Parallel C++
User Guide

3L Ltd

X

Copyright © 1991 by 3L Ltd. All Rights Reserved.

This edition November 22, 1991 describes version 2.1 of the
software.

20 19 18 17 16 15 14 13 12 11
10 9 8 7 6 5 4 3 2 1

3L® is a registered trademark, and the 3L logo is a trademark of
3L Ltd.

Portions of this text are Copyright ©1991 Computer Innovations, Inc., or
Copyright (©1990 AT&T.

inmos™, IMS™ and occam™ are trademarks of the Inmos group of

companies.

1BM® s a registered trademark, and PC/AT™ and PC-DOS™ are
trademarks of International Business Machines Corporation.

Microsoft® and MS-DOS® are registered trademarks of Microsoft
Corporation.

Intel® is a registered trademark of Intel Corporation.

The installation program used to install Parallel C++, INSTALL, is
licensed software provided by Knowledge Dynamics Corporation,
Highway Contract 4 Box 185-H, Canyon Lake, Texas 78133-3508 (USA),
1-512-964-3994. INSTALL is Copyright (© 1987-1989 by Knowledge
Dynamics Corporation which reserves all copyright protection worldwide.
INSTALL is provided to you for the exclusive purpose of installing
Parallel C++.

3L Ltd

Peel House

Ladywell

Livingston EH54 6AG

Scotland

Tel. +44 506 41 59 59

Fax. +44 506 41 59 44
E-mail Support@ThreeL.Co.UK

Contents

Introduction ix
Intended Audience, ix
Hardware Assumptions. ix
Document Structure X
Further Reading X
Conventions v v v v v v e e e e e e e e e e xi

I Getting Started 1

1 Installing the Compiler 3
1.1 Installing the Software 3
1.2 TheSearchPath 4

2 Confidence Testing 7

II Tutorial 11

3 Developing C++ Programs 13
31 Compiling e 13
32 Linking, 14

3.2.1 Linking More than One Object Iile 15
322 IndirectFiles 16
3.2.3 Calling the Linker Directly 17

324 Libraries., 18

vi CONTENTS

33 Rumning e e e
3.3.1 Using C++ Programs as MS-DOS Commands
3.3.2 Command-Line Arguments
3.3.3 I/O Redirection and Piping

34 Memory Use0iuiiueeee..
3.4.1 Default Memory Mapping
3.4.2 Alternative Memory Mapping
3.4.3 Limit on Program Memory

3.5 Parallel Programming
3.5.1 Building Parallel Programs
3.5.2 Synchronising Access to the Libraries

IIT Reference

4 C++ Compiler Reference

4.1 Running the Compiler
4.2 Compiler Switches
4.2.1 Controlling the Object File
4.2.2 Controlling Object Code
4.2.3 Controlling Code Patch Sizes
424 Controlling Debugging
4.2.5 Controlling #include Processing
4.2.6 Macro Definitions
4.2.7 Information from the Compiler
4.3 Predefined Macros e e e e e
4.4 Handling of #include Files
5 The C++ Complex Mathematics Library
5.1 Introduction to the complexclass.
51.1 ThecomplexClass
5.2 Error Handling
5.2.1 Default Error Handling
52.2 TrappingErrors
53 Operatorsttt it
5.4 Cartesian/Polar Functions

5.5 Mathematical Functions

21
22
24
25
26
26
27
27
28
30

31

CONTENTS vii

5.6 Trigonometric and Hyperbolic Functions 56
6 The Parallel C++ Stream Library 59
6.1 Introduction........................ 59
6.1.1 Buffersand Streams 60
6.1.2 Classes0 0. .. 61
6.1.3 Predefined Streams 64
6.14 HeaderFiles 65

6.2 Stream Input and Qutput 66
6.2.1 Constructors and Assignment 67
6.2.2 Inputand Qutput 71
623 Input, 78
624 Output 84

6.3 Formatted Input and OQutput 87
6.3.1 The Formatting State 87
6.3.2 Extraction: The >> Operator 94
6.3.3 Insertion: The << Operator 97
6.34 Manipulators 99
6.3.5 UserExtensions 103

6.4 OperationsonFiles. 106
6.4.1 ConStructors 107
6.4.2 Stream Operations 110
6.4.3 Buffer Operations 113

6.5 In-Store Operations 116
6.5.1 Constructors 117

6.5.2 Stream Operations 121
6.5.3 Buffer Operations 122

6.6 Operations on FILE Structures 123
6.6.1 Constructor 124
6.6.2 Other Members 124

6.7 Interfaces to streambuf 124
6.7.1 Constructors 126
6.7.2 The Public Interface 126

6.7.3 The Protected Interface 131

viii .
Appendices

A Distribution Kit

Al Directory \tc2v2 i

A.2 Directory \tc2v2\cc
A.3 Directory \tc2v2\examples

B Summary of Option Switches
Bibliography

Index

CONTENTS

143

143
143
144
144

145
147

149

Introduction

Intended Audience

This User Guide accompanies 3L’s Parallel C++ product, and is
intended for anyone who wants to use Parallel C++ to program a
transputer system, whether writing a conventional sequential pro-
gram or using the full support for concurrency which the transputer
processor has to offer.

Parallel C++ is a “sister” of 3L Parallel C, and this manual should
be read in conjuction with the User Guide[6] for that product.

Hardware Assumptions

Parallel C++ can be used with a large variety of target transputer
systems. This manual makes the simplifying assumption that the
target hardware will be an Inmos IMS B004 transputer evaluation
board, or a transputer system which is largely compatible with
a B004. This board is a single plug-in card for the standard IBM PC
bus, with one transputer and either IMB or 2MB of RAM.

Similarly, the assumption is made here that the host computer for the
B004 will be an IBM PC with a hard disk drive, or one of the many
personal computers compatible with the original IBM machines.

X Introduction

Document Structure

There are four main divisions within this document, as follows:

o Part I: Getting Started covers installing Parallel C++ on your
machine and verifying that it is operating correctly.

e Part II: Tutorial introduces you to the operation of the com-
piler and the other tools supplied with Parallel C++.

o Part III: Reference contains detailed technical information
about the compiler and Parallel C++ class libraries.

e The appendices at the end of this manual contain supplemen-
tary information in a condensed form.

Further Reading

This User Guide does not attempt to teach the C++ language itself.
Instead, we suggest that the reader should consult one of the many
introductory texts now available, such, for example, Teach Yourself
C++(3], by Al Stevens, or Programming in C++[4], by Stephen C.
Dewhurst and Kathy T. Stark. The classic description of C++ is,
of course, Bjarne Stroustrup’s The C++ Programming Language|1],
although the language has changed significantly since its publication.
A thorough description of the language as it now stands can be found
in The Annotated C++ Reference Manual[2] by Margaret A. Ellis
and Bjarne Stroustrup.

The reader is also assumed to be reasonably familiar with the operat-
ing system of the host computer being used. For personal computers
made by IBM, this will usually be PC-DOS, which is supplied with a
manual called Disk Operating System Reference[7]. For compatible
machines made by other manufacturers, the operating system will
usually be MS-DOS, described in Microsoft MS-DOS User’s Refer-
ence[8]. These two operating systems are largely compatible, and

Introduction xi

their documentation is very similar. We will refer to “MS-DOS” in
this manual to mean the operating system used on your machine.
The term DOS Reference Manual will be used to refer to the appro-
priate manual.

References to these and other documents mentioned in this manual
are collected in a bibliography, which can be found on page 147.

Conventions

Throughout this manual, text printed in this typeface represents
direct verbatim communication with the computer: for example,
pieces of C++ text, commands to MS-DOS and responses from the
computer.

In examples, text printed in this typeface is not to be used verbatim:
it represents a class of items, one of which should be used. For
example, this is the format of one kind of compilation command:

t8cc source-file

This means that the command consists of:

1. The word “t8cc”, typed exactly like that.

2. A source-file: not the text source-file, but an item of the
source-file class, for example “myprog.cpp”.

xii Introduction

Part I

Getting Started

Chapter 1

Installing the Compiler

This chapter contains instructions on how to load Parallel C++ from
the supplied floppy disks onto a hard disk and make it ready for use.

Parallel C++ must be installed in the same directory as your Paral-
lel C kit. The current version of Parallel C++ must be installed in
directory \tc2v2. This means that, for the present, your Parallel C
kit must be installed in \tc2v2 if Parallel C++ is to work correctly.
You can find instructions for installing Parallel C in chapter 1 of the
Parallel C User Guide[6].

You can skip this chapter if Parallel C++ has already been installed
on the machine you are using.

1.1 Installing the Software

The compiler is distributed on two 360K B floppy disks. The contents
of these disks are listed in appendix A.

To install Parallel C++ on your hard disk, follow this procedure.

4 Chapter 1

1. Place the disk labelled Disk 1 of 2 in your floppy disk drive
A:.

2. Type the following commands:
Cra:
A>install
3. Answer any questions the install program asks you.

4. Place the appropriate disks in drive A: when the install pro-
gram asks for them.

It is important to use the supplied install program to install Par-
allel C++. If you simply copy the files, the installation will not be
performed correctly.

1.2 The Search Path

The compiler is now installed, but can only be run in the installa-
tion directory, \tc2v2. Before the compiler can be used from other
directories the installation directory must be added to the MS-DOS
search path. Program files stored in directories which are on the
search path can be loaded and run simply by typing the name of
the program as a command. So, to make sure that the C compiler
is available as a command (t8cc or t4cc), the installation directory
must be added to the search path.

The search path for your machine is set up by the batch file
c:\autoexec.bat which is automatically executed when the ma-
chine starts up. To change the path, you will need to edit the
autoexec.bat file using a text editor like edlin. (The DOS Ref-
erence Manual explains how to use edlin). Your autoexec.bat file
will probably already contain a line of the following form:

path ... list of directories ...

Installing the Compiler 5

For example:

path c:\dos;c:\utils

In this case, you will need to add the text “c:\tc2v2” on to the end
of the line, giving:

path c:\dos;c:\utils;c:\tc2v2
If there is no path line in the autoexec.bat file, just add the line:
path c:\tc2v2

Some important points about setting the search path should be
noted:

1. If you are a user of the Inmos TDS environment, your search
path will probably include a reference to the directory where
the TDS is held, such as \tds2dir. This reference must not
precede the Parallel C++ installation directory in the path;
if it does, the wrong version of the afserver program will be
called.

2. From time to time, 3L release new versions of components,
such as the linker or the afserver, which are included in
more than one compiler product. This means that if you are a
user of any other 3L compilers, you should make sure that the
installation directory of the latest compiler product precedes
all the others. This will ensure that the latest versions of these
common components are picked up; they will be compatible
with all the compiler products.

Once your autoexec.bat file has been changed, you will need to
reboot your machine to make the changes effective.

Chapter 1

Chapter 2

Confidence Testing

This chapter describes a short procedure which may be followed to
check that installation has been done correctly.

1. Set the current disk drive to the one on which Parallel C++ has
been installed. For example, if the compiler has been installed
in directory c:\tc2v2, do this:

D>c:
c>

2. Set the current directory to a convenient directory for doing
this test. For example:

C>cd \mine
c>
NB: Don’t use the installation directory for the confidence test,

as this would mean that you would not be testing whether the
correct search path has been set up.

Chapter 2

3. Copy the example hello.cpp file to the current directory. If
the installation directory is \tc2v2, for example, you should
type this:

C>copy \tc2v2\examples\hello.cpp
1 File(s) copied

c>

4. Compile the example using the T8 version of the compiler (this
will work for the T4 as well, because the example contains no
floating-point instructions). At the same time, we can check
that the correct version of the compiler is available, by typing
the following command. You should see the output shown.

C>t8cc /i hello

Transputer C++ compiler V2.1.1

Copyright (C) 3L Limited 1991

Portions Copyright (C) Computer Innovations, Inc. 1991
Portions Copyright (C) AT&T 1990

c>

If the above message does not appear, check the installation
procedure, and in particular, ensure that the correct path com-
mand has been set up.

If instead the computer outputs the following, or something
similar, it is likely that there has been some error in setting up
the transputer board.

Last command = 0
Server terminated: bad protocol when expecting INT32

If this happens, please check in particular that the wire links,
accessible from the back of the PC, have been correctly in-
stalled. The transputer board’s documentation should help
with this.

Confidence Testing 9

5. Link the resulting binary file with the necessary parts of theP-
arallel C++ and C run-time libraries, and the harness:

C>t8cclink hello

C>1linkt hello C:\tc2v2\libct2 C:\tc2v2\crtlt8
C:\tc2v2\t8harn

c>
6. Finally, the program can be run:

C>afserver -:b hello.b4
Hello, world.

c>

The output “Hello, world.” comes from the hello.cpp example
program. If it does not appear, we recommend that the installation
procedure should be carefully repeated, and the confidence test pro-
cedure followed again. If this message still does not appear, please
contact your dealer for further assistance.

10

Chapter 2

Part 11

Tutorial

Chapter 3

Developing C++
Programs

This chapter shows you how to build C++ programs to run on the
transputer. Sections 3.1 to 3.4 discuss the use of the compiler and
linker to produce conventional sequential programs. Section 3.5 deals
with parallel programming in C++.

The instructions in this chapter assume that the Parallel C++ has
already been installed as described in chapter 1.

Some of the procedures described here are different for T4 and T8

transputers. You should find out which type of transputer is fitted
in your PC before using the compiler.

3.1 Compiling

Parallel C++ source programs are held in standard MS-DOS text
files. These can be created any of the usual text editors.

14 Chapter 3

A source program is compiled into a binary object (.bin) file of
T8 transputer instructions by a command of the form:

t8cc source-file

To compile code for a T4 transputer, use the command

t4cc source-file

Note that, in general, code compiled for a T4 will not run on a T8
(or vice versa) so you must use the command appropriate for the
type of processor on your transputer board.

The source-file is the filename of the C++ source program which is
to be compiled. If no filename extension is given in the command,
.cpp is added automatically.

So, to compile the file hello.cpp for the T8, you would give the
command:

C>t8cc hello

If the source file contains no errors, an output object file hello.bin
is produced. If the compiler detects errors in the source program, it
writes diagnostic messages to the MS-DOS standard output stream.

3.2 Linking

Once a Parallel C++ program has been compiled into an object
(.bin) file, it must be linked with any external functions it requires
before it can be run, including functions from the run-time library
and class libraries. This is done by the linker. Here we discuss the
most usual linker operations; a full description of the linker can be
found in chapter 12 of the Parallel C User Guide[6].

Rather than calling the linker directly, it is usually more convenient
to use one of the batch files provided for the purpose.

Developing Ct++ Programs 15

To link T4 code produced by the t4cc compiler use the command:
td4cclink object-file

For example,
t4cclink hello

To link T8 code produced by t8cc use the command:

t8cclink object-file

You must use the link command appropriate to the target processor
(T4 or T8).

Both batch files automatically append .bin to the object file name
and produce an executable file with the same file name as the object
file and extension .b4.

3.2.1 Linking More than One Object File

This section deals with linking more than one object file at a time.
If you only want to link single object files for now, you can skip to
section 3.3 which describes how to run executable files produced by
the linker.

The t4cclink and t8cclink batch files can be used to link up to
nine object files. As before, the extensions of all the object files are
assumed to be .bin. The executable file generated will have the file
name of the first object file specified, with the extension .b4.

For example, if there are two C++ source files, main.cpp and
fns.cpp, the following commands will compile them and link them
together, producing an executable file for the T4 called main.b4.

C>t4cc main
C>t4cc fIns

C>t4cclink main fns

16 Chapter 3

Compiling and linking the example files above for the T8 would be
done as follows:

C>t8cc main
C>t8cc fns

C>t8cclink main fns

3.2.2 Indirect Files

It is quite common for programs to consist of many different object
files. The t4cclink and t8cclink batch files cannot handle more
than nine, but even with fewer files than this, you may find the
command line awkward to type.

The linker provides a way of getting round this problem, called an
indirect file. An indirect file is a text file containing a list of object
file names, all of which are to be included in the executable file. It
is specified in the linker command by its file name preceded by an
‘0’. For example:

C>t8cclink @objfiles

This will cause the linker to find the file objfiles.dat, and link
together all the object files specified in it. As usual, the generated
file will be given the name of the first object file with the extension
.b4.

Indirect files are assumed to have the extension .dat. They contain
a list of MS-DOS file names, with one file name on each line. Full
path names, including directory specifications, are allowed. Indirect
files may also include the names of other indirect files, by preceding
with an ‘Q’; nesting indirect files in this way may be done to five
levels.

Developing C++ Programs 17

The example indirect file objfiles.dat above might contain the
following text:

main
ins
\userlib\general\io

grafpack

When used in the example given above, this will link the object
files main.bin and fns.bin from the current directory and io.bin
from the directory \userlib\general, together with all the object
files specified in the indirect file grafpack.dat. The executable file
generated will be main.b4.

3.2.3 Calling the Linker Directly

Occasionally, instead of using the batch files, you may need to call
the linker directly, or write your own batch files to do so. Fuller
information about the linker may be found in chapter 12 of the
Parallel C User Guide[6]. Details of the internal format of object files
are provided in the Inmos Stand-Alone Compiler Implementation
Manual[10).

The linker is invoked by the command linkt. The general form of
a link command is

linkt object-files, ezecutable-file

object-files is a list of object file names separated by spaces. These
are the object files which are to be linked together. All of them must
have been compiled for the same processor type (T4 or T8). If an
object file is specified without an extension, the extension is assumed
to be .bin.

The order in which the object files are specified is significant. Details
of this may be found in sections 3.4 and 4.2.3.2.

The ezecutable-file is the name of the file to which the linker writes
the executable output code. If no extension is specified, the linker

18 Chapter 3

supplies the extension .b4. The executable file and its preceding
comma may be omitted; in this case, the executable file is given the
same file name as the first object file in the command line, with the
extension .b4. If the first file mentioned on the command line is an
indirect file, the executable file is given a name taken from the name
of the first object file listed in the indirect file.

To link C++ programs, you must include in the list of object files
the run-time library, the C++ class library and a special object
file called a “harness”. The directory \tc2v2 contains T4 and T8
versions of all these components, as follows:

T4 version | T8 version

run-time library crtlt4.bin | crtlt8.bin
C++ class library | 1ibct4.bin | 1ibct8.bin
harness t4harn.bin | t8harn.bin

The linker will not allow you to mix T4 and T8 object files.

The example below shows the command necessary to link all the files
listed in the indirect file subs.dat into a single executable file for
the T4, called prog.b4.

C>linkt @subs \tc2v2\libct4 \tc2v2\crtlt4 \tc2v2\t4harn,prog

For the T8, the command would be the following.

C>linkt Osubs \tc2v2\libct8 \tc2v2\crtlt8 \tc2v2\t8harn,prog

3.2.4 Libraries

It is often convenient to be able to treat a group of object files as
a single unit. For example, the run-time library consists of many
separate object files, but is supplied as a single file containing all of
them.

The class libraries which are supplied with Parallel C++, such as
the Stream Library and the Complex Mathematics Library, are also
libraries of this sort.

Developing C++ Programs 19

The linker provides the option of linking together a group of object
files to produce a library file instead of an executable file. The library
contains all of the code and entry points defined by the input object
files, which can be changed or deleted without affecting the library.
To change a library it must be relinked from its component parts.

Library files have several advantages over using indirect files.

o The linker selects from the library file only those modules which
are actually referenced elsewhere in the program; the others are
not included in the executable file.

e Copying a single file to another place is simpler than copy-
ing many component object files and making sure that the
corresponding indirect file is kept up to date with changes in
directory and file names.

e Opening just one library file is faster than opening an indirect
file and several object files.

However, using an indirect file may be faster while a library is being
developed because there is no need to relink the library whenever a
component module is changed.

