-
cessing to produce hard-copy.

an editor that manipulates the internal database by
modifying the positions of objects on the diagrams in-
teractively.

Requirements of the Target System
Briefly, the target system must support:

virtual memory, since the code sections are large, and
the data sections must be unlimited in size.

interactive graphics, with the ability to service
events from pointer devices and character keyboards,
(GKS level 2c equivalent), and display segmentation
with segment dragging or low-level access to the
display hardware to allow double-buffering to be imple-
mented.

tools for program development, specifically a compiler
that support multiple program modules with associated
linker and run-time libraries.

- 21 -

The hardware that the system will run on should be adequate-
ly configured so that it does not impose any inherent limi-
tations on the performance of the program.

A PERQ became available which fulfilled the basic needs, as
follows:

POS operating system, supporting a segmented memory
management system.

Access to low level features of the hardware: line and
raster-op primitives, pointer and character input.

Pascal compiler

The machine has 1 MByte of physical memory, a character key-
board, and a digitising tablet.

The PERQ has proved adequate to support the project so far.
It 1is not ideal from the programmer's point of view: in
terms of high-level graphics packages or transparent virtual
memory for instance it 1is a "naked machine” and the user
must be able to implement many of the low-level facilities
himself. One of the benefits of the PERQ, under POS, was
that most of the original program modules could be used
without substantial change; modification of the compiler
directives was all that was needed in most cases.

Continuing Development

Initial impressions of the use of the system suggest that
the diagrams have limited value in isolation. Many are
trivial, and only a few contain useful information about the
communications structure. Output that gives an overview, or
is more selective about what is displayed is an obvious
enhancement.

occam is the language for the Transputer and one application

of SADIST 1is to redesign and implement itself on a a suit-
ably configured Transputer system.

OCCAM PROGRAM LIBRARY

Contributions for the above are invited of any programs
which may be of interest to other users. A brief (one sheet)
description of what the program does, which system it runs
on plus name and address of author, should be sent to the
address below. Program listings are not required since the
details will be published in the newsletter and those in-
terested can contact the author directly. However, the 1li-
brarian has access to Vax, Sage and Sirius systems so is

- 22 -

able to transfer programs between these systems if neces-
sary.

Mrs 8 M Peeling
RSRE

St Andrews Road
Malvern
Worcestershire
WR14 3PS

Tel: Malvern (06845) 2733 Extn 2228

BIBLIOGRAPHY UPDATE

compiled by INMOS and the Editor
Papers about occam and the Transputer by INMOS

Richard Taylor, "Signal Processing with occam and the tran-
sputer”. (Available from INMOS)

Pete Wilson, "The transputer - a general purpose multipro-
cessing component". (Available from INMOS)

Pete Wilson, "Digital signal processing with the IMS T424

transputer". (Available fron INMOS)
Paul Walker, "Using transputers for optimising
cost/performance". (Examples of how transputers could be

used for the FFT) (Available from INMOS)

Paul Walker, "Estimating transputer performance". (Available
from INMOS)

P.Wilson, "Design station captures complete system
design/implementation cycle,”

Midcon '83 Conference Record (Chicago, Sept 13-15, 1983) Los
Angeles: Electronic Conventions Inc., 1983, pp 1.5/1-6.

P.Wilson, "Thirty-two bit micro supports multiprocessing,"
Computer Design , Vol. 23, No. 6, June 1984, pp 143-150.
Philip Mattos, "The Transputer”,

New Electronics, Aug 14, 1984, pp 43-45.

S.Brain, "Writing parallel programs in occam,”

Electronic Product Design , Vol. 5, No. 9, Sept 1984, pp

23

47-50,53,54.

Pete Wilson, "Programming for Multiprocessor Designs",
Electronic Imaging, October 1984, pp 59-62.

R.Taylor, "Graphics with the transputer,"

Computer Graphics 84 Conference , Oct 9, 1984.

IMS T424 Transputer Reference Manual , Nov 1984.
Papers on occam and the Transputer authored outside INMOS
C.Gross, "Programming of parallel processors in occam,"

Electronique Industrielle , No. 49, March 15, 1983, pp 57-
60. (In French)

Dick Pountain, "OCCAM Occult - programming in parallel with
occam”,

Personal Computer World , July 1983, pp 136-141.