A linker command of the form shown below is used to produce a
library from a number of component object files.

linkt object-files, library-file/1
The option letter after the ¢/’ is a lower case ‘L’.

The form of the input object-files is the same as for normal operation
of the linker: a list of filenames separated by spaces. Indirect files
are indicated by an ‘@’ sign as before.

The library-file must be a single MS-DOS file name. If no extension
is specified, the linker will give it the extension .1ib. Note that
this is different from the default extension which the linker uses for
libraries when they are specified as input files, which is .bin.

20 Chapter 3

The example below shows a graphics library being built from a core
graphics module and two device driver modules. The library is then
linked in the ordinary way with a user program. Indirect files are
used to simplify the required linker commands.

C>type graflib.dat
core

tek

hp

C>linkt @graflib,graflib.bin/1

C>type myprog.dat
myprog

graflib
\tc2v2\libct8
\tc2v2\crtlts
\tc2v2\t8harn

C>linkt Omyprog

3.3 Running

Executable programs are loaded into the transputer board and run
using the afserver program, which runs on the IBM PC.

The afserver is an ordinary MS-DOS program, and after load-
ing the C++ program into the transputer board, it remains active
throughout the program’s run. Instructions are sent from the run-
time library to the afserver whenever it needs to perform MS-
DOS functions such as reading information from the disks, displaying
output on the screen and so on. The results of these operations are
sent by the afserver back to the transputer board.

The command to load and run a program is:

afserver -:b filename

Developing C++ Programs 21

The filename must be the name of an executable file produced by
the linker. The file name extension must be specified. An example
of a command to load and run a simple program would be:

C>afserver -:b hello.b4

Note that this will only work if your program uses a fairly small
amount of stack memory. See section 3.4 for information about
running programs with larger stack requirements.

Appendix D.3 of the Parallel C User Guide[6] includes more infor-
mation about the afserver and its options, and the Inmos Stand-
Alone Compiler Implementation Manual[10] (section 10) contains a
full description. Note that the -:e (test error flag) switch described
in [10] is not supported for use with Parallel C++ programs. For
improved performance, the C++ compiler relies on being able to
generate code which might incidentally cause the error flag to be
set. Therefore, the transputer error flag may be set as part of the
normal execution of a C++ program.

The running of programs can be simplified by putting the appro-
priate afserver command into an MS-DOS batch file. Typing the
name of the batch file is then sufficient to run the program. For
example:

C>type myprog.bat
afserver -:b \mydir\myprog.b4

C>myprog

The command myprog will then call afserver to load the executable
file \mydir\myprog.b4 into the transputer board and start it. Note
that if a program compiled and linked for the T4 is loaded into a T8
(or vice versa) the effects will be unpredictable.

3.3.1 Using C++ Programs as MS-DOS Commands

Because of the limitations on what can be done with MS-DOS batch
files it is useful to have a way of running a transputer C++ program

22 . Chapter 3

as if it were an MS-DOS .exe file.

You can turn any .b4 file into an MS-DOS command by making a
copy of the file \tc2v2\1linkt.exe in the same directory as the .b4
file, giving it the same root filename as the .b4 file but keeping the
.exe extension. For example, if the current directory contains the
executable file calc.b4, it can be run as a command by typing:

C>copy \tc2v2\linkt.exe calc.exe

C>calc

This new calc command can be used from any directory, provided
the directory containing calc.exe and calc.b4 is on the MS-DOS
search path.

(1inkt.exe works by taking the command verb from its command
line, adding .b4, and then calling afserver to load that file from
the same directory linkt.exe itself was loaded from).

When a .b4 file is invoked via a “driver” program in this way,
the -:0 1 option (see section 3.3) is added automatically and the
program is given a large amount of stack space. If you want to run a
program as an MS-DOS command, but with its stack in fast on-chip
RAM, you should invoke the program as usual but add -:0 0 to the
command line (hyphen, colon, letter ‘o’, then a space followed by the
digit zero). For example:

C>ex -:0 0

3.3.2 Command-Line Arguments

The afserver passes its command line on to the user program it
invokes, for use as program arguments. For example:

C>afserver -:b myprog.b4 fred

Here, the character string “fred” is passed on to myprog.b4.

Developing Ct++ Programs 23

Note that the “-:b myprog.b4” part of the command is not passed
through as an argument to myprog.b4. In general, afserver option
switches (- :b, -:0) and their arguments are not passed on to the user
program. Any MS-DOS file redirections (see section 3.3.3 below) are
also stripped out.

The text of the command line is also passed on to the user program
if the afserver is invoked using the driver program described in
section 3.3.1. For example:

C>myprog xyz abc

Here, the program argument string “xyz abc” is passed on to
myprog . b4.

The program argument string is broken up into a sequence of tokens
before being passed to the C++ main program function. Tokens
are separated by blank or horizontal tab characters, so in the first
example there was one token: “fred”, and in the second example
there were two: “xyz” and “abc”.

When the C++ main program function is called, it is passed the
following arguments:

main(int argc, char sargv[])

argv[0] is the program name, currently always a pointer to a null
string (i.e., a pointer to a ‘\0’ character).

If the value of argc is greater than one then argv[1]...argv[argc-1]
are pointers to token strings each of which is terminated by ‘\0’.

argv[argc] is a null pointer.

argc is the number of tokens, including the program name. It is
always greater than zero.

24 Chapter 3

3.3.3 1I/0 Redirection and Piping

Normally the C++ standard input stream cin is associated with the
keyboard. Standard input can be taken from a file by using the MS-
DOS redirection symbol ‘<’ in the normal way. For example, to use
the file chap1.txt as the standard input stream for a word counting
program wc.b4 you could use the command:

C>afserver -:b wc.b4 <chapl.txt

This also works if wc.b4 is invoked by a driver program, wc.exe:

C>wc <chapl.txt

Similarly, the standard output stream cout is normally associated
with the screen. Standard output is redirected using the ‘>’ symbol.
A program called cat.b4 which concatenated the contents of all the
input filenames given as its program arguments and wrote the result
to the standard output stream could be used to concatenate the files
a.txt, b.txt and c.txt, writing the result to another file a113.txt
as follows:

C>afserver -:b cat.b4 a.txt b.txt c.txt >all3.txt

Note that neither “>filename” nor “<filename” is considered to be
part of the program arguments; these special forms do not appear in
the argv array passed to a C++ main program.

Standard output may also be piped into an MS-DOS filter program
by writing the name of the filter after a vertical bar ¢|’, as shown
below.

C>afserver -:b cat.b4 a.txt b.txt | more

The DOS Reference Manual describes in detail what can be done
with filters. (The more program simply displays its input on the
screen, a page at a time).

Developing C++ Programs 25

3.4 Memory Use

The memory used by a C++ program is divided into four storage
areas.

o Code storage is used to hold the executable instructions of the
program itself, together with some constant data and control
information.

e Static storage is used to hold static and external variables,
including variables declared at the global level.

o Stack storage(sometimes referred to as workspace) is used for
auto variables. The stack is also used for function calls and
passing parameters.

In addition, library functions use varying amounts of stack
space as working storage. The stack requirements of the math-
ematical functions are given in the Inmos TDS Compiler Imple-
mentation Manual[11] (Section 10, Parameters and workspace
requirements) and are generally about 40 to 100 words. The
stack requirements of the floating-point arithmetic support li-
brary for the T4 are generally about 10 to 40 words. About
70 words of stack storage are permanently reserved for use by
the run-time library.

e Heap storage is used to hold all variables created by new, etc.
It is also used internally by the run-time library for I/O buffers,
etc.

These four areas of storage are mapped onto two areas of physical
memory:

e On-chip memory. The T4 has 2KB of fast on-chip memory,
and the T8 has 4KB.

e FErternal memory. The Inmos B004 board has either 1IMB or
2MB of external memory.

26 . Chapter 3

Using the linker only, two methods of mapping the storage areas
onto physical memory are available: the default method, and the
alternative method. You can select the method you wish to use by
calling the afserver in different ways, which are discussed below.

The configurers required for developing parallel programs give the
user more advanced methods for controlling the use of memory.

3.4.1 Default Memory Mapping

Default memory mapping is used if the afserver program is called
as described in section 3.3 above. With this arrangement, the T4’s
on-chip memory, and the first 2KB of the T8’s on-chip memory, are
used for stack storage. Since on-chip memory is faster than exter-
nal memory, programs can run much faster with default memory
mapping. Obviously, you must be certain that the program’s stack
storage will fit in the available 2KB.

If you are using a T8, default memory mapping provides an op-
portunity for further speed improvements, since the remaining 2KB
of the T8’s on-chip memory is available for code storage. To take
advantage of this, you should place small, speed-critical functions at
the beginning of the link-list.

WARNING: A program which ezceeds the amount of available stack
space will fail in unpredictable ways: it may hang, or it may simply
give wrong answers.

3.4.2 Alternative Memory Mapping

Unless you are sure your program’s stack data will fit into the 2KB
of available on-chip memory, you should use the alternative method
of memory mapping. This is done by calling the afserver like this:

C>afserver -:b myprog.b4 -:o0 1

Developing C++ Programs 27

With the alternative method, the stack is placed in external memory,
and so is limited only by the amount of external memory available.
On the T4, on-chip RAM is not used at all. On the T8, although
the upper 2K of on-chip RAM is used for code as before, the rest of
it is unused.

The program will execute more slowly with this method, because
external memory is slower than on-chip memory.

Note that the afserver switch is typed as hyphen, colon, option
letter ‘o’, then a space, then the digit one.

3.4.3 Limit on Program Memory

The current version of the linker generates executable files which will
only run correctly on boards having 1MB or 2MB of memory. To
get round this restriction, the Parallel C++ environment includes
the mempatch program which may be used to change executable
files to run on boards which have different amounts of memory.
See chapter 13 of the Parallel C User Guide[6] for a discussion of
mempatch.

3.5 Parallel Programming

The facilities for parallel programming provided with Parallel C, and
described in chapters 4 and 5 of the Parallel C User Guide[6], are all
also applicable to Parallel C++. This includes the configurers, and
the run-time library support for threads, channel and link operations,
semaphores, timers, alt functions and functions for accessing MS-
DOS facilities. In addition, Parallel C++ programs can make use of
the file-service multiplexer, as described in chapter 6 of the Parallel C
User Guide, and Parallel C++ can be used to build processor farm
applications, as described in chapter 8.

28 Chapter 3

// driver.cpp: driver for uppercasing example

#include <chan.h>
#include <iostream.h>

void main (int argc, char sargv[], char senvp[],
CHAN sin_ports[], int ins, CHAN sout_ports[], int
outs)

{

int c;

for (;;) {
¢ = cin.get();
chan_out_vword(c, out_ports(2]);
if (c == EOF) break;
chan_in_vord(&c, in_ports(2]);
cout .put(char(c));

Figure 3.1: Driver for uppercasing example

Note. The current version of the Complez Mathematics Library (see
chapter 5) cannot be linked with stand-alone tasks.

3.5.1 Building Parallel Programs

Let us consider a C++ version of the two-task uppercasing example
discussed in sections 5.2 and 5.3 of the Parallel C User Guide.

First we have the driver task, shown in figure 3.1. This can be
compiled in the usual way, and must then be linked with the task
harness, rather than the standard harness (see section 5.1.3.1 of the
Parallel C User Guide). For the T4, this would be done as follows:

C>t4cc driver

C>t4cctask driver

Developing Ct++ Programs 29

// upc.cpp: processing task for uppercasing example

#include <chan.h>
#include <ctype.h>
#define EOF (-1)

void main (int argc, char sargv[], char senvpl],
CHAN #in_ports[], int ins, CHAN sout_ports[], int
outs)

{
int c;
for (;;) { .
chan_in_word(&c, in_ports[0]);
if (c == EOF) break;
chan_out_word(toupper(c), out_ports[0]);
}

Figure 3.2: Processing task for uppercasing example

For the T8, the procedure would be:
C>t8cc driver

C>t8cctask driver

Next, let us look at the processor task, which is shown in figure 3.2.
As we can see, the task contains no calls on the stream library. This
is correct, as the processing task will be stand alone, that is, without
afserver support, and consequently cannot perform standard C or
C++ I/0. Such tasks are linked with a special stand-alone version
of the C library. A T4 version of the processing task can be built
with these commands:

C>t4cc upc

C>t4ccstask upc

The batch file t4ccstask links the program with the C stand-alone
run-time library and the task harness. As usual, there is a T8 version:
t8ccstask.

30 Chapter 3

Finally, the two-task application can be built, using the configurer
and a configuration file. This is done in exactly the same way as the
corresponding C example.

3.5.2 Synchronising Access to the Libraries

In sections 5.6.1 and 10.11, the Parallel C User Guide discusses an
important problem which arises when a program has more than one
thread active. This is the possibility that more than one thread may
try to access the same part of the run-time library at the same time.

To avoid this happening, we have to make sure that the threads
interlock their access to the run-time library, using the semaphore
par_sema. If this is not done, a program is likely to fail in unpre-
dictable ways. You should take particular care with the following
two Parallel C++ facilities.

e The functions of the stream library often perform I/O, and
should therefore be interlocked. For example:

#include <par.h>
#include <iostream.h>

sema_vait (par_sema);

// construct a file stream and open file
infile fstream("input.dat", ios::in);
sema_signal (par_sema);

o The new or delete operators perform operations on the heap,
and must be interlocked. At the user level, the problem can
be avoided by overloading the new and delete operators to
use the par_malloc and par_free functions. Programmers
should be aware, however, that many members of many classes,
including classes in the Complex and Stream libraries, use new
and delete.

In general, concurrent threads in Parallel C++ must be treated with
great care.

Part III

Reference

Sale

Chapter 4

C++ Compiler Reference

This chapter contains technical information about the way the C++
language is implemented on the transputer. Note that the infor-
mation in this chapter applies only to the current version of the
compiler; it is not guaranteed that future versions of the compiler
will behave in the same way.

It should be useful to read this chapter in conjunction with chap-
ter 9 of the Parallel C User Guide[6]. Information contained in that
chapter will not be repeated here.

4.1 Running the Compiler

The compiler is run by one of the commands t8cc or t4cc.
t8cc generates object code for the T800 floating-point transputer.
td4cc generates object code for the T414 32-bit transputer.

The command line used to invoke the compiler must specify a single
source file name. Wild cards are not allowed. If no extension is
specified, .cpp is assumed.

34 Chapter 4

Option switches may optionally be given on the command line.
Option switches are introduced by the ‘/’ character; the available
switches are discussed in section 4.2 below.

If the source file is successfully compiled, a zero exit status code is
returned to MS-DOS. If errors are detected, the compiler returns an
exit status code of 1. This feature can be used in MS-DOS batch
files to check whether a compilation was successful.

The compiler creates a number of temporary files as it works. Nor-
mally, these are placed in the current directory; however, the en-
vironmental variable TMP may be used to make the compiler put
them in another directory. For example, to make the compiler place
the temporary files in the root directory on disk D:, the following
MS-DOS command could be used.

C>set TMP=D:\

The names of the temporary files either start with the string $3L$,
or they are of the form ctemp.n, where n is a small integer. Usually,
the compiler will delete them at the end of the run, but occasionally
this may not be done; in this case, it is safe to delete them yourself.

4.2 Compiler Switches

This section describes the switches available to control the behaviour
of the compiler. Switches are introduced by a ¢/’ character and may
be typed in any order, before or after the source file specification.
Except as noted below, switches and their argument strings are not
case-sensitive; that is, lower-case letters have the same significance
as the corresponding upper-case letters. This means, for example,
that the following two switches would be treated the same:

/FBhello.bin
/fbHELLO .BIN

The format of the various switches is described using the following
notations:

{

C++ Compiler Reference 35

n An MS-DOS filename. It may be omitted in whole or in
part; the compiler’s behaviour in this case is described
in section 4.2.1 below.

dir An MS-DOS filename, which will be assumed to refer
to a directory.

mac Any sequence of characters which is acceptable to the
compiler as a macro name.

str Any sequence of characters which is acceptable to the
compiler as the value of a macro.

n A decimal integer.
An example of a command to invoke the compiler with switches:
C>t8cc hello /dLEVEL=3 /fbkeep /i

This will invoke the T8 compiler to compile hello.cpp, and place
the binary output in keep.bin. Before the compilation, a macro
LEVEL will be defined with the value 3. Details of the identities and
versions of the compiler components will be printed.

4.2.1 Controlling the Object File
4.2.1.1 Switches /FB and /FO0

The /FB or /F0 switch is used to specify the name of the object file
output by the compiler. The two switches have the same eflect.

The switch must be followed by a fn, but the complete MS-DOS
path name may not be necessary. The compiler supplies defaults, as
follows:

e If no extension is given, the compiler supplies the default ex-
tension .bin.

o If no filename is given, the filename of the source file is used.

36 Chapter 4

e If the drive specification or directory specification are omitted,
then the current drive and/or directory are used.

o If a drive specification is given alone, then the output file is cre-
ated in the current directory of the specified drive, regardless
of the source file’s directory.

The following examples may clarify this. The ‘Supplied’ string below
is assumed to be the argument of a /FB switch. The current drive
and directory are c:\michael, and the current directory on a: is
\output.

Specified source file Supplied Output file

dogs nothing c:\michael\dogs.bin
dogs cats c:\michael\cats.bin
dogs cats.out c:\michael\cats.out
dogs \stuff\ c:\stuff\dogs.bin
dogs a:\first\ a:\first\dogs.bin
dogs a: a:\output\dogs.bin
dogs a:cats a:\output\cats.bin

Notice that in examples like the fourth above, it is the fact that the
supplied string ends with a ‘\’ which indicates that this is a directory
specification. If it is omitted, output would be sent (in this case) to
c:\stuff.bin, even if a directory c:\stuff exists.

If no /FB or /FO switches are specified, the behaviour of the compiler
is the same as if a /FB switch were used, with no argument. In order
to stop the compiler generating an object file of any kind, the /C
switch must be used (see section 4.2.2).

C++ Compiler Reference 37

4.2.2 Controlling Object Code
4.2.2.1 Switch /Gd

By default, the compiler follows the ANSI standard in using single-
precision floating-point arithmetic when both operands of an arith-
metic operator are of type float.

The /Gd switch is provided so that the compiler can be made to follow
the earlier K&R rule, if necessary. The C Programming Language|5]
states that “all floating arithmetic in C is carried out in double-
precision; whenever a float appears in an expression it is lengthened
to double...”. This means that an expression like a+b, where a and
b are float, is evaluated by first converting a and b to double and
then performing the addition using double-precision floating-point
arithmetic.

The ANSI practice results in faster program execution, but because
floating-point arithmetic works with approximations the numerical
result of the operation may be less accurate than that obtained
before. Users who are affected by this may prefer to use the /Gd
switch.

Note that even without /Gd, floating-point constants are still double,
and so an expression like 2.0%a will still be evaluated in double
precision (with a being converted to double). You can avoid this
happening by assigning the value 2.0 to a float temporary variable
beforehand (two say) and then writing the expression as twoxa.

4.2.2.2 Switch /C

If this option switch is used, the compiler checks the source file for
errors, but does not generate an object file.

38 Chapter 4

4.2.3 Controlling Code Patch Sizes

Certain constant values in a program cannot be worked out by the
compiler, but must be filled in (or patched) by the linker. The com-
piler leaves gaps for these values, and fills the gaps with a special
code. In some circumstances, however, the linker may decide on
a patch value which is too large to fit in the gap provided by the
compiler. When this happens, the linker gives the following error
message:

FATAL ERROR(22): patch over valid code in module module

The /P switch controls the sizes of the gaps left by the compiler, so
that this situation can be avoided. There are two varieties.