P.Palerma, "The transputer: the European revolution in micro
architecture, "

Elettronica Oggi (Italy), No. 1, Jan 1984, pp 65,66. (In
Italian)

D.Q.M.Fay, "Comparison of CSP and the programming language
occam”,

Australian computer science communications ,Vol 6, No. 1,
Feb 1984, pp 13-1 to 13-10.

T.Durham, "Inmos: a final frontier?"®
Systems (S.Africa), Vol. 14, No. 4, April 1984, pp 22-24.

D.Q.M.Fay, "OCCAM manual gives programming guidance to users
at various levels”

Microprocessors and Microsystems , Vol 8, No. 5, June 1984.
"'Transputer' a component for fifth generation computers,”

Elektronika (Netherlands), Vol. 32, No. 12, June 29, 1984,
pp 13,15,17,19. (In Dutch)

B Jane Curry, "OCCAM solves classical operating system prob-
lems",

24
Microprocessors and Microsystems , Vol 8, No. 6, July/August
1984, pp280-283.

Dick Pountain, "The transputer and its special language, oc-
cam, "

Byte , Vol. 9, No. 8, Aug 1984, pp 361,362,364,366.

Anthony sSkjullum, "OCCAM: A parallel processing language
from the U.K."

Computer Language , November 1984, pp 55-60.

Rory Johnston, "Inmos paves the way for leap,"”

Computer Weekly , Dec 6, 1984, p 24.

John McCrone, "Inmos tackles the marketing of Transputer,"
Computing , Dec 6, 1984, p 24.

John McCrone, "Imperial College plan may get a commercial
deal,"

Computing , Dec 13, 1984, pp 26,27.

Geraint Jones and Bill Roscoe, "Find the median of nine
numbers - quickly". Unpublished.

J.G.Harp, J.B.G.Roberts and J.S.Ward, "Signal Processing
with transputer (traps)",

Computer Physics Communications (in press).

D.S.Broomhead, J.G.Harp, J.G.M.McWhirter, K.J.Palmer,
J.G.B.Roberts, "A practical comparison of the systolic and
wavefront array processing architectures"”,

2 Proc. of the IEEE International Conf. on Acoustics,
Speech and Signal Processing (Tampa, FL, March 1985)

Useful background material
E.Shapiro, "A concurrent Prolog Bibliography"”.

E.Shapiro, "Systolic Programming: A paradigm of Parallel
Processing"

BACK_NUMBERS

Copies of Issue No. 1 of the Occam User Group Newsletter are
available while stocks last on application to the secretary
at INMOS. This issue included 6 pages of bibliography on
CSP, OCCAM and the Transputer.

25
OCCAM USER GROUP - List of members as at 12th December 1984

John Ainscough, Dept of Engineering and Management Systems,
Brunel University, Kingston Lane, Uxbridge, Middlesex.

S Akiyama, Electro-technical Laboratory, Umezono Sakura-
Mura Tukuba, Ibaragi-Ken, Japan.

J Atkinson, CAP Scientific Ltd, 20-26 Lambs Conduit Street,
London.

Dr L.V.Atkinson, Department of Computer Science, University
of Sheffield, SHEFFIELD 510 2TN.

Dr Jean Bacon, The Hatfield Polytechnic, Computer Science
Div., PO Box 109, College -Lane, Hatfield HERTS ALl0 9AB.
Roland Backhouse,Dept of Computer Science, University of
Essex, Wivenhoe Park, Colchester,Essex CO4 350Q.

Mike Barton, E & EE Department, University of Bristol,
University Walk, Bristol BS8 1TR.

Mark Beech, E & EE Department,University of Bristol,
University Walk, Bristol BS8 1TR.

Mitch Beedie, Electronic Design, Hayden Publishing Co. Inc,
Avalon House, Cranston Road, East Grinstead, West Sussex.
Dave Berry, Computer Science Dept, JCMB Kings Buildings,
West Mains Road, Edinburgh.

David Bevan, GEC HRC CSRL, East Lane, Wembley, Middx HA9
7PP.

Dr P Blackledge, GEC Telecommunications Ltd, Telephone
Works, PO Box 53, Coventry CV3 1HJ.

Ulrich Bollinger,Bollinger Datentechnik GmbH,An der Fuhr
15,5030 Hurth 6, West Germany.

Martin Bolton, E & EE Department, University of Bristol,
University Walk, Bristol.

Richard Bornat, Queen Mary College, Mile End Road, LONDON.
Steve Bowran, CAP Scientific Ltd, 20-26 Lambs Conduit
Street, LONDON WCI1N 3LF.

J.Brankin Esq, British Telecom, Royston House, 34 Upper
Queen St, Belfast.

Dr Graham Brooks, Dept of Computer Science, University of
Sheffield, Hicks Building, Sheffield.

David Broomhead, RSRE, St Andrews Road, Great Malvern,
Worcs WR1l4 3PS.

Geoffrey Burn, GEC Hirst Research Centre, East Lane, Wemb-
ley, Middx HAS 7PP.

M Burton Esq, Texas Instruments Ltd, MIS45, Manton Lane,
Bedford.

Khan Busby, Thorn EMI, Central Research Labs, Trevor Road,
Hayes, Middlesex UB3 1HH.

B Cantwell, Dept R14.1.1, British Telecom Research, La-
boratories, Martlesham Heath, Ipswich IP5 7RE.

Professor C R Cavonius, Inst.F Arbeitsphysiol, Ardeystr 67,
D-4600 Dortmund 1, West Germany.

C.F.Chan, Dept of Elec.Eng.Science, University of Essex,
Colchester, Essex.

Mr A Cheese, 159 Windermere Drive, Warndon, Worcester WR4
9JF.

Alan Clark, Electrical Engineering Dept, Leicester Po-
lytechnic, PO Box 143, Leicester LEl 9BH.

D.A.Clarke, IBM (UK) Laboratories Ltd, Hursley Park, Win-
chester, Hants S021 2JN.

D.M.Cleal Esqg, Central Computer &, Telecommunications Agen-
cy, 157-161 Millbank, London.

Adrian Cockcroft, Cambridge Consultants Ltd, Science Park,

- 26 -

Milton Road, Cambridge CB4 4DW.

Andrew J Cole, Computer Based Learning Unit, Leeds Univer-
sity, Leeds, West Yorkshire LS2 9JT.

Murray Cole, Dept of Computer Science, University of Edin-
burgh, JCMB Kings Buildings, Mayfield Road, Edinburgh EH9
35Z.

Conrad Cork, Leicester Polytechnic, PO Box 143, Leicester
LEl 9BH.

P Cornwell Esq, Texas Instruments Ltd, MIS45, Manton Lane,
Bedford.

Michael Coyle, British Telecom, Royston House, 34 Upper
Queen St, Belfast BT16FD.

M.K.Crowe, Paisley College of Technology, High Street,
Paisley, Renfrewshire PAl 2BE.

B Jane Curry, Computer Centre, Chelsea College, University
of London, Pulton Place, London SW6 SPR.

Mr C Dilloway, Highcroft, Gunhouse Lane, Stroud, Glos GLS5
2EB.

Gunter Dotzel, Modulaware, E-Rommelstr 59, D-8520 Emangen,
WEST GERMANY.

P.H.Duffin Esg, Central Computer &, Telecommunications
Agency, 157-161 Millbank, London.

Peter Eckelmann, INMOS GmbH, Danziger Sr.2, 8057 Eching,
WEST GERMANY.

M Eglin, Systems Dept, British Aerospace, Brough,
N.Humberside.

Keith M Farrington, CAP (Reading) Ltd, Trafalgar House,
Richfield Avenue, Reading, Berks RG1l 8QA.

D.Q.M.Fay, Queens University (Belfast), Belfast, WNorthern
Ireland BT7 1NN.

L.Fernando, UMIST, Wright Robinson Hall, Altrincham Street,
Manchester.