4.2.3.1 Switch /PCn

This switch changes the size of the gap the compiler leaves for a
function call. The size of the gap limits the distance from the call
to the called function. Four bits of the displacement are stored in
every byte of gap, so the maximum displacement is 29" — 1 bytes.
n should be in the range 2 to 8. If the /PC switch is not used, the
compiler assumes a value of 6 for n, giving a maximum displacement
of 16MB. Similar negative displacements are also allowed. Smaller
values of n reduce the code size for external calls (resulting in faster
execution) but restrict the total size of the final program image. For
example, n = 5 allows displacements up to 1MB; n = 4 allows up to
64KB. Normally the default value of n should be adequate.

The compiler does not accept a /PC1 switch, as in this case not only
would the displacement be restricted to 15 bytes, but in addition
backward calls would not be possible.

C++ Compiler Reference 39

4.2.3.2 Switch /PMn

A linked program contains a module table, which has an entry for
every module in the program, including both the modules written
by the user and those extracted from libraries. Each imodule’s entry
contains the address of the module’s static data area. The first thing
which a subprogram does is to access this address, and to do this, it
must load the module number. These module numbers are assigned
by the linker, so the compiler cannot predict how large a module’s
number will be. Once again, it leaves a gap, and the /PM switch
allows the user to specify how large this gap is. Four bits of the
module number are stored in every byte of gap, so the maximum
module number is 2" — 1 bytes. n should be in the range 2 to 8.
If the /PM switch is not used, the compiler assumes a value of 2 for
n, giving a maximum module number of 255. Larger /PM numbers
increase the maximum number of modules which can be linked into
one program, but make the program slightly larger and slower.

If the linker reports patch over valid code, as described above,
the likely cause is that the linked program contains more than 255
modules, including library modules. The programmer can cope with
this situation as follows:

e Use /PM to increase the maximum allowable mnodule number.
For example, /PM3 will allow 4096 modules.

e Modules are assigned numbers in order, depending on their po-
sition in the linker’s command line. It is essential that modules
from the run-time library and C++ class libraries should have
module numbers which are less than 255; they have already
been compiled with /PM2, and this cannot be changed. So the
linker command line should have these libraries and the harness
first; then any user-written modules and libraries, compiled
with a larger /PM. For example:

C>linkt \tc2v2\libct8 \tc2v2\crtlt8 \tc2v2\t8harn main
Qumysubs ,main.b4

40 Chapter 4
4.2.4 Controlling Debugging

The following switches control the output of information required
by the decode program and by Tbug, 3L’s interactive symbolic
debugger for the transputer.

4.2.4.1 Switch /zd

This switch causes the compiler to include line-number tables in the
generated object file. These tables are used by decode and by Tbug
to work out which piece of object code corresponds to each line of
the source program. If this switch is not used, this information will
not be available, and Tbug will not be able to display the source
version of the program. ‘

4.2.4.2 Switch /Zi

This switch causes the compiler to include variable tables in the
generated object file. These contain information about the names,
locations and types of the program’s identifiers. If this switch is not
used, Tbug will not be able to display the variables by name and in
the correct format.

The /Zi switch will also cause the compiler to output the line-
number tables. This means that if you use /Zi, you do not need
to use /Zd as well.

4.2.4.3 Switch /Zo

This switch causes the compiler to generate diagnostic information
in an older format which is not required for use with Tbug. This
facility is retained in order to maintain compatibility with the 3L
system programming environment, and is unlikely to be needed by
end-users.

C++ Compiler Reference 41
4.2.5 Controlling #include Processing

This section should be read in conjunction with section 4.4, where
include file processing is discussed more fully.

4.2.5.1 Switch /1dir

This switch adds dir to the include list, that is, the list of “stan-
dard places” where the compiler looks for files specified in #include
lines. The dir string is assumed to be a directory, whether or not it
terminates with a ‘\’.

4.2.6 Macro Definitions

This section should be read in conjunction with section 4.3, where
predefined macros are discussed.

4.2.6.1 Switch /Dmac and /Dmac=str

The first form of the /D switch can be used to define a macro with the
value ‘1’. The second form enables the user to define a macro with
the value ‘str’. These definitions are done before the compilation of
the program. For example:

C>t8cc/dDEBUG/Dhelp=3/dJOE=Jim cats

This is equivalent to coding the following lines at the top of the
program cats.cpp:

#define DEBUG 1
#define help 3
#define JOE Jim

Notice that the macro names and their values are case sensitive. If
there are any syntax errors in the definitions, these are reported on
the display and included on the listing (if any) in the usual way.

42 Chapter 4
4.2.6.2 Switch /Umac

This switch undefines a predefined macro—see section 4.3 for a dis-

cussion of these. This means, for example, that the following switch:
C>t8cc/U_transputer cats

is equivalent to coding the following line at the top of cats.cpp:

t#undef _transputer

Once again, the name of the macro is case sensitive.

4.2.7 Information from the Compiler
4.2.7.1 Switch /I

This switch makes the compiler display information about itself, in-
cluding the identities and version numbers of its components. Please
quote this information in any correspondence about the compiler.

4.2.7.2 Switch /W

The /W switch controls the output of warning messages from the
compiler. Without this switch, the compiler warns about constructs
which are likely to be mistakes, non-portable or inefficient. If /W
is specified, the compiler will only issue warnings about constructs
which are almost certainly errors.

4.3 Predefined Macros

The following macros are defined with the value ‘1’ for every compi-
lation:

-transputer
3L

[

C++ Compiler Reference 43

CII
__cplusplus

The following two macros are defined to indicate which processor the
current compilation is for:

_IMST4 for compilations by t4cc
_IMST8 for compilations by t8cc

Any of these predefinitions may be cancelled by the /Umac switch.
See section 4.2.6 for details.

4.4 Handling of #include Files

When the compiler encounters an #include line, it searches for the
specified file in a sequence of directories known as the include list.
This consists of the following, which are searched in this order:

1. The current directory—except in the case of lines of this for-
mat:

#include <filename>

2. Directories which have been specifically added to the include
list at compilation time by means of the /I switch—see sec-
tion 4.2.5.

3. The directory \tc2v2\cc.

44

Chapter 4

Chapter 5

The C++ Complex
Mathematics Library

5.1 Introduction to the complex class

This chapter describes the facilities of the Parallel C++ Complex
Mathematics Library.

In order to make use of these facilities, the program must include
the following line:

#include <complex.h>

The file complex.h includes the header file math.h.

The Complex Mathematics Library is not automatically searched
by the linker. If your program makes use of this library, you must
include in your link-list the file \tc2v2\complxt8 (for I'8 programs)
or \tc2v2\complxt4 (for T4 programs). TFor example, to link a
program calc with the T8 version of the Complex Mathematics
Library, you should give this command:

C>t8cclink calc \tc2v2\complxt8

46 Chapter 5

Note. The current version of the Complex Mathematics Library
cannot be linked with stand-alone tasks. See section 3.5.

5.1.1 The complex Class

The Complex Mathematics library implements the data type of com-
plex numbers as a class, complex. It overloads the standard input,
output, arithmetic, assignment, and comparison operators, discussed
in section 5.3. Routines for converting between Cartesian and po-
lar coordinate systems are discussed in section 5.4. The complex
class also overloads the standard exponential, logarithm, power, and
square root functions, discussed in section 5.5, and the trigonomet-
ric functions of sine, cosine, hyperbolic sine, and hyperbolic cosine,
discussed in section 5.6.

Error handling for the complex class functions is described in the
next section.

Constructor

complex constructor function for complex objects

complex(double re, double im);

The argument re specifies the real part of the complex value, and
im specifies the imaginary part. If the im argument is omitted, the
imaginary part is given the value 0.0.

5.2 Error Handling

5.2.1 Default Error Handling

Certain functions in the Complex Mathematics Library may result
in a value which is undefined for the given arguments, or which is not

The C++ Complex Mathematics Library 47

representable. These errors are classified into the following types.

SING Argument singularity
OVERFLOW Overflow range error

UNDERFLOW Underflow range error

The following table describes the way in which these error types are
handled by default.

Error Type

SING OVERFLOW | UNDERFLOW
errno EDOM ERANGE ERANGE
function exp:
real too large/small | - (£H, £H) | (0, 0)
imag too large - (0, 0) -
function log;:
argument = (0,0) | M, (H,0) | - -
function sinh:
real too large - (xH, £H) | -
imag too large - (0,0) -
function cosh:
real too large - (£H, £H) | -
imag too large - (0, 0) -

The notations in the table for the error actions have the following
meanings.

M Message is printed (EDOM error).

(H, 0) (HUGE_VAL, 0) is returned.

(£H, £H) (XHUGE_VAL, £HUGE_VAL) is returned.
(0,0) (0, 0) is returned.

The macro HUGE_VAL is defined in the header file math.h, which is
included in the program by complex.h.

48

Chapter 5

5.2.2 Trapping Errors

The default error-handling described above is performed by the

library function complex_error. If you wish to trap these error
conditions and handle them in the program, you need to write a new
complex_error function yourself.

The header complex.h includes a definition of the class c_exception,

as follows.

class c_exception

{
int
char
complex
complex
complex

public:

type;
*name;
argl;
arg2;
retval;

c_exception(char *n, const complext al,

friend
friend
friend
friend
friend

};

const complexk a2 = complex_zero);

int complex_erroxr(c_exceptionk);
complex exp (complex);
complex sinh (complex);
complex cosh (complex);
complex log (complex);

The data elements of the c_exception are used as follows.

type The type of the error: one of the three constants
SING, OVERFLOW and UNDERFLOW, which are defined in
complex.h and described in the previous section.

name Points to a string containing the name of the function
which has encountered the error.

argl, arg2 The arguments with which the function was invoked.

retval The value of the function which will be returned to the
user.

The C++ Complex Mathematics Library 49

Constructor

F,exception c_exception constructor

c_exception(char sn, const complext al,
const complexk a2 = complex_zero);

The argument n points to a string containing the name of the func-
tion. The arguments al and a2 are references to arguments with
which the function was invoked; the default value for a2 is (0,0).

Function

complex_error error handling function I

friend int complex_error(c_exceptionk c);

As we remarked above, the complex library contains a default version
of this function. A new version should be written by users who wish
to handle their own complex errors.

The argument c is a reference to a c_exception object, whose data
elements contain the details of the error to be handled. The new
complex_error function should place in the element retval the
value to be returned to the main program by the function which has
detected an error.

If the value returned by the complex_error function is non-zero, no
error message will be printed.

5.3 Operators

The basic arithmetic operators, comparison operators, and assign-
ment operators are overloaded for complex numbers. The operators
have their conventional precedences.

50 Chapter 5

Arithmetic Operators

The four basic binary arithmetic operators are overloaded for com-
plex values, as is the unary ‘-’ operator. For example, the following
example is valid.

complex z, a, b, c, d;
z = (a + bxc) / -d;

[operator: + complex addition

friend complex operator+(complex x, complex y);

Returns a complex value which is the arithmetic sum of x and y.

operator: - complex negatioﬂ

friend complex operator-(complex x);

Returns a complex value which is the arithmetic negation of x.

operator: - complex subtraction

friend complex operator-{complex x, complex y);

Returns a complex value which is the result of subtracting y from x.

|gperator: * complex producﬂ

friend complex operator*(complex x, complex y);

Returns a complex value which is the arithmetic product of x and y.

The C++ Complex Mathematics Library 51

operator: / complex division

friend complex operator/(complex x, complex y);

Returns a complex value which is the result of dividing x by y.

Comparison Operators

The operators for testing for equality and inequality are overloaded
for complex values. For example, the following is allowed.

complex a, b;
if (a != b &% a == complex (0,0)) {
cout << "\nokay";

}

operator: == complex equality

friend int operator==(complex a, complex y);

Returns non-zero if x is equal to y; returns 0 otherwise.

operator: != complex inequality

friend int operator!=(complex x, complex y);

Returns non-zero if x is not equal to y; returns 0 otherwise.

Assignment Operators

The operators +=, -=, *= and /= are overloaded for assigning complex
values to complex objects. For example, the following is valid:
complex x, y;
X +=y;
X -=Y,

52 Chapter 5

xt-y;
x /=y;

It is important to note the cdmplex assignment operators do not
produce a value that can be used in an expression, unlike the “built-
in” C assignment operators. This means, for example, that the
following construction is syntactically invalid.

complex x, y, Z;
x=(y+=2z);

operator: += add and assign

void operator+=(complex y);

The value y is added to the complex object on the left of the operator.

operator: -= subtract and assigl

void operator-=(complex y);

The value y is subtracted from the object on the left of the operator.

Ioperator: *= multiply and assign

void operator*=(complex y);

The object on the left of the operator is multiplied by the value y.

The C++ Complex Mathematics Library 53

operator: /= divide and assign

void operator/=(complex y);

The object on the left of the operator is divided by the value y.

5.4 Cartesian/Polar Functions

This section discusses functions for conversions between the Carte-
sian and polar coordinate systems.

abs complex absolute value

friend double abs(complex x);

abs returns the absolute value (or magnitude) of x.

norm square of the magnitude

friend double norm(complex x);

norm returns the square of the magnitude of x. It is faster than
abs but more likely to cause an overflow error. It is intended for
comparison of magnitudes.

arg . angle

friend double arg(complex x);

arg returns the angle of x measured in radians, in the range —7 to
+.

54 Chapter §

Icon j complex conjugate

friend complex conj(complex x);

conj returns the complex conjugate of x. For example, if x is (real,
imag), conj(x) is (real, -imag).

Ipolar polar coordinatﬁl

friend complex polar(double m, double a = 0);

polar returns a complex value given a pair of polar coordinates,
magnitude m, and angle a, measured in radians in the range —x to
+m. If the argument a is not supplied, a value of 0 is assumed.

real real part

friend double real(complex x);

real returns the real part of the complex argument x.

imag imaginary paﬂ

friend double imag(complex x);

imag returns the imaginary part of the complex argument x.

The C++ Complex Mathematics Library 55

5.5 Mathematical Functions

The complex class includes overloadings for complex arguments of
the functions exp, log, pow and sqrt.

exp e® function

friend complex exp(complex x);
exp returns the complex value e*.

exp returns (0,0) when the real part of x is so small, or the imag-
inary part is so large, as to cause overflow. Wlen the real part is
large enough to cause overflow, exp returns (HUGE_VAL,HUGE_VAL)
if the cosine and sine of the imaginary part of x are positive,
(HUGE_VAL , -HUGE_VAL) if the cosine is positive and the sine is not,
(-HUGE_VAL ,HUGE_VAL) if the sine is positive and the cosine is not,
and (-HUGE_VAL,-HUGE_VAL) if neither sine nor cosine is positive. In
all these cases, errno is set to ERANGE. You can change this treatment
of exceptional cases by writing your own version of complex_error;
see section 5.2.

log log, = function

friend complex log(complex x);
log returns the natural logarithm of x.

If x is (0,0), log returns (-HUGE_VAL,0) and sets errno to EDOM.
A message indicating SING error is printed on the standard error
output. You can change this procedure by writing your own version
of complex_error; see section 5.2.

56 . Chapter §

[pow calculates x’]

friend complex pouw(complex x, complex y);

pow returns the complex value of x raised to the power of y.

sqrt calculates /x

friend complex sqrt(complex x);

sqrt returns the square root of x, contained in the first or fourth
quadrants of the complex plane.

5.6 Trigonometric and Hyperbolic Functions

This section describes the overloading of trigonometric and hyper-
bolic functions for complex values.

Functions

[sin sine function |

friend complex sin(complex x);

8in returns the sine of of its radian argument.

[cos cosine function |

friend complex cos(complex x);

cos returns the cosine of its radian argument.

The C++ Complex Mathematics Library 57

sinh hyperbolic sine function

friend complex sinh(complex x);
sinh returns the hyperbolic sine of its argument.

s8inh() returns (0,0) if the imaginary part of x would cause over-
flow. When the real part is large enough to cause overflow, sinh()
returns (HUGE_VAL ,HUGE_VAL) if the cosine and sine of the imaginary
part of x are non-negative, (HUGE_VAL,-HUGE_VAL) if the cosine is
non-negative and the sine is less than 0, (-HUGE_VAL,HUGE_VAL)
if the sine is non-negative and the cosine is less than 0, and
(-HUGE_VAL ,-HUGE_VAL) if both sine and cosine are less than 0. In
all these cases, errno is set to ERANGE. You can change this treatment
of exceptional cases by writing your own version of complex_error;
see section 5.2.

cosh hyperbolic cosine function

friend complex cosh(complex x);
cosh returns the hyperbolic cosine of its argument.

cosh() returns (0,0) if the imaginary part of x would cause over-
flow. When the real part is large enough to cause overflow, cosh()
returns (HUGE_VAL ,HUGE_VAL) if the cosine and sine of the imaginary
part of x are non-negative, (HUGE_VAL,-HUGE_VAL) if the cosine is
non-negative and the sine is less than 0, (-HUGE_VAL,HUGE_VAL)
if the sine is non-negative and the cosine is less than 0, and
(-HUGE_VAL,-HUGE_VAL) if both sine and cosine are less than 0. In
all these cases, errno is set to ERANGE. You can change this treatment
of exceptional cases by writing your own version of complex_error;
see section 5.2,

58

Chapter §

7 Sale

Chapter 6

The Parallel C++ Stream
Library

6.1 Introduction

This chapter describes the Parallel C++ stream package. Although
all the facilities of the package are dealt with here, as usual this is
not intended as a tutorial description, and the reader is referred to
one of the standard texts for a more easily-assimilable discussion.

The package is declared in iostream.h and a number of other header
files, which are listed in section 6.1.4. It consists primarily of a
collection of classes. Although originally intended only to support
input/output, the package now supports related activities such as
“in-store” formatting.

The stream package implemented in Parallel C++ is a mostly source-
compatible extension of the earlier stream 1/0 package described in
The C++ Programming Language[l).

Note

60 Chapter 6

In this chapter, the word character is used to refer to a value that
can be held in either a char or unsigned char. When functions
that return an int are said to return a character, they return a
positive value. Usually such functions can also return EOF as an
error indication.

As usual, the word byte refers to the piece of memory that can hold
a character. Thus, either a char* or an unsigned char* can point
to an array of bytes.

6.1.1 Buffers and Streams

Input/output in C++ involves operations on two kinds of objects:
streams and buffers.

Buffer objects support the following operations.

o Insertion (also called storing or putting) of characters into a
sink. Sinks include MS-DOS standard streams (for example
stdout), files or arrays.

o Eztraction (also called fetching or getting) of characters from
a source. Sources include the MS-DOS standard stream stdin
as well as files or arrays. '

¢ Some buffer classes also support operations such as the closing,
opening and positioning of files.

Stream objects support formatted and unformatted conversion of
sequences of characters which are stored in or fetched from buffers,
as well as the other operations supported by buffer objects.

For the most part, users will not need to perform operations on
buffers, but will use the associated stream objects instead.

The Parallel C++ Stream Library 61

6.1.2 Classes
6.1.2.1 Base Classes

Most users of the stream package will not need to operate on objects
of these classes directly. Those who wish to extend the package with
new stream and buffer classes, however, will need to read section 6.7,
where the public and protected interfaces of the streambuf class are
discussed.

streambuf This is the base class for buffers. It supports the funda-
mental operations on buffers, including insertion and
extraction. Most members of streambuf are inlined
for efficiency.

ios This is the base class for streams. It contains various
variables which define the current state of a stream,
such as its error and formatting states. It also contains
certain enum definitions which are used as formatting
manipulators, open modes and so on.

6.1.2.2 Core Stream Classes

Objects of these classes support the basic stream facilities. These
are performed in each case by operations on an associated object of
class streambuf. These classes are also used as base classes for the
stream objects described later in this section.

The facilities supported by these streams are described in detail in
sections 6.2 and 6.3.

istream This class supports formatted and unformatted con-
version of sequences of characters fetched from the
associated streambuf. The >> operator is overloaded
to perform an extraction.

62 Chapter 6

ostrean This class supports formatted and unformatted conver-
sion of sequences of characters which are stored in the
associated streambuf. The << operator is overloaded
to perform an insertion.

iostream This class derives from istream and ostream, and is
intended for situations when both input and output
(extraction and insertion) of sequences of characters is
needed. This class is used mostly as a base for the
fstream class discussed below.

istream_withassign, ostream_withassign, iostream_withassign
These classes derive from the corresponding classes
without the _withassign suffix. They add assign-
ment operators to these classes, and also implement
a constructor which has no operands. The prede-
fined streams cin, cout, cerr and clog are objects
of these classes; for a discussion of these streams, see
section 6.1.3 below.

6.1.2.3 Operations on Files

These classes support input/output on MS-DOS files. For a full
description of the facilities supported, see section 6.4.

filebuf This class is derived from streambuf. Members sup-
port opening, closing and seeking. Most users will not
need to manipulate objects of this class directly, but
will use an associated stream instead.

ifstream This class supports input from files, by performing
formatted and unformatted conversion of sequences of
characters fetched from an associated filebuf. It is
derived from istream, and so supports all the format-
ting facilities of that class.

The Paralle]l C++ Stream Library 63

ofstream In the same way, this class is derived from ostream,
and supports output to files by storing characters in
an associated filebuf.

fstream This class is derived from iostream, and is used when
you need to perform input and output on the same file.

6.1.2.4 Operations on Arrays

These classes support “in-store” formatting. For a full description,
see section 6.5.

strstreambuf
This class, which is derived from streambuf, supports
insertion and extraction operations on arrays of bytes
in memory. As usual, most users will not need to
manipulate objects of this class directly.

istrstream This class allows the user to fetch characters from an
array of bytes and convert them using the standard
stream facilities. It is derived from istream.

ostrstream In the same way, this class, which is derived from
ostream, allows the user to convert data into sequences
of characters with are stored in an array.

6.1.2.5 Operations on FILE Structures

These classes are provided mostly for mixed C and C++ pro-
gramming. They enable the user to perform stream operations on
files controlled by FILE structures, as defined in the C stdio.h
header and implemented in the C run-time library. New C++ pro-
grams should avoid using these classes, as the facilities provided by
ifstream, ofstream and fstream are more e¢fficient.

A description of these classes can be found in section 6.6.

64 Chapter 6

stdiobuf This class, which is derived from streambuf, supports
the insertion and extraction operations via a stdio.h
FILE structure.

stdiostream
This class is in fact derived directly from ios. It al-
lows the user to perform insertions and extractions on
stdio.h FILE structures, and to convert sequences of
characters using the standard stream facilities.

6.1.2.6 Initialising the Stream Package

Iostream_init .

The constructor function of this special class ini-
tialises the stream package’s standard streams. The
iostream.h header includes a declaration of a static
member of this class, so the class constructor is called
once each time the header is included, although the
actual intialisation is only done once. In this way, the
standard streams are always initialised before they are
used.

Iostream_init has no public members, and the user
should not normally be concerned with it. In some
cases, however, global constructors may need to call
the Tostream_init constructor explicitly, in order to
ensure that the predefined streams have already been
initialised correctly.

6.1.3 Predefined Streams

The following streams are predefined. As we have seen above, the
predefinitions are performed by the constructor of the Iostream_init
class.

The Parallel C++ Stream Library 65

Stream cin is of class istream_withassign. The others are of class
ostream_withassign.

cin This stream is connected to the MS-DOS stdin
stream.

cout This stream is connected to the MS-DOS stdout
stream.

cerr This stream is connected to the MS-DOS stderr

stream. Output through this stream is not fully
buffered, but only unit-buffered. This means that
characters are flushed after every insertion. For more
information, see the discusssion of unitbuf in sec-
tion 6.3.1.1, and section 6.2.4.1.

clog This stream is also connected to the MS-DOS stderr
stream, but unlike cerr its output is fully buffered.

The streams cin, cerr and clog are tied to cout so that any use of
these will cause cout to be flushed. The performance of programs
which copy from cin to cout may sometimes be improved by break-
ing the tie between cin and cout and doing explicit flushes of cout.
See the discussion of the tie function in section 6.2.2.3 for details.

6.1.4 Header Files

Definitions for the stream package are held in a number of header
files. Details will be found in the sections devoted to the various
parts of the package. In the meantime, here is a summary of the
contents of each header.

iostream.h This header should be included in every program mod-
ule which uses the stream package. It declares all the
base classes and core stream classes described above,
as well as the predefined streams.

66 Chapter 6

fstream.h Declarations of all classes needed for input/output op-
erations on files. Includes iostream.h.

strstream.h
Declarations of classes needed for operations on char-

acter arrays. Includes iostream.h.

stdiostream.h
Declarations of classes needed for operations on stdio.h
FILE structures. Includes iostream.h and stdio.h.

iomanip.h Declarations of parameterised manipulators, as well as
certain macros which help users who wish to create
their own manipulators.

stream.h This header exists for compatibility with the earlier
stream package. It includes iostream.h, stdio.h, and
some other headers, and it declares some obsolete func-
tions, enumerations, and variables. Some members of
streambuf and ios, which are not discussed in this
chapter, are present only for backward compatibility
with the stream package.

6.2 Stream Input and Output

In this section, we shall discuss the base and core stream classes and
their facilities, and in particular, unformatted input and output.
Formatted input and output are discussed in section 6.3.

Section 6.2.1 deals with the constructor and assignment operations
for these streams. Section 6.2.2 discusses features which are common
to both input and output, while sections 6.2.3 and 6.2.4 discuss input
and output respectively.

It is worth bearing in mind that although some of these classes will
often be used by programs directly, some of the facilities described
here are provided to support the classes which are derived from them.

The Parallel C++ Stream Library 67

Only the header iostream.h is required to use these facilities.

6.2.1 Constructors and Assignment

Note that these functions will not often be used directly by user
programs. The core classes are most frequently used to access the
MS-DOS standard streams, and these are predefined. Sometimes,
however, a program may need to construct a stream which uses a
predefined or existing streambuf, in which case these functions will
be needed. :

The old stream package allowed copying of streams; the current
package does not. However, objects of the istream_withassign,
ostream_withassign and iostream_withassign classes can be as-
signed to. These assignments actually associate the assigned stream
with the other stream’s streambuf. Old code which uses stream
assignments can usually be rewritten to use these classes, or alterna-
tively to use pointers to streams. The standard streams cin, cout,
cerr, and clog are members of “withassign” classes, so they can be
assigned to. For example:

cin = inputfstream;

If inputfstream is an object of class ifstream, the effect of this
would be to associate cin with inputfstream’s streambuf, so that
subsequent input through cin would come {rom the file controlled
by inputfstream.

The old stream package had a constructor that took a stdio.h FILE*
argument. This is no longer supported, and is not declared even as
an obsolete form, in order to avoid having iostream.h depend on
stdio.h. Users who need to access stdio.h FILE variables using
the C++ stream library should use the facilities described in section
6.6.

6.2.1.1 Input Stream Classes

68 . Chapter 6

[istream istream constructor |

istream(streambuf* sb);

This constructor associates the buffer sb with the istream and ini-
tialises the istream’s state variables.

istream_withassign istream_withassign constructor

istream_withassign();

Constructs a stream but does no initialisation.

|opera,tor: = assignment to an istream_withassign

istream_vithassign& operator=(streambufs sb);

Initialises the entire state of the assigned stream and associates sb
with it.

operator: = assignment to an istream_withassigﬂ

istream_withassignk operator=(istreamk ina);

Initialises the entire state of the assigned stream and associates with
it the buffer currently associated with ins (that is, ins->rdbuf ()).

6.2.1.2 Output Stream Classes

The Parallel C++ Stream Library 69

Iostream ostream constructor|

ostream(streambuf* sb);

This constructor associates the buffer sb with the ostream and ini-
tialises the ostream’s state variables.

h)stream_uithassign . ostream_withassign constructor

ostream_withassign();

Constructs a stream but does no initialisation. This allows a file
static variable of this type (cout, for example) to be used before it
is constructed, provided it is assigned to first.

operator: = assignment to an ostream_withassign|

ostream_withassignk operator=(streambuf* sb);

Initialises the entire state of the assigned stream and associates sb
with it.

operator: = assignment to an ostream_withassign

ostream_withassignk operator=(ostreamg outs);

Initialises the entire state of the assigned stream and associates with
it the buffer currently associated with outs (that is, outs->rdbuf ()).

70 Chapter 6
6.2.1.3 Class ios

The ios class is the base from which all the stream classes are derived
(see section 6.1.2.1). The information in this section will only needed
by users who are building their own stream classes.

[ios constructor for the ios class|

ios(streambuf* sb);

The streambuf sb becomes the streambuf associated with the con-
structed ios. If sb is null, the effect is undefined.

ios dummy constructor

ios();

The ios class is used as a virtual base class for derived classes with
multiple inheritance. For this reason, we need a constructor with no
parameters. This constructor is declared protected, and performs no
initialisation.

init initialise ios object

void init(streambuf* sb);

When the ios class is used as a virtual base class (see above), no
initialisation can be performed by the constructor. Accordingly ios
includes this function as a protected member, which derived classes
can use to initialise an ios.

The Parallel C++ Stream Library 71

ios dummy constructor

ios(iosk iosr);

Copying of ios objects is not in general well-defined. This con-
structor with an ios& parameter is therefore declared private, but
never defined. As a result, the compiler will flag any use of such a
constructor as an error.

operator: = assignment of ios object
P g

void operator=(iost);

Copying of ios objects is not in general well-defined. The assignment
operator is therefore declared private, but never defined. As a result,
the compiler will flag any attempt to assign a value to an ios object
as an error.

6.2.2 Input and Output

This section describes facilities of the core classes which are common
to unformatted input and output. These facilities are supported by
members of the ios class, from which the other stream classes are
derived.

Streams have a number of state variables, which initialised by their
constructors, as described above. Amongst these are the error state,
which is discussed in section 6.2.2.1 below, and the formatting state,
which is discussed in detail in section 6.3.

72 Chapter 6
6.2.2.1 Error Handling

A stream has an internal error state which is a collection of bits.
These bits are referred to by enum values defined as part of the
ios class, and so will normally need to be referenced with a scope
qualifier, as shown below. They are:

ios::goodbit
Despite its name, this refers to a state in which no
error bits are set.

ios::eofbit
Normally this bit is set when an end-of-file has been
encountered during an extraction.

ios::failbit
This bit indicates that some extraction or conversion
has failed, but that the stream is still usable. In other
words, once the failbit is cleared, input/output on
this stream can usually continue.

ios::badbit
This usually indicates that some operation on the

stream’s associated streambuf has resulted in a severe
error, from which recovery is probably impossible.

Functions

The following functions are members of the ios class.

Irdstate return error state I

int rdstate();

This function returns the stream’ current error state.

The Parallel C++ Stream Library 73

Elear set error state |

void clear(int i);

Stores i as the error state. The default value for i is 0. If i is zero,
all bits are cleared. To set a bit without clearing previously set bits
you need to read the existing value first; for example:

inputstreanm.clear(ios::badbit|inputatream.rdstate());

good test for no errors

int good();

Returns non-zero if the error state has no bits set, zero otherwise.

eof test for end-of-file|

int eof();

Returns non-zero if eofbit is set in the error state, zero otherwise.

fail test for error |

int fail();

Returns non-zero if either badbit or failbit is sct in the error state,
zero otherwise. Note that if this function returns a non-zero value,
it may be necessary to test separately for badbit.

74 Chapter 6

[bad test for unrecoverable error |

int bad();

Returns non-zero if badbit is set in the error state, zero otherwise.

Operators

The ios class includes the following two operators, which allow the
error state of a stream to be checked conveniently.

operator: void * test for no error

operator voids();

This operator converts a stream to a pointer so that it be compared
to zero. (This pointer is not meant to be used). The conversion
will return O if failbit or badbit is set in the error state, and will
return a pointer value otherwise. This allows you to test the error
state of a stream like this:

if (cin > x) {
// processing for successful completion

}

operator: ! test for error

int operator!();

The ! operator returns non-zero if failbit or badbit is set in the
error state. This allows you test the error state like this:

if (!'cout) {
// processing for error condition

}

The Parallel C++ Stream Library 75

6.2.2.2 Positioning Streams

A stream can be thought of as a sequence of characters over which
move one or two pointers. One pointer identifies the place at which
characters can be fetched from the stream (the get pointer), and the
other the place at which they may be stored (the put pointer).

Different classes of streams treat these pointers in different ways.
Some, which are restricted to input or output only, have only one
pointer. Others, such as those discussed in section 6.5, have two
independent pointers, while others, such as the file streams discussed
in section 6.4, have two pointers which always point to the same
character.

Streams may be positioned by moving these pointers. Functions
for doing this are discussed in sections 6.2.3.3 and 6.2.4.3, and are
available for all classes of stream, even though some of these cannot
in fact be positioned.

The differences in the handling of positioning for the various classes
of streams are made not in the stream classes themselves, but in the
corresponding buffer classes, all of which are derived from streambuf
(see section 6.1.2.1). Derived buffer classes may provide their own
versions of streambuf’s virtual seekoff and seekpos functions,
which are then used by the stream positioning functions. Descrip-
tions of seekoff and seekpos may be found in section 6.7, and the
corresponding versions for other buffer classes are described in the
appropriate sections. Most programmers, however, will only need
to use the stream positioning functions described in sections 6.2.3.3
and 6.2.4.3 below.

The ios class includes definitions of the enum seek_dir, which is
used to specify base lecations from which to measure offsets as
parameters to the stream and buffer positioning functions. This
includes the following values:

ios::beg The beginning of the stream.

76 Chapter 6

ios::cur The current position.

ios::end The end of the stream.
In addition, iostream.h defines two types used with these functions:

streampos A stream position. The programmer should not try to
manipulate streampos values, using arithmetic oper-
ations, for example, but should treat them as opaque.
Two particular values have special meanings:

streampos (0) The beginning of the file.

streampos(EOF) Used as an error indication.

streamoff An signed value used to express byte offsets from one
of the base locations listed above.

6.2.2.3 Other Members

The class ios also includes the following function members.

rdbuf pointer to streambufJ

streambuf* rdbuf();

This function returns a pointer to the streambuf which was associ-
ated with the stream when it was constructed.

sync_with_stdio synchronise standard streams

static void sync_with_stdio();

This function exists to solve problems which arise with the standard
MS-DOS streams when input/output using the C++ stream package
is mixed with standard C stdio.h input/output.

The Parallel C++ Stream Library 77

The first time it is called it will reset the standard streams (cin,
cout, cerr, clog) to be streams using stdiobuf-class buffers (see
section 6.6). After that, input and output on stdin, stdout and
stderr using these streams may be mixed with input and output
using the corresponding FILE structures, and will be properly syn-
chronised. In addition, sync_with_stdio makes cout and cerr unit
buffered. See section 6.2.4.1 and the discussion of unitbuf in section
6.3.1.1.

Invoking sync_with_stdio degrades the performance of input/output
on the standard streams. The extent of this degradation depends on
the length of the strings being inserted, with shorter strings perform--
ing worst.

The sync_with_stdio function is acknowledged to be an inelegant
solution to this problem. The old stream package performed in this
way by default, but with the current package unbuffered stdiobufs
are regarded as too inefficient for this to continue. The function will
only be needed with mixed C and C++ programs, and in general
should be avoided.

tie set tie variable|

ostream* tie(ostream* osp);

The tie variable is the means by which different streams synchronise
their operations. The tie variable is either null, or it points to an
output stream. When a stream is about to fetch or a store characters,
it flushes the stream which its tie variable points to, if any.

This function sets the stream’s tie variable to osp, and returns its
previous value.

By default, cin is tied initially to cout so that attempts to get more
characters from standard input result in flushing standard output.

78 Chapter 6

Additionally, cerr and clog are tied to cout by default. For other
streams, the tie variable is set to zero by default.

[tie return value of tie variable]

ostream * tie();
Returns the current value of the tie variable.

6.2.3 Input

This section discusses the facilities supported by the istream class
and classes which are derived from it. Only unformatted operations
are described here; for formatted input functions, see section 6.3.

6.2.3.1 Input Prefix Function

ipfx input prefix function

int ipfx(int need);

This function is called by input functions before doing any transfer.
Formatted input functions call ipfx with need==0, while unformat-
ted input functions call it with need==1.

If necessary, the stream which is tied to this one (if any) is flushed
(see the description of the tie function in section 6.2.2.3). This
flushing is considered necessary if either need==0 or if there are fewer
than need characters immediately available.

After this, if the ios::skipws formatting flag is set (see section
6.3.1.1) and need is zero, leading whitespace characters are extracted
from the stream and discarded.

The Parallel C++ Stream Library 79

If, on entry to ipfx, the stream’s error state is non-zcro, the function
returns zero immediately. It also returns zero if an error occurs while
skipping whitespace. Otherwise it returns non-zero.

6.2.3.2 Unformatted Input Functions

These functions call ipfx(1) (see section 6.2.3.1 above) and proceed
only if it returns non-zero.

get extract characters

istreamt get(chars ptr, int lim, char delim);
istreamk get(unsigned chars ptr ,int lim,
char delim);

Extracts characters and stores them in the byte array beginning
at ptr and extending for len bytes. Extraction stops when delim
is encountered (delim is left in the stream and not stored), when
the stream has no more characters, or when the array has only one
byte left. The function always stores a terminating null, even if it
does not extract any characters from the stream because of its error
status. The error flag ios::failbit is set only if get encounters an
end-of-file before it stores any characters.

The default value for delim is the newline character.

get extract a single character

istreamk get(unsigned chark c);
istreamk get(chark ¢);

Extracts a single character and stores it in c.

80 . Chapter 6

get extract a single character

int get();

Extracts a character and returns it. EOF is returned if extraction
encounters an end-of-file. The error flag ios::failbit is never set.

get extract characters, store in streambuf

istreamk get(streambufk sb, char delim);

This version of get extracts characters from the stream and stores
them into sb. It stops if it encounters an end-of-file, if a store into
sb fails or if it encounters delim (which it leaves in the stream). The
error flag ios::failbit is set if it stops because the store into sb
fails.

getline extract characters and terminator

istreamk getline(char* ptr, int lim, char delim);
istreamk getline(unsigned chars ptr, int lim,
char delim);

Extracts characters and stores them in the byte array beginning at
ptr and extending for len bytes. Extraction stops when delim is
encountered (delim is extracted from the stream and stored), when
the stream has no more characters, or when the array is full. If delim
occurs when exactly 1len characters have been extracted, termination
is treated as being due to the array being filled, and this delim is
left in the stream. The error flag ios::failbit is set only if the
function encounters an end-of-file before it stores any characters.

The default value for delim is the newline character.

The Parallel C++ Stream Library 81

ignore skip characters

istreamk ignore(int n, int delim);

Extracts and throws away up to n characters. Extraction stops
prematurely if delim is extracted or end of file is reached. If delim
is EOF it can never cause termination.

The default value for n is 1. For delim, the default value is EOF.

read extract characters|

istreamt read(char# ptr, int n);
istreamt read(unsigned chars ptr, int n);

Extracts n characters and stores them in the array beginning at ptr.
If end of file is reached before n characters have been extracted, read
.stores whatever it can extract and sets the error flag ios::failbit.
The number of characters extracted can be determined via gcount
(see section 6.2.3.4 below).

6.2.3.3 Positioning Functions

These functions are members of istream. For a discussion of stream
positioning, see section 6.2.2.2. Note that the predefined streams do
not support positioning.

seekg move the get pointer ‘

istreamt seekg(streampos pos);

This function moves the get pointer of the buffer associated with this
stream to the position pos.