Paul Fertig, Programming Research Group, Oxford University,
8-11 Keble Road, OXFORD.

Ian Firth, Dept of Computer Studies, Loughborough Universi-
ty, Loughborough, Leics LE1ll 3TU.

Dr A.J.Fisher, University of Hull, Dept of Computer Stu-
dies, Hull HU6 7RX.

David Freestone Esg, British Telecom, Research Labora-
tories, R14.2.4, Martlesham Heath, Ipswich IP5 7RE.

Dr M.S5.Gate, BAC Dynamics Group, Manor Road, Hatfield,
Herts AL1l0 9LL.

B.W.J.Gooding, BG Software Design Ltd, Holly Cottage, Ash-
ford Hill, Newbury, Berks RG15 8BQ.

Jan Gottschick, Gottschick Computer, Kreuznacher Str. 40,
01000 Berlin 33, GERMANY.

Dr David T Gray, Queens University, Dept of Computer Sci-
ence, Belfast, BT7 1NN.

M Griffiths, MWG Systems, 106B Lexham Gardens, London W8
6JQ.

Patrick A.V.Hall, Cirrus Computers Ltd, Waterman House,
101-107 Chertsey Road, Woking, Surrey, GU21l 5BL.

Gordon Harp, RSRE, St Andrews Road, Great Malvern, Worcs
WR14 3PS.

- 27 -

Dr Neville R.Harris, Distributed Systems Group, Department
of Computer Science, Engineering School, Trinity College,
DUBLIN.

Matthew Hennessy, University of Edinburgh, Kings Building,
Mayfield Road, Edinburgh.

Professor C.A.R.Hoare, Oxford University, Computing Labora-
tory, 8-11 Keble Road, Oxford 0OX1 3QD.

Ian Horton, Dept of Computer Science, Exeter University,
Physics Tower, Stocker Road, Exeter EX4 4QL.

Wolfgang Hromada, Othmar Lackner, Elektr.Bauelemente,
Landstr.Hauptstr.37, A-1030 Wien, AUSTRIA.

J Hughes, Cirrus Computers Ltd, Waterman House, Chertsey
Road, Woking, Surrey GU21 5BL.

Dr M.E.C.Hull, Department of Computing Science, University
of Ulster, Shore Road, Newtown-Abbey, Co.Antrim BT37 0QB.

Mr D.G.N.Hunter, Standard Telecommunications, Laboratories
Ltd, London Road, Harlow, Essex.

David Hurford, Gresham CAP, Osborneway, Hook, Hampshire.

Peter 1Ilieve, Ferranti Infographics Ltd, Bell Sqguare,
Brucefield, Livingston, West Lothian EH54 9BY.

Jeremy Jacob, Programming Research Group, Oxford Universi-
ty, 8-11 Keble Road, OXFORD.

Mr T.A.James, Thorn EMI Central, Research Labs, Trevor
Road, Hayes, Middlesex.

Mr Paul G Jenkins, University College of Swansea, Singleton
Park, Swansea SA2 8PP.

Dewi I Jones, School of Electronic Eng Science, University
College of N Wales, Dean St, Bangor, Gwynedd.

Geraint Jones, Programming Research Group, Oxford Universi-
ty, 8-11 Keble Road, OXFORD.

Ian Jones, Thorn EMI Electronics Ltd, 120 Blyth Road,
Middlesex UB3 1DL.

Dr J.M.Kerridge, Dept of Computer Studies, Sheffield City
Polytechnic, Pond St, SHEFFIELD S1 1WB.

Nigel Kingswood, E.E. Department, University of Bristol,
University Walk, Bristol.

Brian Lambert, TMC Ltd, Swindon Road, Malmesbury, Wiltshire
SN16 9NA.

David Lamkin, Acorn Computers, Fulbourn Road, Cherry Hin-
ton, Cambridge.

Dr A.E.Lawrence, Microprocessor Unit, Oxford University,
Computing Service, 13 Banbury Road, Oxford.

John R Lawton, CAP Scientific Ltd, 20-26 Lambs Conduit
Street, Holborn, London WCIN 3LF.

Andrew Lees, Telectronics, Bake Manor, Trerulefoot, Sal-
tash, Cornwall.

Mr McPhee, British Telecom Research, R14.2.4, Martlesham
Heath, Ipswich, IP5 7RE.

Mr R.F.Maddock, IBM UK Laboratories Ltd, Hursley Park, WIN-
CHESTER S021 2JN.

Gordon Manson, Sheffield University, Hicks Building, Houns-
field Road, Sheffield, S3 7RH.

F Marzano, I.N.F.N - Dipartimento Di Fisica, Piazzale
A.Moro,2, 1-00185-ROMA, Italy.

- 28 -

Peter Milligan, Queens University of Belfast, College Park,
Belfast, N IRELAND, BT7 1NN. R

Mr P Mills, Quintek, The College, College Road, Westbury-
on-Trym, Bristol BS9 3EJ.

Neil Milner, GEC Avionics, Airport Works, Rochester, Kent,
MEl1 2XX.

Dr Heinz Muehlenbein, GMD, PO 1240, Sankt Augustin 1, D-
5205, W GERMANY.

Alistair Munro, Computer Centre, Bristol University,
University Walk, Bristol.
T Muntean, IMAG, Laboratoire de Genie , Informatique de

Grenoble, BP-68, St Martin D'Heres F38402, FRANCE.

Kei Nakada, Personal Media Corporation, 8-1-11 Nishi-
gotanda, Shinagawa-ku, Tokyo, Japan.

Chris Nettleton Esq, Systems Designers Ltd, 1 Pembroke
Broadway, Camberley GU15 3XH.

J.R.Newport, CAP Scientific Ltd, 20-26 Lambs Conduit
Street, Holborn, London WCIN 3LF.

Prof J.V.0ldfield, Dept of Elect and Computer Eng, Syracuse
University, Link Hall, Syracuse, NY 13210 USA.

Dan Qestreicher, Cirrus Computers Ltd, Waterman House,
Chertsey Road, Woking, Surrey GU21 5BL.

Paul Otto, Dept of Computer Science, University College,
Gower Street, LONDON WClE 6BT.

Mr K.J.Palmer, RSRE, St Andrews Road, Great Malvern, Worcs
WR14 3PS.

Mr S Patel, International Computers Ltd, Wenlock Way, West
Gorton, Manchester.

C.Pearson, CAP Scientific Ltd, 20-26 Lambs Conduit Street,
London.

Mr R.Peel, University of Surrey, Dept of Electrical En-
gineering, Guildford, Surrey.

Mrs S.M.Peeling, RSRE, St Andrews Road, Great Malvern,
Worcs WR14 3PS.

M.J.Pickett, CAP (Reading) Ltd, Trafalgar House, Richfield
Avenue, Reading, Berks, RG1l 8QA.

Richard Porch, Industrial Artist, 19 Market Road, Canton,
Cardiff CF5 1QE.

Ben Potter Esqg, ICL, Regent House, 87 London St, Reading.
Dick Pountain, Byte Magazine, 8 Rousden St, London, NWL.

A Pudner, British Aerospace, Millbanke Way, Bracknell,
Berkshire.

Dr P W Rautenbach, Standard Telecommunications, Labora-
tories Ltd, London Road, Harlow, Essex.

Mike Reeve Esq, Dept of Computing, Imperial College of Sci-
ence and Technology, 180 Queens Gate, LONDON.

B Rickman, Marconi Defence Systems Ltd, The Grove, Warren
Lane, Stanmore, Middx.

Dr J.B.G.Roberts, RSRE, St Andrews Road, Malvern, Worcs.
Bill Roscoe Esg, Oxford University, Programming Research
Group, 8-11 Keble Road, Oxford OXl 30D.

A.J.Rose, GEC Avionics Ltd, Elstree Way, Boreham Wood,
Herts WD6 1RX.

K Rouhi, 27 Stonor Road, LONDON W14 8RZ.

29

C.G.Rowden, Dept of Elec.Eng.Science, University of Essex,
Colchester, Essex.