82 Chapter 6

seekg move the get pointc;l

istreamt seekg(streamoff off,
ios::seek_dir dir);

This function moves the get pointer of the buffer associated with
this stream. The dir parameter is one of the location bases beg,
cur or end discussed in section 6.2.2.2; off is a byte offset from this
location.

[tellg current position of get pointer

streampos tellg();

This function returns the current position of the get pointer of the
buffer associated with this stream.

6.2.3.4 Other Members

The following functions are also members of istream.

IEcout number of characters fetcheﬁ

int gcount();

Returns the number of characters fetched by the last unformatted
input function. Note that formatted input functions may call unfor-
matted input functions and thereby reset this number.

The Paralle]l C++ Stream Library 83

peek look ahead

int peek();

This function calls the input prefix function ipfx with a parameter
value 1. If that call returns zero or if the stream is at end-of-
file, it returns EOF. Otherwise it returns the next character without
extracting it, that is, without moving the get pointer.

putback back up streaﬂ

istreamk putback(char c);

This function attempts to back up the buffer associated with this
stream. The parameter ¢ must be the character before the get
pointer. (Unless other activity is modifying the buffer, this is the
last character fetched from the stream.) If it is not, the effect is
undefined.

The function may fail (and set the error state). Although it is a
member of istream, putback never extracts characters, so it does
not call ipfx. It will, however, return without doing anything if the
error state is non-zero.

[sync synchronise stream and source

int sync();

This function ensures that the internal data structures and the exter-
nal source of characters are consistent with each other. The function
works by calling the buffer’s sync function. This is a virtual function,
so the details depend upon the derived bufler class.

The function returns EOF to indicate errors.

84 Chapter 6
6.2.4 Output

This section discusses the facilities supported by the ostream class
and classes which are derived from it. Only unformatted operations
are described here; for formatted output functions, see section 6.3.

6.2.4.1 Output Prefix and Suffix Functions

opfx output prefix function

int opfx();

This function is called by output functions before doing any trans-
fer. It flushes the stream which is tied to this one, if any; see the
description of the tie function in section 6.2.2.3.

If, on entry to opfx, the stream’s error state is non-zero, the function
returns zero immediately. Otherwise it returns non-zero.

osfx output suffix function I

void osfx();

This function is called by every formatted output function (inserter)
after performing the transfer and before returning to the user.

If the formatting flag ios: :unitbuf is set, osfx flushes the stream.
If the formatting flag ios::stdio is set, osfx flushes stdout and
stderr. See section 6.3.1.1 for a discussion of these flags.

The output suffix function is called by all predefined inserters, and
should be called by user-written inserters as well, if they manipulate
the associated bufler directly. It is not called by the unformatted
output functions.

The Parallel C++ Stream Library 85

6.2.4.2 Unformatted Output Functions

These functions are members of the ostream class.

lPUt output one character

ostreamk put(char c);

This function stores ¢ in the associated buffer. It sets the error state
of the stream if the operation fails.

[write write characters

ostreamk write(const char *s, int n);

Stores the n characters starting at s in the associated buffer. These
characters may include zeros; that is, s is not treated like a zero-
terminated string.

[£1ush flush the stream

ostreamk flush();

When characters are stored in a buffer, they are not necessarily sent
to the character sink at once. For example, if the sink is an external
file, characters are not always written out to the file at once, but
may be held temporarily in memory.

When flush is invoked, any characters which have been stored in
the buffer but are still waiting to be sent to the sink are sent there
at once. It does this by calling the buffer’s sync function. This is a
virtual function, so the details depend upon the derived buffer class.

86 Chapter 6

6.2.4.3 Positioning Functions

These functions are members of ostream. For a discussion of stream
positioning, see section 6.2.2.2. Note that the predefined streams do
not support positioning.

seekp move the put pointer

ostreamk seekp(streampos pos);

This function moves the put pointer of the buffer associated with
this stream to the position pos.

[seekp move the put pointerJ

ostreamt seekp(streamoff off,
ios::seek_dir dir);

This function moves the put pointer of the buffer associated with
this stream. The dir parameter is one of the location bases beg,
cur or end discussed in section 6.2.2.2; off is a byte offset from this
location.

tellp current position of put pointer

streampos tellp();

This function returns the current position of the put pointer of the
buffer associated with this stream.

The Parallel C++ Stream Library 87

6.3 Formatted Input and Output

The section discusses formatted input and output operations on
streams. Unformatted input and output are discussed in section
6.2.

6.3.1 The Formatting State

A stream has a formatting state which decides the details of the way
input and output formatting are done. The formatting state has the
following components:

e A number of formatting flags.
e The fill character.
o The precision variable.

e The width variable.

The formatting flags and the functions to control them are described
next, in section 6.3.1.1. The other components are discussed in
section 6.3.1.2 below.

The formatting state affects only formatted input and output op-
erations. For other operations the format state has no particular
effect and its components may be set and examined arbitrarily by
user code.

6.3.1.1 Formatting -Flags

The following flags for specifying format states are defined in the ios
class, and so will usually need to be specified with an ios:: scope
qualifier.

88

skipus

left, right,

dec, oct, hex

Chapter 6

If skipus is set, whitespace will be skipped on input.
This applies to scalar extractions. See also section
6.2.3.1.

Zero width fields are considered a bad format by the
extractors, so if the next character is whitespace and
skipwus is not set, the arithmetic extractors will signal
an error.

internal

When a value is converted for output, the resulting
character string may be shorter than the width ex-
pected. In this case, the string padded with fill char-
acters. These flags control the way in which this is
done, as follows:

e When left is set, the value is left-adjusted, that
is, the fill characters are added after the value.

e When right is set, the value is right-adjusted,
that is the fill character is added before the value.

e When internal is set, the fill character is added
after any leading sign or base indication, but be-
fore the value.

Right-adjustment is the default if none of these flags
is set. The fill character is defined by the £ill func-
tion, and the width of padding is defined by the width
function; see section 6.3.1.2.

The current values of these flags are held in the static
member ios::adjustfield.

These flags control the current conversion base. If dec
is set, input and output are performed using base 10
(decimal); similarly, hex specifies hexadecimal and oct
octal conversion. If none of these is set, output is in

The Parallel C++ Stream Library 89

showbase

showpos

uppercase

showpoint

decimal, but input is interpreted according to the C++
lexical conventions for integral constants.

The manipulators hex, dec, and oct can also be used
to set the conversion base; see section 6.3.4.1 below.
The current values of these flags are held in the static
member ios: :basefield.

If showbase is set, output values will be converted
to an external form that can be read according to
the C++ lexical conventions for integral constants.
showbase is unset by default.

If showpos is set, then a ¢’ will be inserted into a deci-
mal conversion of a positive integral value.

If uppercase is set, then an uppercase ‘X’ will be used
for hexadecimal conversion when showbase is set, or
an uppercase ‘E’ will be used to print floating point
numbers in scientific notation.

If showpoint is set, trailing zeros and decimal points
appear in the result of a floating point conversion.

scientific, fixed

These flags control the format in which floating-point
values are output.

e If scientific is set, the value is converted using
scientific notation, where there is one digit before
the decimal point and the number of digits after
it is equal to the current precision. An uppercase
‘E’ will introduce the exponent if uppercase is
set, a lowercase ‘e’ will appear otherwise.

o If fixed is set, the value is converted to decimal
notation. The number of digits after the decimal
point is equal to the current precision.

90 . Chapter 6

¢ If neither is set, then the value will be converted
using either notation, depending on the value; sci-
entific notation will be used only if the exponent
resulting from the conversion is less than —4 or
greater than the current precision. If showpoint
is not set, trailing zeroes are removed from the
result and a decimal point appears only if it is
followed by a digit.

The precision is defined by the precision function;
see section 6.3.1.2 below. The current value of these
flags is held in the static member ios::floatfield.

unitbuf When set, a flush is performed by the output suffix
function ostream::osfx after each insertion. Unit
buffering provides a compromise between buffered out-
put and unbuffered output. Performance is better
under unit buffering than unbuffered output, which
makes a system call for each character output. Unit
buffering makes a system call for each insertion opera-
tion, and does not require the user to call ostream: : flush.
See section 6.2.4.1.

stdio When set, stdout and stderr are flushed by the out-
put suffix function ostream: : osfx after each insertion.
See section 6.2.4.1.

Functions

The following functions are provided to manipulate the flags dis-
cussed above. They are members of the ios class.

flags current format flags

long flags();

Returns the current values of the format flags.

The Parallel C++ Stream Library 91

flags specily format flags

long flags(long f£);

Sets the format flags to the values specified in £ and returns the
previous settings. All the previous flag settings are lost.

setf set format flags

long setf(long bits);

Turns on the format flags marked in bits and returns the previous
settings. Flags which were set before are not changed. A parame-
terised manipulator, setiosflags, performs the same function; see
section 6.3.4.2.

setf set flags in field

long setf(long bits, long field);

All the flags in the member field are clear, and then set to the
values specified in bits. For example, to change the conversion base
to be hex, one could write:

s.setf(ios::hex,ios: :basefield)

As we saw in the discussion of the conversion flags above, ios: :basefield
holds all the conversion base bits. These will be cleared and replaced
by ios: :hex.

Note that s.setf(0,field) will clear all the bits in field. The
parameterised manipulator resetiosflags has the same effect; see
section 6.3.4.2.

92 Chapter 6

unsetf unset format flags

long unsetf(long bits);

Unsets the flags set in bits and returns the'previous settings.

6.3.1.2 Other Formatting Variables

The functions described here are all members of the ios class.

Width

The width variable specifies the minimum width of the character
string to be output by the next call on an inserter function. If the
field width is zero (the default), inserters will insert only as many
characters as necessary to represent the value being inserted. If the
field width is non-zero, the inserters will always insert at least that
many characters. If the result of performing the conversion is shorter
than this value, the string will be padded with the fill character in
the way specified by the left, right and internal flags.

The numeric inserters never truncate values, even if the value being
inserted will not fit in the specified width. There is no direct way to
specify a maximum number of characters.

The width is reset to the default (zero) after each insertion or ex-
traction.

[width set field width |

int width(int w);

Sets the width variable to w and returns the previous value. The pa-
rameterised manipulator setw is also available for setting the width;
see section 6.3.4.2.

The Parallel C++ Stream Library 93

[width field width |

int width();

Returns the width variable.

The Fill Character

The fill character is used to pad output strings which are shorter
than the current field width. The default fill character is a space.
The way in which padding is done is defined by the left, right and
internal flags; see above.

[£i11 set the fill character|

char fill(char c);

Sets the fill character to ¢ and returns the previous value. c will
be used as the padding character, if one is necessary (see width(),
below). The parameterised manipulator setfill is also available for
setting the fill character; see section 6.3.4.2.

[£i11 fill character |

char £i11();

Returns the fill character.

Precision

This variable defines the number of significant digits output when
a floating-point value is inserted. Details of how it is used can be
found above, in the discussion of the scientific and fixed flags.
The default value for precision is 6.

94 Chapter 6

precision set the precision

int precision(int i);

Sets the precision format state variable to i and returns the previous
value. The parameterised manipulator setprecision may also be
used for this purpose; see section 6.3.4.2.

rprecision current precision

int precision();

Returns the current precision.

6.3.2 Extraction: The >> Operator

The >> operator is overloaded by the istream class to perform for-
matted extractions and certain other functions.

Note that there is no overflow detection on the conversion of integers.

[oﬁerator: >» extract]

istreamk operator>>(type x);

The operator first calls the input prefix function, ipfx, with a pa-
rameter 0 (see section 6.2.3.1). If that returns non-zero, it then
extracts characters from the stream, converts them according to the
type of x and stores the converted value in x.

A reference to the stream is returned, so that expressions of the
following sort are allowed:

cin >> a >> b;

The Parallel C++ Stream Library 95

Errors are indicated by setting the stream’s error state. The error
flag ios::failbit is set if the characters extracted were not a rep-
resentation of the required type. The error flag ios: :badbit is set
if attempts to extract characters failed.

The details of the conversion performed depend on the values of the
stream’s format state flags and variables (see section 6.3.1 above)
and the type of x. Extractions which use the width variable reset
it to 0, but apart from this, the extraction operators do not change
the value of the stream’s format state.

Extractors are defined for the following types, with conversion rules
described below.

char*, unsigned charx*

Characters are stored in the array pointed at by x
until a whitespace character is found. The terminating
whitespace is left in the stream. If the width variable is
non-zero it is taken to be the size of the array, and the
maximum number of characters extracted will be one
less than the width. A terminating null character (0) is
always stored (even when nothing else is done because
of the stream’a error state). The width variable is reset
to 0.

char&, unsigned chark
A single character is extracted and stored in x.

short&, unsigned shortg, int&, unsigned inté&, long&,unsigned lon
Characters are extracted and converted to an inte-
gral value according to the conversion specified in the
stream’s format flags. The converted value is stored in
X.

The first ‘character may be a sign (‘+’ or ‘~’). After
that, if ios::oct, ios::dec, or ios: :hex is set, the
conversion is octal, decimal, or hexadecimal, respec-
tively. Conversion is terminated by the first non-digit,
which is left in the stream.

96

Chapter 6

If none of the conversion base format flags is set, then
the number is interpreted according to C++ lexical
conventions. That is, if the first characters (after the
optional sign) are Ox or 0X a hexadecimal conversion
is performed, if the first character is 0, an octal con-
version is performed, and in all other cases a decimal
conversion is performed.

The error flag ios: :failbit is set if there are no char-
acters available which correspond with the expected
format.

floatg&, doublek

&streambuf

manipulator

Converts the characters according to C++ syntax for a
float or double, and stores the result in x. The error
flag ios::failbit is set if there are no digits available
or if they do not start with a well-formed floating-point
number.

Extracts characters from the stream and inserts them
into the streambuf. Extraction stops when EOF is
reached.

Syntactically, the use of a manipulator resembles an
extractor operation. For example:

cin >> oct;

This does not, however, convert a sequence of charac-
ters and store them is oct. Instead, it sets cin’s con-
version base to ios::oct. Other manipulators perform
other operations. Further discussion of manipulators
can be found in section 6.3.4.

In addition, users can write extractor functions for their own classes,
which can then be invoked using the >> operator and the same

syntax.

The Paralle]l C++ Stream Library 97

6.3.3 Insertion: The << Operator

The << operator is overloaded by the ostream class to perform for-
matted insertions and certain other functions.

operator: << insert

ostreamk operator<<(lype x);

The operator first calls the output prefix function, opfx (see section
6.2.4.1. If that returns non-zero, it converts x into a sequence of
characters called the representation. Next, padding is performed
as specified by the width formatting variable and the left, right
and internal flags (see section 6.3.1). The representation is then
inserted into the stream’s associated buffer. Finally, the operator
calls the output suffix function (see section 6.2.4.1).

A reference to the stream is returned, so that expressions of the
following sort are allowed:

cout << a << b;
Errors are indicated by setting the stream’s error state.

The details of the conversion performed depend on the values of the
stream’s format state flags and variables (see section 6.3.1 above)
and the type of x. Except that insertions that use width reset it to
0, the insertion operators do not change the value of the stream’s
format state.

Inserters are defined for the following types, with conversion rules
described below.

charx* The representation is the sequence of characters up to
(but not including) the terminating null of the string
x points at. '

integral types except char and unsigned char
Decimal, octal or hexadecimal conversion is performed,

98 Chapter 6

depending on which of the formatting flags ios: :dec,
ios::oct or ios::hex is set. If none of them is set,
decimal conversion is performed.

If x is zero, the representation is ‘0’. If x is nega-
tive, decimal conversion converts it to a minus sign
‘=? followed by decimal digits. If x is positive and
ios::showpos is set, decimal conversion converts it
to a plus sign (+) followed by decimal digits. The
other conversions treat all values as unsigned. If
ios::showbase is set in ios’s format flags, the hexa-
decimal representation contains “Ox” before the hexa-
decimal digits, or “0X” if ios::uppercase is set. If
ios::showbase is set, the octal representation con-
tains a leading 0.

void* Pointers are converted to integral values and then con-
verted to hexadecimal numbers as if ios::showbase
were set.

float, double
The arguments are converted according to the current
value of the precision and width formatting variables
and the format flags ios::scientific, ios::fixed,
and ios: :uppercase. See section 6.3.1 for details.

char, unsigned char
The character is output unchanged.

&streambuf Characters are fetched from the specified streambuf
and inserted into the stream’s associated buffer. In-
sertion stops when no more characters can be fetched.
No padding is performed.

manipulator Syntactically, the use of a manipulator resembles an
inserter operation. For example:

cout << oct;

The Parallel C++ Stream Library 99

This does not, however, convert the value of oct to a
sequence of characters and store them in cout. In-
stead, it sets cout’s conversion base to ios::oct.
Other manipulators perform other operations. TFur-
ther discussion of manipulators can be found in section
6.3.4.

In addition, users can write inserter functions for their own classes,
which can then be invoked using the << operator and the same
syntax.

6.3.4 Manipulators

As we have seen, using a manipulator is syntactically similar to an
insertion or extraction operation. However, it is in fact a function
call. For example:

cout << flush;
cin >> ws;

These are equivalent to the following:

flush(cout);
ws(cin);

The manipulators which are provided as part of the stream package
can be conveniently divided into simple manipulators, which are used
without parameters, and parameterised manipulators. As we shall
see, users may also build their own manipulators.

6.3.4.1 * Simple Manjpulators

The following manipulators are all functions which have as their
single parameter an ios&, an istream& or an ostream&, and return
their argument. In the descriptions below, sr is a ios&.

100 Chapter 6

IFm.nipulator: dec set decimal

sr<<dec;
sr>>dec;

These set the conversion base format flag of sr to 10, so that future
conversions use decimal representations.

manipulator: hex set hexadecima.ll

sr<<hex;
sr>>hex;

These set the conversion base format flag of sr to 16, so that future
conversions use hexadecimal representation.

manipulator: oct set octal

sr<<oct;
sr>>oct;

These set the conversion base format flag of sr to 8, so that future
conversions use octal representation.

manipulator: ws extract whitespace

8I>>us;

This manipulator extracts whitespace characters from sr and dis-
cards them.

The Paralle]l C++ Stream Library 101

manipulator: endl end of linﬂ

sr<<endl;

Ends a line by inserting a newline character into sr and flushing the
stream.

ma.nipulator: ends end of string

sr<<ends;

Ends a string by inserting a null (\0) character into sr.

[manipulator: flush flush streaml

sr<<flush;

This manipulator flushes sr. See section 6.2.4.2, where the flush
function is discussed in more detail.

6.3.4.2 Parameterised Manipulators

The following manipulators are declared in the header file manip.h,
which must be included in any program which uses them.

These manipulators all have to do with changing the format state
of a stream; see section 6.3.1 for further details. In the descriptions
below, ostr represents an ostream and istr represents an istream.

102 Chapter 6

manipulator: setw set width |

ostr<<setu(n);
istr>>setw(n);

Sets the width formatting variable of ostr or istr to the value of the
int parameter n. This is the equivalent of a call to the ios: :width

function.

Ima.nipulator: setfill set fill character

ostr<<setfill(n);
istr>>setfill(n);

Sets the fill character of ostr or istr to the value of the int param-
eter n. This is the equivalent of a call to the ios::£ill function.

manipulator: setprecision set precision

ostr<<setprecision(n);
istr>>setprecision(n);

Sets the precision formatting variable of ostr or istr to the value
of the int parameter n. This is the rquivalent of a call to the
ios::precision function.

manipulator: setiosflags set formatting flags

ostr<<setiosflags(bits);
istr>>setiosflags(bits);

Turns on the format flags in ostr or istr. The flags to turn on are

The Parallel C++ Stream Library 103

specified in the long parameter bits. Flags which were set before
are not changed. This is the equivalent of a call ios::setf(bits).