Mr D Roweth, Edinburgh University, Physics Dept, Kings
Building, Mayfield Road, Edinburgh.

Ralph Rudolph, Messerschmitt-Bolkow-Blohm GmbH, Kreetslag
10, D-2403 Hamburg 95, Depart TE441, W GERMANY.

D.A.Rumball, Centre for Remote Sensing, Dept of Physics,
Imperial College, London SW7.

Mr Gunter Sachse, Institut de Recherches, Robert Bosch
S.A., B.B. 18, CH 1027 Lonay, SWITZERLAND.

Dan Sahlin, The Royal Inst. of Techn, 5-10044 Stockholm,
Sweden.

Rafael Sala, Intersoftware S.A., Pau CASALS 24, Barcelona
08021, SPAIN.

Dr Patricia Samwell, Department of Computing, Polytechnic
of North London, Holloway Road, London, N7.

Dr Mike Sanderson, Essex University, Dept of Computer Sci-
ence, Wivenhoe Park, Colchester.

R.P.Saunders, Trend Communications Ltd, Knaves Beech
Estate, Loudwater, High Wycombe, Bucks HP1l0 9QZ.

Mr N.R.Saville, Algorithmic Systems Engineering Limited,
28 Valentine Road, Kings Heath, Birmingham.

G.H.W.M. Schellen, Zuringveld 34, 5467 KG, Veghel, Hol-
land.

Edgar Scherer, Uni Saarbrucken, 66 Saarbrucken, Im
Stadtwald, Rechenzentrum, Bau36, 6600 W GERMANY.

Michael R.C.Seaman, Torus Systems Ltd, Science Park, Mil-
ton Road, Cambridge CB4 4BH.

Dr John A.Sharp, University College of Swansea, Singleton
Park, Swansea SA2 8PP.

Dr A.J.Simmons, Smith Associates Consulting, System En-
gineers Ltd, 45-47 High Street, Cobham.

Mr R.P.Stallard, Loughborough University, Ashby Road,
Loughborough, Leics LE1T 3TU.

G Staniewicz, Weirlord Ltd, Victory House, Somers Road
North, Portsmouth, Hants POl 1PJ.

Dr B.R.Stonebridge, Bristol University, Computer Science
Department, University Walk, BRISTOL BS8 1TW.

Charles Stormon, Syracuse University, 111 Link Hall, Syra-
cuse, N.Y. 13210, USA.

A.G.Tagg, Oxford Polytechnic, Headington, Oxford, OX3.
D.P.Thomas, MOD (PE), RM117A D2, AWRE, Aldermaston, Read-
ing, Berks RG7 4PR.

Dr G.Topping, Dept of Computing, North Staffs Polytechic,
Blackheath Lane, Stafford.

Dr. H.R.A.Townsend, National Hosp, Queen Sqguare, LONDON,
WCl.

Mr P.Townsend, International Computers Ltd, Wenlock Way,
West Gorton, Manchester.

Gunther Trautzl, Astek Elektronik GmbH, Carl-Zeiss-Str.3,
2085 Quickborn, WEST GERMANY.

Mr Simon Turner, Plessey Electronic Systems Ltd, Roke
Manor,. Romsey, Hants SO5 02N.

Mr M Van Harmelen, Dept of Computer Science, University of

. 3 0 -

Manchester, Manchester M13 9PL.

Osmo Vikman, Labsystems OY, Pulttitie 9, SF-00810 Helsinki
81, Finland.

Dr J.S.Ward, MOD (PE), RSRE, St Andrews Road, Great Mal-
vern, Worcs WR14 3P5S.

Dr D.M.Watson, Thorn EMI Central, Research Labs, Trevor
Road, Hayes, Middlesex.

Mr H.C.Webber, MOD (PE), RSRE, St Andrews Road, Great Mal-
vern, Worcs WR1l4 3PS.

Dr P.H.Welch, Training Division,GEC Avionics Limited, Air-
port Works, Rochester, Kent ME1l 2XX.

Tim Werner, DKF7 Heidelberg Inst. 08, 6900 Heidelberg, Im
Nevenheimer Feld, W GERMANY. .