[manipula.tor: resetiosflags reset formatting ﬂagsl

ostr<<resetiosflags(field);
istr>>resetiosflags(field);

Clears format flags in ostr or istr. The long parameter field
specifies the field to reset. For example, the following would reset
the conversion base of ostr to 0:

ostr<<resetioflagsios::basefield;

This is the equivalent of a call to ios::setf(0, field).

6.3.5 User Extensions
6.3.5.1 Formatting Flags

Class ios can be used as a base class for derived classes that require
additional format flags or variables. The iostream library provides
several functions to do this. The two static member functions
ios::xalloc and ios::bitalloc allow several such classes to be
used together without interference. See section 6.3.1.

These functions are all members of the ios class.

IEtalloc get unused formatting lil

static long bitalloc();

This function returns a long in which a single bit will be set. This
bit is a previously-unused formatting flag. This allows users who

104 Chapter 6

need an additional flag to acquire one, and pass it as an argument
to ios::setf, for example.

[xalloc allocate index to free words |

static int xalloc();

This function returns a previously unused index into an array of
words available for use as format state variables by derived classes.

[iword find user-defined word |

longk iword(int i);

When i is an index allocated by ios::xalloc, iword returns a
reference to the ith user-defined word.

pword find user-defined word

void+& pword(int i);

When i is an index allocated by ios::xalloc, pword returns a
reference to the ith user-defined word. This function is the same
as iword except that it is typed differently.

6.3.5.2 Parameterised Manipulators

The header file iomanip.h supplies macro definitions which program-
mers can use to defline new parameterised manipulators.

The Paralle] C++ Stream Library 105

Ideally, the types relating to manipulators would be parameterised
as “templates”. The macros defined in iomanip.h are used to simu-
late templates. IOMANIPdeclare(T) declares the various classes and
operators. (All code is declared inline so that no separate definitions
are required.) Each of the other Ts is used to construct the real
names and therefore must be a single identifier. Each of the other
macros also requires an identifier and expands to a name.

In the following descriptions, assume:

t is a T, or type name.

8 is an ios.

i is an istream.

o is an ostream.

io is an iostream.

f is an ios& (*)(ios%).

if is an istream& (*)(istream&).

of is an ostream& (*)(ostreamg).
iof is an iostream& (*)(iostream&).

8<<SMANIP(T)(f,t)
8>>SMANIP(T) (£,t)
8<<SAPP(T) (£) (t)
8>>SAPP(T) (£) (t)

Returns f(s,t), where s is the left operand of the insertion or
extractor operator (i.e., s, i, o, or io).

i>>IMANIP(T) (if,t)
i>>IAPP(T) (if) (t)

Returns if(i,t).

O0<<OMANIP(T) (of,t)
0<<0APP(T) (of) (t)

Returns of (o,t).

106 Chapter 6

i0<<IOMANIP(T) (iof,t)
i0>>IOMANIP(T) (iof,t)
i0<<IOAPP(T) (iof) (t)
io>>I0APP(T) (iof) (t)

Returns iof(io,t).

iomanip.h contains declarations of IOMANIPdeclare(int) and
IOMANIPdeclare(long).

Syntax errors will be reported if IOMANIPdeclare(T) occurs more
than once in a file with the same T.

6.4 Operations on Files

This section describes the stream library’s facilities for performing
input/output on files.

Programs which use these facilities must include the header file
fstream.h.

Four new classes are introduced to support file I/O.

Three of these are the stream classes ifstream, ofstream and
fstream. They are derived respectively from the core classes
istream, ostream and iostream and so support all the facilities
described in sections 6.2 and 6.3. In addition, they include members
for opening and closing files and other operations.

The fourth new class is a buffer class, filebuf, which is derived from
streambuf. The buffers used by the file streams are of class filebuf,
and most of the facilities provided by the stream classes make use of
functions which are members of filebuf. Most users will not need
to use filebuf meinbers, but will use the stream classes instead;
such users can disregard most of the discussion of filebuf in this
section.

The Parallel C++ Stream Library 107

The filebuf class specialises streambuf to use a file as a source or
sink of characters. Characters output by the program are in the
end written out into a file, while the characters which the program
needs for input are read from a file. The filebuf allows a file to be
positioned, if this is possible. At least 4 characters of putback are
guaranteed. When the file permits reading and writing, the filebuf
permits both storing and fetching; unlike the C stdio.h functions,
filebuf requires no special action between gets and puts.

A filebuf accesses the environment through a value called a file
descriptor. When a filebuf is connected to a file descriptor, it (and
its associated stream) is said to be open. Stream and filebuf members
for opening files have a parameter for specifying a protection mode;
under MS-DOS, this is disregarded.

A filebuf controls a buffer called the reserve area (see section 6.7).
This is used for buffering transfers to and from the file. The reserve
area may be specified explicitly by a constructor or by calling the
setbuf function; if this is not done, one is allocated automatically.
You can also make a filebuf unbuffered, in which case characters
are transferred to and from the file one-by-one. The get and put
pointers into the reserve area are conceptually tied together; they
behave as a single pointer. Therefore, the descriptions below refer
to a single get/put pointer.

6.4.1 Constructors
6.4.1.1 Stream Constructors

The constructors for the three stream classes are similar. In the
descriptions below, “STREAM” stands for ifstream, ofstream or
fstream. In practice, most users use fstream for all files.

ISTREAM constructor for file streams

108 Chapter 6

STREAMQ) ;

Constructs an unopened stream.

| STREAM constructor for file streams |

STREAM(const char *name, int mode, int prot);

Constructs a stream and opens the file specified by name using the
specified mode as the open mode. (Open modes are described in
detail in the discussion of the open function in section 6.4.2 below.)

The prot parameter is included for compatibility with other systems,
but is disregarded by this implementation.

If the open fails, the error state of the constructed stream is set to
indicate failure.

[STREAM constructor for file streams

STREAM(int fd);

Constructs a stream connected to file descriptor £d, which must be
already open. The filebuf::fd function can be used to access the
file descriptor of an open stream. Notice that no test is made to
check that the file descriptor supplied is in fact valid or open.

STREAM constructor for file streams

STREAM(int fd, char *ptr, int len);

The Parallel C++ Stream Library 109

Constructs a stream connected to file descriptor fd, and, in addition,
initialises the associated filebuf to use the len bytes at ptr as
the reserve area. If ptr is NULL or len is 0, the filebuf will be
unbuffered.

6.4.1.2 Buffer Constructors

[£ilebuf filebuf constructor

filebuf();

Constructs an initially closed filebuf.

Ifilebuf filebuf constructor

filebuf (int £d);

Constructs a filebuf connected to file descriptor £d. The filebuf: :fd
function can be used to access the file descriptor of an open filebuf.
Notice that no test is made to check that the file descriptor supplied

is in fact valid or open.

mlebuf filebuf constructor

filebuf (int fd, char sptr, int len);

Constructs a filebuf connected to file descriptor £d and initialised
to use the reserve area starting at ptr and containing len bytes. If
ptr is NULL or len is zero or less, the filebuf will be unbuffered.

110 Chapter 6
6.4.2 Stream Operations

Each of the three stream classes have members which follow the
descriptions given below.

6.4.2.1 Opening and Closing Streams

[open open a stream

void open(const char *name, int mode, int prot);

The function opens the file specified in name and connects the stream
to it. It makes a call to the associated filebuf’s open member, and
if this fails, ios: :failbit is set in the stream’s error state. This is
also done if the file is already open.

The prot parameter is provided for compatibility with other systems,
but is ignored in this implementation.

The mode parameter specifies the mode with which the file is to
be opened. The ios class contains a definition of the open_mode
enum, and its members can be used to specify this parameter. These
members are bits which can be ORed together; as this OR operation
produces an int value, the mode parameter is an int.

Note that if the file does not exist, and the mode bit ios: :nocreate
is not specified, an attempt will be made to create the file.

The meanings of the mode bits are as follows.

ios::app The stream is positioned at the end of file. Subsequent
data written to the file are always added (appended)
at the end of file. This mode bit implies ios: : out.

ios::ate The strcam is positioned at the end of file. This mode
bit does not imply ios: :out.

The Parallel C++ Stream Library 111

ios:

ios:

ios:

ios:

ios:

:in

tout

:trunc

The file is opened for input. This bit is implied when
you are constructing or opening an ifstream. lor an
fstream it indicates that input operations should be
allowed if possible. It is legal to include ios::in in
the modes of an ostream in which case it implies that

the original file (if it exists) should not be truncated.

The file is opened for output. This bit is implied when
you are constructing or opening an ofstream. For an
fstream it indicates that output operations are to be
allowed.

If the file already exists, its contents will be truncated
(discarded). This mode is implied when ios::out is
specified (including implicit specification for of stream)
and neither ios: :ate nor ios: :app is specified.

:nocreate

If the file does not already exist, the open will fail.

:noreplace

If the file already exists, the open will fail.

attach

attach stream to file descriptor

void attach(int fd);

Connects the stream to the file descriptor £d. If the stream is already
connected to a file, ios: :failbit in the stream’s error state is set.

The filebuf: :fd function can be used to access the file descriptor
of an open stream. Notice that no test is made to check that the file
descriptor supplied is in fact valid or open.

112 Chapter 6

[close close a stream |

void close();

Closes any associated filebuf and thereby breaks the connection
between the stream and the file. The stream’s error state is cleared
except on failure. A failure occurs when the call to the associated
filebuf’s close member fails.

6.4.2.2 Positioning Streams

The functions seekp and tellp are allowed for ofstream streams,
and seekg and tellg are allowed for ifstream. All four are allowed
for fstream. However, the two pointers are in fact tied together, and
the same position is used for both fetching and storing characters.

Positioning is implemented by using the filebuf versions of the
virtual functions seekoff and seekpos, which are discussed in sec-
tion 6.4.3 below. See also section 6.2.2.2 for a general discussion of
positioning.

6.4.2.3 Other Operations

[rdbuf access associated filebuf

filebuf »rdbuf();

Returns a pointer to the filebuf associated with the stream.
fstream: :rdbuf has the same meaning as iostream::rdbuf but
is typed differently.

The Parallel C++ Stream Library 113

Lsetbuf create reserved area |

void setbuf(char #ptr, int len);

Initialises the associated filebuf to use the len bytes at ptr as
the reserve area. If ptr is NULL or len is 0, the filebuf will be
unbuffered. A failure occurs if the stream is open or the call to the
associated filebuf’s setbuf member fails.

6.4.3 Buffer Operations

These functions are members of the filebuf class. As was noted
above, most users will not need to use these functions, but will use
the stream facilities instead.

6.4.3.1 Opening and Closing Buffers

Fpen _ open a buffer

filebuf sopen(const char *name, int mode,
int prot);

Opens the file specified by name and connects the filebuf to it. If
the file does not already exist, an attempt is made to create it, unless
ios::nocreate is specified in mode.

For a discussion of the values of the mode parameter, see the de-
scription of fstream: :open in section 6.4.2. The prot parameter is
provided for compatibility, but is ignored in this iimplementation.

Failure occurs if the filebuf is already open. The [unction normally
returns the address of the filebuf but if an error occurs it returns
0.

114 Chapter 6

close close a buffer |

filebuf #close();

Flushes any waiting output, closes the file descriptor, and discon-
nects the filebuf. Unless an error occurs, the £ilebuf’s error state
will be cleared. The function returns the address of the £ilebuf
unless errors occur, in which case it returns 0. Even if errors occur,
close leaves the file descriptor and the filebuf closed.

fd return file descriptor

int £d4Q);

Returns the file descriptor which the filebuf is connected to. If the
filebuf is closed, EOF is returned.

attach connect buffer to file descriptor

filebuf sattach(int fd);

‘Connects the filebuf to an open file descriptor, £d. The function
normally returns the address of the filebuf, but returns O if the
filebuf is already open.

Notice that no test is made to check that the file descriptor supplied
is in fact valid or open.

is_open check if buffer is open

int is_open();

The Parallel C++ Stream Library 115

Returns non-zero when the filebuf is connected to a file descriptor,
and zero otherwise.

6.4.3.2 Positioning Buffers

For a general discussion of positioning, see section 6.2.2.2.

seekoff position bufler by offset]

streampos seekoff(streamoff off,ios::seek_dir dir,
int mode);

Moves the get/put pointer as designated by off and dir. It may fail
if the file that the filebuf is attached to does not support seeking,
or if the attempted motion is otherwise invalid (such as attempting
to seek to a position before the beginning of file).

The off parameter is interpreted as a count relative to the place
in the file specified by dir; for a description of dir, see section
6.2.2.2. The mode parameter is ignored, as the two pointers are not
independent. The function returns the new position, or EOF if a
failure occurs. The position of the file after a failure is undefined.
The mode parameter is ignored.

seekpos position buffer

streampos seekpos(streampos pos, int mode);

Moves the file to a position pos. The mode parameter is ignored.
The function normally returns pos, but on failure it returns EOF.

6.4.3.3 Other Operations

116 Chapter 6

[setbuf create reserve area |

streambuf ssetbuf(char #ptr, int len);

Sets up the reserve area as len bytes beginning at ptr. If ptr is NULL
or len is less than or equal to 0, the filebuf will be unbuffered. The
function normally returns the address of filebuf. However, if the
filebuf is open and a buffer has been allocated, no changes are made
to the reserve area or to the buffering status, and setbuf returns 0.

sync synchronise buffer with file

int sync();

Attempts to force the state of the get/put pointer of the filebuf
to agree (be synchronised) with the state of the file to which it is
connected. This means it may write characters to the file if some
~ have been buffered for output or attempt to reposition (seek) the file
if characters have been read and buffered for input.

Normally, sync returns 0, but it returns EOF if synchronisation is not
possible.

Sometimes it is necessary to guarantee that certain characters are
written together. To do this, the program should use setbuf (or a
constructor) to guarantee that the reserve area is at least as large as
the number of characters that must be written together. It can then
call sync, then store the characters, then call sync again.

6.5 In-Store Operations

This section describes the stream library’s facilities for performing
in-store operations, that is, storing and fetching from arrays of bytes.

The Parallel C++ Stream Library 117

Programs which use these facilities must include the header file
strstream.h.

Four new classes are introduced to support in-store operations.

Three of these are the stream classes: istrstream, ostrstream and
strstream. They are derived respectively from the core classes
istream, ostream and iostream and so support all the facilities
described in sections 6.2 and 6.3. In addition, they include members
for performing certain special operations.

The fourth new class is a buffer class, strstreambuf, which is de-
rived from streambuf. The buffers used by the streams mentioned
above are of class strstreambuf, and most of the facilities provided
by the stream classes make use of functions which are members
of strstreambuf. Most users will not need to use strstreambuf
members, but will use the stream classes instead; such users can
disregard most of the discussion of strstreambuf in this section.

A strstreambuf is a streambuf that uses an array of bytes (a string)
to hold the sequence of characters. Given the convention that a
charx* should be interpreted as pointing just before the char it really
points at, the mapping between the abstract get/put pointers and
char#* pointers is direct. Moving the pointers corresponds exactly
to incrementing and decrementing the char* values. See section 6.7
for further discussion of this.

To accommodate the need for arbitrary length strings strstreambuf
supports a dynamic mode. When a strstreambuf is in dynamic
mode, space for the character sequence is allocated as needed. When
the sequence is extended too far, it will be copied to a new array.

6.5.1 Constructors

6.5.1.1 Stream Constructors

118 Chapter 6

Iistrstream istrstream constructorl

istrstream(char »cp);

Characters will be fetched from the (null-terminated) string cp. The
terminating null character will not be part of the sequence. Posi-
tioning the get pointer using istrstream: :seekg is allowed within
that space.

istrstream istrstream constructor|

istrstream(char *cp, int len);

Characters will be fetched from the array beginning at cp and ex-
tending for 1en bytes. Positioning the get pointer using istrstream: seekg
are allowed within that space.

I?strstream ostrstream constructor

ostrstream();

Space will be dynamically allocated to hold stored characters.

ostrstream ostrstream constructor

ostrstream(char *cp, int len, int mode);

Characters will be stored into the array starting at cp and continuing
for 1en bytes.

The Parallel C++ Stream Library 119

The value of the mode parameter is described in the discussion of
filebuf: :open in section 6.4.2. If ios::ate or ios::app is set in
mode, cp is assumed to be a null-terminated string and storing will
begin at the null character. Otherwise, storing will begin at cp. The
put pointer may be positioned to any location within the array, using .
ostream: : seekp.

[strstream strstream constructor

strstream();

Space will be dynamically allocated to hold stored characters.

Istrstream strstream constructorl

strstream(char scp, int len, int mode);

Characters will be stored into the array starting at cp and continuing
for 1en bytes.

The value of the mode parameter is described in the discussion of
filebuf: :open in section 6.4.2. If ios::ate or ios::app is set in
mode, cp is assumed to be a null-terminated string and storing will
begin at the null character. Otherwise, storing will begin at cp. The
put and get pointers may be positioned to any location within the
array, using istream::seekg and ostream: :seekp.

6.5.1.2 Buffer Const.ructors

Istrstreambuf strstreambuf constructor]

strastreambuf();

120 Chapter 6

Constructs an empty strstreambuf in dynamic mode. This means
that space will be automatically allocated to accommodate the char-
acters that are put into the strstreambuf (using operators new and
delete). Because this may require copying the original characters,
it is recommended that when many characters will be inserted,
the program should use setbuf (described below) to inform the
stratreambuf.

[strstreambuf strstreambuf constructor |

strstreambuf(void #(#*a) (long),
void (»f)(voids));

Constructs an empty strstreambuf in dynamic mode. In this case,
the user supplies a function a to be used as the allocator function in
dynamic mode. The argument passed to a will be a long denoting
the number of bytes to be allocated. If a is NULL, operator new will
be used. The user also supplies a function £ is used to free (or delete)
areas returned by a. The argument to £ will be a pointer to the array
allocated by a. If £ is NULL, operator delete is used.

I strstreambuf strstreambuf constructoﬂ

strstreambuf(int n);

Constructs an empty strstreambuf in dynamic mode. The initial
allocation of space will be at least n bytes.

strstreambuf strstreambuf constructor |

The Parallel C++ Stream Library 121

strstreambuf(char sb, int n, char spstart);
stratreambuf (unsigned char *b, int n,
unsigned char #pstart);

Constructs a strstreambuf to use the bytes starting at b. The
strstreambuf will be in static mode; it will not grow dynamically.
If n is positive, then the n bytes starting at b are used as the
strstreambuf. If n is zero, b is assumed to point to the beginning of
a null terminated string and the bytes of that string (not including
the terminating null character) will constitute the strstreambuf. If
n is negative, the strstreambuf is assumed to continue indefinitely.
The get pointer is initialized to b. The put pointer is initialized to
pstart. If pstart is NULL, then stores will be treated as errors. If
pstart is not NULL, then the initial sequence for fetching (the get
area) consists of the bytes between b and pstart. If pstart is NULL,
then the initial get area consists of the entire array.

6.5.2 Stream Operations

[rdbuf return address of strstreambuf]

strstreambuf *rdbuf();

Fach of the three stream classes has a member rdbuf. This function
returns the address of the strstreambuf associated with the stream.

str . freeze the array

char »stxr();

The classes ostrstream and strstream each have a member str.

122 Chapter 6

The function returns a pointer to the array being used and “freezes”
the array. Once str has been called the effect of storing more char-
acters into the stream is undefined. If the stream was constructed
with an explicit array, the function returns a pointer to the array.
Otherwise, the address of a dynamically allocated area is returned.
Until str is called, deleting the dynamically allocated area is the
responsibility of the stream. After str returns, the array becomes
the responsibility of the user program.

pcount number of bytes stored

int pcount();

This function is a member of the ostrstream class. It returns the
number of bytes that have been stored into the buffer. This is
mainly of use when binary data has been stored and the stream’s
str member does not point to a null terminated string.

6.5.3 Buffer Operations

These functions are members of the strstreambuf class. As was
noted above, most users will not need to use these functions, but
will use the stream facilities instead.

|freeze freeze the buffer|

void freeze(int n);

Inhibits (when n is nonzero) or permits (when n is zero) auto-
matic deletion of the current array. When deletion is inhibited, the
strstreambuf is said to be “frozen”.

Deletion normally occurs when more space is needed or when the
strstreambuf is being destroyed. Only space obtained via dynamic

The Parallel C++ Stream Library 123

allocation is ever freed. It is an error (and the effect is undefined) to
store characters into a strstreambuf that was in dynamic allocation
mode and is now frozen. It is possible, however, to thaw (unfreeze)
such a strstreambuf and resume storing characters.

str freeze the buffer|

char sstr();

Returns a pointer to the first char of the current array and freezes
the strstreambuf. If the strstreambuf was constructed with an
explicit array, the function will return a pointer to that array. If the
strstreambuf is in dynamic allocation mode, but nothing has yet
been stored, the function may return NULL.

Iietpos set length of dynamic allocation]

streambuf #*setbuf(char *p, int n);

The strstreambuf remembers n and the next time it does a dynamic
mode allocation, it makes sure that at least n bytes are allocated.
The p parameter should be 0.

6.6 . Operations on FILE Structures

N4

-

This section describes facilities provided to enable stream operations
to be carried out on C FILE structures, as declared in the C stdio.h
header and implemented by the C run-time library.

These facilities are intended to be used when mixing C and C++
code. New C++ code should avoid using them, as the facilities
described in section 6.4 give better performance.

124) Chapter 6

This section describes the class stdiobuf, which is derived from
streambuf. Users wishing to use these facilities should construct an
iostream specifying a stdiobuf object as the streambuf to use.

Operations on a stdiobuf are reflected on the associated FILE. A
stdiobuf is constructed in unbuffered mode, which causes all oper-
ations to be reflected immediately in the FILE. Calls to seekg and
seekp are translated into call on the C run-time library function
fseek. If required, setbuf can be used to supply a reserve area,
which will cause buffering to be turned back on.

6.6.1 Constructor

Istdiobuf constructor for stdiobufJ

stdiobuf (FILE »f);

Constructs a stdiobuf and connects it to the stdio.h FILE struc-
ture specified in f.

6.6.2 Other Members

I stdiofile pointer to FILE

FILE #stdiofile();

This function returns a pointer to the associated FILE structure.

6.7 Interfaces to streambuf

This section describes the ways in which programmers can make
use of the facilities of streambuf, either directly, or when building

The Paralle] C++ Stream Library 125

derived classes of their own. Most users will not need to study this
information in detail.

The streambuf class supports buffers into which characters can be
inserted (or stored) or from which characters can be ertracted (or
fetched). Abstractly, such a buffer is a sequence of characters to-
gether with one or two pointers (a get pointer and/or a put pointer)
that define the locations at which characters are to be stored or
fetched. The pointers should be thought of as pointing between
characters rather than at them. This makes it easier to understand
the boundary conditions (a pointer before the first character or after
the last). Some of the effects of getting and putting are defined by
this class but most of the details are left to specialized classes derived
from streambuf. For details of such derived classes, see sections 6.4,
6.5 and 6.6.

Classes derived from streambuf vary in their treatments of the get
and put pointers. The simplest are unidirectional buffers which
permit only gets or only puts. Such classes serve as pure sources
(producers) or sinks (consumers) of characters. Queue-like buffers
such as strstream (see section 6.5) have a put and a get pointer
which move independently of each other. In such buffers characters
that are stored are held (i.e., queued) until they are later fetched.
File-like buffers such as filebuf (see section 6.4) permit both gets
and puts but have only a single pointer. (An alternative description
is that the get and put pointers are tied together so that when one
moves so does the other.)

The rest of this section is devoted to three topics.

1. The streambuf constructors.

2. Function members intended for users who are accessing streambuf
objects directly. This is referred to as the public interface to
streambuf.

3. Function members intended for users who are building derived
classes. This referred to as the protected interface.

126 Chapter 6

Notice that some members are described both in the public and the
protected interfaces.

6.7.1 Constructors

As the copying of streambuf objects is not regarded as well-defined,
the class contains private declarations of a constructor with a
streambuf parameter and an assignment operator. As these are
private, any reference to them will be flagged as an error by the
compiler.

The constructors should logically be protected. For compatibility
with the old stream package, however, they are declared public.

I;treambuf constructor for streambuf I

streambuf();

Constructs an empty buffer, corresponding to an empty sequence of
characters.

| streambuf constructor for streamblﬂ

streambuf (char* ptr, int len);

Constructs an empty buffer and then sets up the reserve area to be
the len bytes starting at ptr.

6.7.2 The Public Interface

Most streambuf member functions are organized into two phases.

The Parallel C++ Stream Library 127

1. As far as possible, operations are performed inline by storing
into or fetching from two arrays, the get area and the put area,
which together form a buffer called the reserve area.

2. When necessary, virtual functions are called to cope with the
get and put areas. In the case of the put area, characters stored
there must be flushed out into a sink. Conversely, characters
must be read from a source in order to fill up the get area.
Sinks and sources may be, for example, files, MS-DOS standard
streams or areas of memory.

Generallythe user of a streambuf does
not have to know anything about these details, but some of the public
members pass back information about the state of the areas.

in_avail - characters available for fetching

int in_avail();

Returns the number of characters that are immediately available in
the get area for fetching. This number of characters may be fetched
with a guarantee that no errors will be reported.

out_waiting characters waiting for output

int out_waiting();

Returns the number of characters in the put area that have not been
output to the sink.

sbumpc get character

int sbumpc();

128 Chapter 6

Moves the get pointer forward one character and returns the char-
acter it moved past. Returns EOF if the get pointer is currently at
the end of the sequence.

Iseekoff position by oﬂ'sgl

streampos seekoff(streamoff off, ios::seek_dir dir,
int mode);

Repositions the get and/or put pointers.

The mode specifies whether the put pointer (ios: :out bit set) or the
get pointer (ios::in bit set) is to be modified. Both bits may be
set in which case both pointers should be affected. These bits are
specified with enum values defined within the ios class.

The position to move to is calculated by applying the signed byte off-
set parameter off to the base location specified in dir. Descriptions
of the possible values for dir, and of the streampos and streamoff
types, can be found in section 6.2.2.2.

Not all classes derived from streambuf support repositioning. The
seekoff function will return EOF if the class does not support reposi-
tioning. If the class does support repositioning, seekoff will return
the new position or EOF on error.

I seekpos positionJ

streampos seekpos(streampos pos, int mode);

Repositions the streambuf get and/or put pointer to pos. mode
specifies which pointers are affected, as for seekoff. Returns pos
(the argument) or EOF if the class does not support repositioning or
an error occurs.

The Paralle] C++ Stream Library 129

[sgetc get character

int sgetc();

Returns the character after the get pointer. Note that it does not
move the get pointer. Returns EOF if there is no character available.

lsetbuf set up reserve are;|

streambuf+ setbuf(char* ptr, int len);
streambuf+ setbuf(unsigned char* ptr, int len);

Offers the len bytes starting at ptr as the reserve area. If ptr is
NULL or len is zero or less, then an unbuflered state is requested.
Whether the offered area is used, or a request for unbuffered state
is honoured depends on details of the derived class. The function
normally returns a pointer to the streambuf, but if it does not accept
the offer or honour the request, it returns 0.

[sgetn get characters

int sgetn(char* ptr, int n);

Fetches the n characters following the get pointer and copies them
to the area starting at ptr. When there are fewer than n characters
left before the end of the sequence sgetn fetches whatever charac-
ters remain. The function repositions the get pointer following the
fetched characters and returns the number of characters fetched.

130 Chapter 6

| snextc next character |

int snextc();

Moves the get pointer forward one character and returns the char-
acter following the new position. It returns EOF if the pointer is
currently at the end of the sequence or is at the end of the sequence
after moving forward.

sputbackc move get pointer back

int sputbackc(char ¢);

Moves the get pointer back one character. The parameter ¢ must be
the current contents of the character just before the get pointer. The
underlying mechanisin may simply back up the get pointer or may
rearrange its internal data structures so that c is saved. Thus the
effect of sputbackc is undefined if c is not the character before the
get pointer. The function returns EOF when it fails. The conditions
under which it can fail depend on the details of the derived class.

sputc store character

int sputc(int c);

Stores c after the put pointer, and moves the put pointer past the
stored character; usually this extends the sequence. It returns EOF
when an error occurs. The conditions that can cause errors depend
on the derived class.

The Parallel C++ Stream Library 131

sputn store characters

int sputn(const char# ptr, int n)

Stores the n characters starting at ptr after the put pointer and
moves the put pointer past them. The function returns the number
of characters stored successfully. Normally this is the same as n, but
it may be less when errors occur.

stossc move get pointer forward

void stossc();

Moves the get pointer forward one character. If the pointer started
at the end of the sequence this function has no effect.

sync synchronise streambuf

int sync();

Establishes consistency between the internal data structures and the
external source or sink. The details of this function depend on the
derived class. Usually this “flushes” any characters that have been
stored but not yet consumed, and “gives back” any characters that
may have been produced but not yet fetched. Returns EOF to indicate
€errors.

6.7.3 The Protected Interface

This section describes the interface needed by programmers who
are coding a derived class. Broadly speaking there are two kinds

132 Chapter 6

of member functions described here. The non-virtual functions are
provided for manipulating a streambuf in ways that are appropriate
in a derived class. Their descriptions reveal details of the imple-
mentation that would be inappropriate in the public interface. The
virtual functions permit the derived class to specialize the streambuf
class in ways appropriate to the specific sources and sinks that it is
implementing. The descriptions of the virtual functions explain the
obligations of the virtuals of the derived class. If the virtuals behave
as specified, the streambuf will behave as specified in the public
interface. However, if the virtuals do not behave as specified, then
the streambuf may not behave properly, and a stream object (or
any other code) that relies on proper behaviour of the streambuf
may not behave properly either.

6.7.3.1 The Get, Put, and Reserve Area

The protected members of streambuf present an interface to derived
classes organized around three areas (arrays of bytes) managed co-
operatively by the base and derived classes. They are the get area,
the put area, and the reserve area (or buffer). The get and the put
areas are normally disjoint, but they may both overlap the reserve
area, whose primary purpose is to be a resource in which space for
the put and get areas can be allocated. The get and the put areas
are changed as characters are fetched from and stored in the buffer,
but the reserve area normally remains fixed. The areas are defined
by a collection of char* values. The buffer abstraction is described
in terms of pointers that point between characters, but the char#
values must point at chars. To establish a correspondence the char#
values should be thought of as pointing just before the byte they
really point at.

Functions to Examine the Pointers

[base start of reserved area |

The Parallel C++ Stream Library 133

char* base();

Returns a pointer to the first byte of the reserve area. Space between
base and ebuf is the reserve area.

eback limit of putback

char* eback();

Returns a pointer to a lowest allowable location for gptr. Space
between eback and gptr is available for putback.

[ebus end of reserve area |

char* ebuf();

Returns a pointer to the byte after the last byte of the reserve area.

egptr end of get area

chars egptr();

Returns a pointer to the byte after the last byte of the get area.

epptr end of put area

chars epptr();

134 » Chapter 6

Returns a pointer to the byte after the last byte of the put area.

lEPtr ' start of get area.J

chars gptr();

Returns a pointer to the first byte of the get area. The available
characters are those between gptr and egptr. The next character
fetched will be *gptr unless egptr is less than or equal to gptr.

pbase base of put area

chars pbase();

Returns a pointer to the put area base. Characters between pbase
and pptr have been stored into the buffer and not yet consumed.

[pptr start of put area

char* pptr();
Returns a pointer to the first byte of the put area. The space between
pptr and epptr is the put area and characters will be stored here.
Functions for Setting the Pointers

Note that to indicate that a particular area (get, put, or reserve)
does not exist, all the associated pointers should be set to zero.

The Parallel C++ Stream Library 135

[setb define reserve area|

void setb(char* b, chars eb, int i);

Sets base and ebuf to b and eb respectively. The i parameter
controls whether the area will be subject to automatic deletion. If i
is non-zero, then b will be deleted when base is changed by another
call on setb, or when the destructor is called for the streambuf. If
b and eb are both NULL then we say that there is no reserve area. If
b is not NULL, there is a reserve area even if eb is less than b and so
the reserve area has zero length.

setp define put area

void setp(char* p, chars ep);

Sets pptr and pbase to p, and epptr to ep.

lietg define get area

void setg(chars eb, chars g, char* eg);

Sets eback to eb, gptr to g, and egptr to eg.

6.7.3.2 Other Non-Virtual Members

[allocate set up reserve areal

int allocate();

136 . Chapter 6
Tries to set up a reserve area. If a reserve area already exists or
if unbuffered is non-zero, allocate returns 0 without doing any-
thing. If the attempt to allocate space fails, allocate returns EOF;
otherwise it returns 1. allocate is not called by any non-virtual
member function of streambuf. ’ :

[blen size of reserve area

int blen();

Returns the size of the current reserve area.

dbp print debug information

void dbp(Q);

Writes directly on to stdout information in ASCII about the state
of the buffer. It is intended for debugging and nothing is specified
about the form of the output. It is considered part of the protected
interface because information it prints can only be understood in
relation to that interface, but it is a public function so that it can
be called anywhere during debugging.

|§bump increment gptr

void gbump(int n);

Increments gptr by n, which may be positive or negative. No checks
are made on whether the new value of gptr is in bounds.

The Paralle] C++ Stream Library 137

pbump increment pptr]

void pbump(int n);

Increments pptr by n, which may be positive or negative. No checks
are made on whether the new value of pptr is in bounds.

Fmbuff ered buffering state

int unbuffered();
void unbuffered(int i);

A streambuf includes a private variable which holds the streambuf’s
buffering state. The call unbuffered(i) sets the value of this vari-
able to i. The call unbuffered() returns the current value. This
state is independent of the actual allocation of a reserve area. Its
primary purpose is to control whether a reserve area is allocated
automatically by allocate.

6.7.3.3 Virtual Member Functions

Virtual functions may be redefined in derived classes to specialize
the behaviour of streambufs. This section describes the behaviour
that these virtual functions should have in any derived classes; the
next section describes the behaviour that these functions are defined
to have in base class streambuf. ’

Fioallocate . perform allocation

int doallocate();

This function is called when allocate determines that space is

138 Chapter 6

needed. It is required to call setb to provide a reserve area or to
return EOF if it cannot. It is only called if unbuffered is zero and
base is zero.

Ioverflow consume characters

int overflow(int c);

This function is called to consume characters, that is, to send them
to their ultimate sink, for example, a file. If c is not EOF, overflow
also must either save ¢ or consume it. Usually it is called when
the put area is full and an attempt is being made to store a new
character, but it can be called at other times. The normal action
is to consume the characters between pbase and pptr, call setp to
establish a new put area, and if c is not EOF store it (using sputc).
This function should return EOF to indicate an error; otherwise it
should return something else.

r pbackfail handle putback failure

int pbackfail(int c);

This is called when eback equals gptr and an attempt has been
made to putback c. If this situation can be dealt with (e.g., by
repositioning an external file), ppbackfail should return c; otherwise
it should return EOF.

seekoff position by offset]

streampos seekoff(streamoff off, ios::seek_dir dir,
int mode);

The Parallel C++ Stream Library 139

Repositions the get and/or put pointers (i.e., the abstract get and
put pointers, not pptr and gptr). The meanings of off and dir are
discussed in section 6.7.2. The mode parameter specifies whether the
put pointer (ios::out bit set) or the get pointer (ios::in bit set)
is to be modified. Both bits may be set in which case both pointers
should be affected. A class derived from streambuf is not required
to support repositioning.

The function should return EOF if the class does not support repo-
sitioning. If the class does support repositioning, seekoff should
return the new position or EOF on error.

seekpos position

streampos seekpos(streampos pos, int mode);

Repositions the streambuf get and/or put pointer to pos. The
mode parameter specifies which pointers are affected, as for seekoff.
Returns EOF if the class does not support repositioning or an error
occurs; otherwise, returns the value of the pos parameter.

setbuf establish reserve area

streambuf* setbuf(char* ptr, int len);
streambufs setbuf(unaigned chars ptr, int len);

Offers the array at ptr with len bytes to be used as a reserve area.
The normal interpretation is that if ptr or len are zero then this
is a request to make the streambuf unbuffered. The derived class
may use this area or not as it chooses. It may accept or ignore
the request for unbuffered state as it chooses. The function should
return a pointer to the streambuf if it honours the request; otherwise
it should return 0.

140 Chapter 6

sync synchronise streambufJ

int syncQ);

This function is called to give the derived class a chance to look
at the state of the areas, and synchronise them with any external
representation. Normally sync should consume any characters that
have been stored into the put area, and if possible give back to the
source any characters in the get area that have not been fetched.
When sync returns there should not be any unconsumed characters,
and the get area should be empty. It should return EOF if some kind
of failure occurs.

Iunderf low supply characters

int underflow();

This is called to supply characters for fetching, i.e., to create a con-
dition in which the get area is not empty. These characters would
be obtained from the ultimate source; for example, a file. If it is
called when there are characters in the get area it should return the
first character. If the get area is empty, it should create a nonempty
get area and return the next character (which it should also leave in
the get area). If there are no more characters available, underflow
should return EOF and leave an empty get area.

6.7.3.4 Default Definitions of the Virtual Functions

This section describes the behaviour of the versions of the virtual
functions which are actually members of streambuf. These are the
ones used, for example, by the core stream classes, istream, ostream
and iostream.

The Parallel C++ Stream Library 141

streambuf : :doallocate perform allocation

int doallocate();

Attempts to allocate a reserve area using the operator new.

|strea.mbuf: :overflow consume characters|

int overflow(int c);

Its behaviour is compatible with the old stream package, but that
behaviour is not considered part of the specification of the cur-
rent stream package. Therefore, streambuf: :overflow should be
treated as if it had undefined behaviour, and should always be de-
fined in derived classes.

streambuf : :pbackfail handle putback failure

int pbackfail(int c);

Always returns EOF.

streambuf : : seekpos position]

streampos seekpos(streampos pos, int mode);

Returns seekoff (streamoff (pos),ios::beg, mode). Thus to de-
fine seeking in a derived class, it is frequently only necessary to define
seekoff and use the inherited streambuf: :seekpos.

142 Chapter 6

streambuf: :seekoff position by offset

streampos seekoff(streamoff off,ios::seek_dir dir,
int mode);

Always returns EOF; in other words, streambuf itself does not sup-
port positioning.

[streambuf: :setbuf establish reserved area|

streambuf* setbuf(chars ptr, int len);

Honours the request when there is no reserve area.

streambuf: :sync synchronise streambuf

int sync();

Returns 0 if the get area is empty and there are no unconsumed
characters. Otherwise it returns EOF.

streambuf: :underflow consume cha,racters—|

int underflow();

Its behaviour is compatible with the old stream package, but that
behaviour is not considered part of the specification of the cur-
rent stream package. Therefore, streambuf : :underflow should be
treated as if it had undefined behaviour, and should always be de-
fined in derived classes.

Appendix A

Distribution Kit

This appendix lists the files which are installed on the user’s hard
disk when the process described in chapter 1 is followed. Each file
name is accompanied by a short description of the file’s function.

Note that these files are those added to an existing Parallel C kit.
The files which are part of the Parallel C product are not listed.