R.W.Wilcock, Wilcock Software Services, 41 Berwick Road,
Wood Green, LONDON N22 50B.

Mr H.N.Williams, GEC Avionics Ltd, Airborne Display Divi-
sion, Airport Works, Rochester, KENT.

Dr Shirley A Williams, University of Reading, Computer Sci-
ence Dept, Whiteknights Park, Reading RG6 2AY.

Dr Burkard Wordenweber, Shape Data Ltd, 2 All Saints Pas-
sage, Cambridge, CB2 3LS.

E.J. Zaluska, Department of Electronics and Information En-
gineering, University of Southampton, SOUTHAMPTON S0S S5NH.

H Zedan Esg, Bristol University, Electrical & Electonic En-
ginering Dept, University Walk, Bristol.

. .
2
i g2 & Nested models
]| 2 N
oy t
SRS Procese
] Contret
RerresenNTaTion L
of PRocesses Precess I.ow,u'
AND cHANNCLS
Input [T, o
Proceas
=
Curred- lavel , / ,
[<« Lleve! ubove

Su,?\g.

-31-

continued from back cover

Program Exchange

The User Group does not provide a library Dbut maintains a
catalogue and, via the newsletter, allows members to
publicise programs that they are willing to make available.

Contributors :—- Please send a one page description to the
coordinator of what your program does, its form
(source/compiled etc), its hardware/operating system
dependence, the exchange medium {(type, format etc) and the
name and address of the provider. It is advised that
appropriate disclaimers be included.

Requestors :- Please make your request to the provider and
not to the User Group. The User Group can itself provide no
support for such programs nor can it accept any

responsibility for problems that might arise due to their
use.

Program exchange coordinator:

Mrs Sue Peeling

Royal Signals and Radar Establishment

St Andrews Road

GREAT MALVERN

Worcs WR14 3PS Tel: 06845 2733 (x2228)

User Group Committee

In addition to the individuals mentioned above the following
are members of the informal committee and would be willing
to answer any queries about the group's activities.

Mr Gordon Harp (Chairman)

Royal Signals and Radar Establishment

St Andrews Road

GREAT MALVERN

Worcs WR14 3PS Tel: 06845 2733 (x2824)

Mr Chris Nettleton

System Designers Limited

1 Pembroke Broadway

Camberley, Surrey GU1l5 3XH Tel:0276 62244

Dr Geraint Jones

Programming Research Group

University of Oxford

8-11 Keble Road

OXFORD OX1 3QD Tel: @865 54141

occam user group

The User Group is an informal organisation run by its own
members. Its primary concern is the occam programming
language, developed by INMOS Ltd. By virtue of its special
relevance to occam, the INMOS transputer hardware is also
included in the Group's area of interest.

The main aim of the User Group is to act as a forum for the
interchange of information among existing and potential
users of these products and as a channel for communication
with 1INMOS. These aims will be met by organising meetings,
issuing a newsletter, and supporting the exchange of
programs between members.

Membership is free upon submission of the enclosed
application slip. The User Group is mainly dependent upon
its own members to contribute to meetings, to provide
material for the newsletter and to make their occam programs
available to other members.

Occam Newsletter

This is the main vehicle for communication between members
and 1is sent out free of charge. It is issued approximately
twice yearly in June and December. Members are encouraged to
submit short descriptions of their interest in and intended
uses of occam. Text may be retyped, but diagrams should be
suitable for reproduction. Please submit articles, letters,
comments, enquiries on any occam or transputer-related
subjects to the Editor:

Dr Martin Bolton

Department of Electrical and Electronic Engineering
University of Bristol

Queens Building, University Walk

BRISTOL BS8 1TR. Telephone: ©272 24161

Meetings

These are held aproximately twice yearly in September and
March. Apart from any necessary business they will include
informal presentations by members and by INMOS. If you are
prepared to give a presentation or act as host to a future
meeting, please inform the User Group Secretary:

Dr Michael Poole

Software Support

INMOS Limited

Whitefriars, Lewins Mead

BRISTOL BS1 2NP. Telephone: @272 290861

continued inside -32-