A.1 Directory \tc2v2

cpp.b4 C++ preprocessor
cfront.b4 C++ front-end processor
t4cc.exe compiler driver for T4 mode
t8cc.exe compiler driver for T8 mode
libct4.bin iostream class library for T4
libct8.bin iostream class library for T8

complxt4.bin complex class library for T4
complxt8.bin complex class library for T8

t4cclink.bat linker batch file for T4
t8cclink.bat linker batch file for T8
td4cctask.bat batch file to link task for T4

144 Appendix A

t8cctask.bat batch file to link task for T8
t4ccstas.bat Dbatch file to link a stand-alone task for T4
t8ccstas.bat Dbatch file to link a stand-alone task for T8

A.2 Directory \tc2v2\cc

alt.h ascii.h assert.h
boot.h chan.h chanio.h
common.h ctype.h dos.h
errno.h float.h fstream
generic iomanip iostream
limits.h locale.h malloc.h
math.h memory.h net.h
nev.h osfcn.h ostream.h
par.h sema.h serv.h
setjmp.h signal.h stdarg.h
stddef.h stdio.h stdiostr.h
stdlib.h stream.h string.h
strstea.h thread.h time.h
timer.h varargs.h vector.h
values.h

A.3 Directory \tc2v2\examples

hello.cpp “Hello, world.” program

Appendix B

Summary of Option
Switches

This appendix lists the C++ option switches. Further information
can be found in section 4.2, in the subsections specified below for each
switch. For similar listings for the linker and server, see appendix D
of the Parallel C User Guide[6).

In the table below, the following notations are used to describe the
formats of the switches.

fn An MS-DOS filename. It may be omitted in whole or in
part; the compiler’s behaviour in this case is described
in section 4.2.

dir An MS-DOS filename, which will be assumed to refer
to a directory.

mac Any sequeice of characters which is acceptable to the
compiler as a macro name.

str Any sequence of characters which is acceptable to the
compiler as the value of a macro.

146 i Appendix B

n A decimal integer.

Switches and their arguments are not case sensitive, except as noted
in section 4.2.

/C 4.2.2 Check: do not generate object file.

/Dmac 4.2.6 Define mac with the value 1.

/Dmac=str 4.2.6 Define mac with the value str.

/FBfn 4.2.1 Put binary object output in fn.

/FOfn 4.2.1 Identical to /FB.

/GD 4.2.2 Perform all floating-point arithmetic in double
precision.

/1 4.2.7 Print the compiler’s identification.

/1dir 4.2.5 Add dir to the #include list.

/PCn 4.2.3 Set the number of bytes required for an extern
function call.

/PMn 4.2.3 Set the number of bytes required for a module
number.

/s 4.2.2 Perform floating arithmetic in single precision
(ignored).

/Umac 4.2.6 Undefine a predefined macro.

/W 4.2.7 Suppress most warnings.

/2D 4.2.4 Generate line number tables for decode and de-
bugger.

/21 4.2.4 Generate line number tables and debug tables

for variables.
/20 4.2.4 Generate old format diagnostic information.

Bibliography

[1] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 1986. ISBN 0-201-12078-X.

[2] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++
Reference Manual. Addison-Wesley, 1990.

[3] Al Stevens. Teach Yourself C++. MIS Press, 1990. ISBN 1-
55828-027-8.

[4] Stephen C. Dewhurst and Kathy T. Stark. Programming in
C++. Prentice-Hall, 1989. ISBN 0-13-723156-3.

[5] Brian W. Kernighan and Dennis M. Ritchie. The C Program-
ming Language, First Edition. Prentice-Hall, 1978. ISBN 0-13-
110163-3.

[6] Parallel C User Guide. 3L Ltd, 1991. Software version 2.2.2.

[7] Disk Operating System Version 3.10 Reference. International
Business Machines, February 1985.

[8] Microsoft MS-DOS User’s Reference. Microsoft Corporation,
1986. Document Number 410630013-320-R03-0686.

[9] Disk Operating System Version 3.00 Technical Reference. Inter-
national Business Machines, May 1984.

[10] Stand alone compiler implementation manual. Version 1.1,
Inmos Ltd., July 1987.

148) Bibliography

[11) TDS Compiler implementation manual. Version 1.0, Inmos Ltd.,
November 19, 1986.

Index

‘<’, see 1/0 redirection
>’, see 1/O redirection
‘)’, see 1/O redirection
‘Q’, see linker: and indirect files

.b4, see executable files, application

files
.bin, see object files, library files
.cpp, see source files
.dat, see linker: and indirect files
.1ib, see library files

/

/C, 36-37
/D, 41
/FB, 35-36
/F0, 35-36
/Gd, 37
/1, 41-43
/P, 38-39
/PC, 38
/PM, 39
/U, 42-43
/¥, 42
/4, 40
/Zi, 40
/Zo, 40

A

abs (complex), 53

afserver, 20
command-line parameters, 22
invoking, 20
switches, 21-22, 26-27

77"7\\\ For

=

Not
Sale

allocate (streambuf), 135
app (open mode), 110
application files, 30

arg (complex), 53

argc, 23

argv, 23

assignment, see operators: =
ate (open mode), 110
attach (filebuf), 114
attach (fstreanm), 111
autoexec.bat, 4-5

B
bad (ios), 74
badbit (error bit), 72
base (streambuf), 133
batch files
for linker, 14, 17, 28-29
for running, 21
beg(ios), 75
binary files, see object files
bitalloc (ios), 103
blen (streambuf), 136
buffering, see streamns: buflering
buffers, 60, 106
for file 1/0, 109

C

C, see mixed-language programs

c_exception, 48-49
complex_error, 49
constructor, 49

cerr, 65, 77-78

150

channels, 27
cin, 24, 65, 77
class library, 18
T4 and T8 versions, 18
classes, see under names of
individual classes
clear (ios), 73
clog, 65, 77-78
close (filebuf), 114
close (fstream), 112
compiler
and floating-point, 37
code gaps, 38
debug tables, 40
file defaults, 35
identifying, 42
invoking, 14, 33
module numbers, 39
object files, 35
options, 34
size of external call, 38
size of module numbers, 39
status code, 34
switch summary, 145
switches, 34
temporary files, 34
complex, 46, 50-57
abs, 53
arg, 53
conj, 54
cos, 56
cosh, 57
exp, 55
imag, 54
log, 55
norm, 53
polar, 54
pow, 56
real, 54
8in, 56
sinh, 57
aqrt, 56
constructor, 46
operator != 51
operator *=, 52

Index

operator *, 50
operator +=, 52
operator +, 50
operator -=, 52
operator -, 50
operator /=, 53
operator /, 51
operator ==, 5]
complex mathematics library, 45
and linking, 45
error handling, 46-49
T4 and T8 versions, 45
see also complex,
complex.h, 45, 47-48
complex_error (c_exception), 49
counfigurers, 27, 30
conj (complex), 54
constructors
for c_exception, 49
for complex, 46
for filebut, 109
for fatream, 108
for ios, 70-71
for istream, 68
for istream_vithasaign, 68
for iatrstream, 118
for ostreanm, 69
for ostream_withasaign, 69
for ostrstream, 118
for stdiobuf, 124
for streambuf, 126
for strastream, 119
for strstreambuf, 119-121
conventions
filename extensions, 14-19
of stream library, 59
of this manual, xi
cos (complex), 56
cosh (complex), 57
cout, 24, 65, 77-78
crtlt4.bin, 18
crtlt8.bin, 18
cur(ios), 76

Index

D

dbp (streambuf), 136

dec (formatting flag), 88

dec manipulator, 100

decode, 40

delete operator
interlocking, 30

distribution kit
contents, 143
installing, 3
testing, 7

doallocate (streambuf)
default, 141
virtual, 137

DOS, see MS-DOS

E

eback (streambuf), 133
ebuf (streambuf), 133
egptr (streambuf), 133
end(ios), 76
endl manipulator, 101
ends manipulator, 101
environmental variables
TMP, 34
eof (ios), 73
eofbit (error bit), 72
epptr (streambuf), 133
error bits
badbit, 72
eofbit, 72
failbit, 72
goodbit, 72
errors
bizarre, 8, 21, 26, 30
in complex mathematics library,
46-49
in stream library, 60
in stream operations, 72-74, 79
patch over valid code, 38-39
program hangs, 26
unsynchronised library access,
30
executable files, 14

151

as MS-DOS commands, 22
created by linker, 17
running with afserver, 20
execution, see running '
exp (complex), 55
extraction, see streams: formatted
input, streams:
unformatted input

F
fail (ios), 73
failbit (error bit), 72
£d (filebuf), 114
file descriptors, 107
FILE structures and stream 1/O,
63-64, 77, 123-124
buffering, 124
positioning, 124
tilebut, 62, 106
filebuf, 107
filebuf, 109, 112-116
attach, 114
close, 114
fd, 114
is_open, 114
open, 113
seekoff, 112, 115
seekpos, 112, 115
setbuf, 116
sync, 116
constructor, 109
files and stream 1/0, 62-63, 106-116
buffering, 107, 109, 113, 116
classes, 106
closing a file, 112
closing files, 114
opening files, 108, 110, 113
positioning, 107, 112, 115
protection mode disregarded,
107
putback, 107
£i11 (ios), 93
fill character, see under streams
filters, see 1/O redirection
fixed (formatting flag), 89

152

flags (ios), 90-91
floating-point

constants, 37

evaluation of expressions, 37
flood-filled applications, 27
flush (ostreanm), 85
flush manipulator, 101
formatting flags, 87-92, 102-103

dec, 88

fixed, 89

hex, 88

internal, 88

left, 88

oct, 88

right, 88

scientific, 89

showbase, 89

showpoint, 89

showpos, 89

skipus, 78, 88

stdio, 84, 90

unitbuf, 77, 84, 90

uppercase, 89

user defined, 103-104
freeze (stratreambuf), 122
fstreanm, 63, 106, 108, 110-113

attach, 111

close, 112

open, 110

rdbuf, 112

seekg, 112

seekp, 112

setbuf, 113

tellg, 112

tellp, 112

constructor, 108
fstream.h, 66

G

gbunmp (streambuf), 136

geount (istreanm), 81-82

get (istream), 79-80

get poiuter, see pointers, get and put
getline (istrean), 80

good (ios), 73

Index

goodbit (error bit), 72
gptr (streambuf), 134

H

hardwaré
assumptions, ix
target, ix
troubleshooting, 8
harness
standard, 18
T4 and T8 versions, 18
task, 28-29
header files, 65
see also names of individual
header files,
heap storage, see under memory
hex (formatting flag), 88
hex manipulator, 100

I

I/0 redirection, 24
ifstreanm, 62, 106
ignore (istreanm), 81
imag (complex), 54
in (open mode), 111
in_avail (streambuf), 127
#include
controlling, 41
directory search, 43
indirect files, see under linker
init (ios), 70
insertion, see streams: formatted
output, streams:
unformatted output
installation
directory, 4
instore formatting, see memory and
stream I/O
internal (formatting flag), 88
iomanip.h, 66
ios, 61, 65, T0-74, 76-78, 90-94,
103-104
bad, 74
bitalloc, 103

Index

clear, 73

eof, 73

fail, 73

£ill, 93

flags, 90-91

good, 73

init, 70

iword, 104

precision, 94

pvord, 104

rdbuf, 76

rdstate, 72

setf, 91

sync_with_stdio, 76

tie, 65, 77-78

unsetf, 92

width, 92-93

xalloc, 104

constructor, 70-71

initialisation of, 70

operator !, 74

operator =, 71

operator void =, 74

use as virtual base class, 70
iostream, 62
iostream.h, 59, 65, 67
Iostream_init, 64
iostream_withassign, 62
ipfx (istreanm), 78, 83, 94
is_open (filebuf), 114
istreanm, 61, 68, 78-83, 94

gcount, 81-82

get, 79-80

getline, 80

ignore, 81

ipfx, 78, 83, 94

peek, 83

putback, 83

read, 81

seekg, 81-82

sync, 83

tellg, 82

constructor, 68

operator >>, 94
istream_withassign, 62, 68

153

constructor, 68
operator =, 68
istrstream, 63, 117-118, 121
rdbuf, 121
constructor, 118
ivord (ios), 104

L

left (formatting flag), 88

libct4.bin, 18

libct8.bin, 18

library files, 18
changing, 19
creating, 19

linker, 14-16, 18
and indirect files, 16, 19
and patching gaps, 38-39
batch files for, 14, 17, 28-29
building a task, 28
creating library files, 18
invoking, 17
libraries, see library files
more than one object file, 15
patch over valid code, 38
simple programs, 14
supports only 1MB or 2MB, 27
switches, 19

linkt, 17

log (complex), 55

M

macros
defining, 41
predefined, 41-43
main, 23
manipulators, 96, 99-106
dec, 100
endl, 101
ends, 101
flush, 101
hex, 100
oct, 100
resetiosflags, 103
setfill, 102

154

setiosflags, 102
setprecision, 102
setw, 102
ws, 100
parameterised, 101-106
simple, 99-101
user-written, 104-106
memory, 25
code storage, 25
external, 25, 27
heap storage, 25
limits imposed by linker, 27
on-chip, 22, 25-26
physical, 25
run-time library requirements,
25
speed of, 26-27
stack, 25
static storage, 25
storage areas, 25
memory and stream 1/0O, 63,
116-119, 121-123
classes, 117
dynamic mode, 117-120
positioning, 118-119
mempatch, 27
mixed-language programs, 63, 76, 84,
123
MS-DOS, x, 27
filters, see 1/O redirection, 24
search path, 4-5
versus PC-DOS, x
multiplexer, 27

N

newv operator

interlocking, 30
nocreate (open mode), 111
noreplace (open mode), 111
norm (complex), 53

o

object files, 14, 17-18, 35
format of, 17

Index

oct (formatting flag), 88
oct manipulator, 100
ofstreanm, 62, 106
on-chip memory, see memory:
. on-chip
open (filebuf), 113
open (fstreanm), 110
open modes
app, 110
ate, 110
inm, 111
nocreate, 111
noreplace, 111
out, 111
trunc, 111
open_mode, 110
operators
t= (complex), 51
! (ios), T4
»= (complex), 52
* (complex), 50
+= (complex), 52
+ (complex), 50
-= (complex), 52
- (complex), 50
/= (complex), 53
/ (complex), 51
<< (ostrean), 97
== (complex), 51
= (io8), 71
= (istream_vithassign), 68
= (ostream_withassign), 69
>> (istream), 94
void # (ios), 74
opfx (ostream), 84
options, see compiler: switches
osfx (ostream), 84, 90
ostrean, 62, 69, 84-86, 90, 97
flush, 85
opfx, 84
osfx, 84, 90
put, 85
seekp, 86
tellp, 86
write, 85

Index

constructor, 69

operator <<, 97
ostream_withassign, 62, 69

constructor, 69

operator =, 69
strstreanm, 63
ostrstream, 117-118, 121-122

pcount, 122

rdbuf, 121

str, 121

constructor, 118
out (open mode), 111
out_waiting (streambuf), 127
overflov (streambuf)

default, 141

virtual, 138

P
par_sema, 30
pbackfail (streambuf)
default, 141
virtual, 138
pbase (streambuf), 134
pbump (streambuf), 137
PC-DOS, see MS-DOS
pcount (ostrstream), 122
peek (istream), 83
performance, 63, 65, 77, 90, 123
pipes, see 1/O redirection
pointers, get and put, 125, 132-135
polar (complex), 54
pov (complex), 56
pptr (streambuf), 134
precision (ios), 94
precision variable, see under streams
predefined streams, 64, 77
assignments to, 67
cannot be positioned, 81
initialising, 64
see also cin, cout, cery, clog,
prefix functions, see ipfx, opfx
processor farms, 27
processor type
and complex mathematics
library, 45

155

class libraries for, 18
compiling for, 14
differing on-chip memory, 25
harnesses for, 18
linking for, 15, 17
run-time libraries for, 18
put (ostream), 85
put pointer, see pointers, get and put
putback (istream), 83
pword (ios), 104

R

rdbuf (fstream), 112
rdbuf (ios), 76
rdbuf (istrstream), 121
rdbuf (ostrstream), 121
rdbuf (strstream), 121
rdstate (ios), 72
read (istream), 81
real (complex), 54
redirection, see I/O redirection
reserve area, 107, 109, 113, 116,
126-127, 129, 132, 136-137
resetiosflags manipulator, 103
right (formatting flag), 88
run-time library, 14, 18
and afserver, 20
memory requirements, 25
stand-alone, 29
synchronising access to, 30
T4 and T8 versions, 18
running, 20-24
off-chip stack, 26
on-chip stack, 26

S

sbumpc (streambuf), 127
acientific (formatting flag), 89
search path, see under MS-DOS
seek_dir, 75

seekg (fstream), 112

seekg (istream), 81-82

seekoff (filebuf), 112, 115
seekoff (streambuf), 75, 128

156

default, 142
virtual, 138
seekp (fstream), 112
seekp (ostreanm), 86
seekpos (filebuf), 112, 115
seekpos (streambuf), 75, 128
default, 141
virtual, 139
semaphores, 27, 30
server, see afserver
setb (streambuf), 135
setbuf (filebuf), 116
setbuf (fstream), 113
setbuf (streambuf), 129
default, 142
virtual, 139
setf (ios), 91
setfill manipulator, 102
setg (s8treambuf), 135
setiosflags manipulator, 102
setp (streambuf), 135
setpos (strstreambuf), 123
setprecision manipulator, 102
setw manipulator, 102
sgetc (streambuf), 129
sgetn (streambuf), 129
showbase (formatting flag), 89
showpoint (formatting flag), 89
showpos (formatting flag), 89
sin (complex), 56
sinh (complex), 57
skipws (formatting flag), 78, 88
snextc (streambuf), 130
source files, 13
default extension, 14
sputbackc (streambuf), 130
sputc (streambuf), 130
sputn (streambuf), 131
sqrt (complex), 56
stack storage, see under memory
stand-alone library, see run-time
library: stand-alone
standard input, 24
standard output, 24
static storage, see under memory

Index

stderr, 65, 77, 84
stdin, 65, 77
stdio (formatting flag), 84, 90
stdiobuf, 64, 77, 124
stdiofile, 124
constructor, 124
stdiofile (stdiobuf), 124
stdiostreanm, 64
stdiostrean.h, 66
stdout, 65, 77, 84
storage, see memory
stossc (streambuf), 131
str (ostrstream), 121
str (strstreanm), 121
str (strstreambuf), 123
stream library, 59
base classes, 61, 70
buffers, 60
core classes, 61-62
error handling, 60, 72-74, 79
formatted 1/0, 87-106
initialising, 64
manipulators, see manipulators
not available in stand-alone
tasks, 29
older version, 59, 67
operations on arrays, 63,
116-119, 121-123
operations on files, 62-63,
106-116
streams, 60
synchronising access to, 30
unformatted 1/0, 71-86
see also streams, buffers,
stream.h, 66
streanbuf, 61, 75, 85, 124-142
allocate, 135
base, 133
blen, 136
dbp, 136
eback, 133
ebuf, 133
egptr, 133
epptr, 133
gbump, 136

Index

gptr, 134

in_avail, 127

out_waiting, 127

pbase, 134

pbump, 137

pptr, 134

sbumpc, 127

seekoff, 75, 128

seekpos, 75, 128

setb, 135

setbuf, 129

setg, 135

setp, 135

sgetc, 129

sgetn, 129

snextc, 130

sputbackc, 130

sputc, 130

sputn, 131

stossc, 131

sync, 85, 131

unbuffered, 137

doallocate (default), 141

doallocate (virtual), 137

overflow (default), 141

overflow (virtual), 138

pbackfail (default), 141

pbackfail (virtual), 138

seekoff (default), 142

seekoff (virtual), 138

seekpos (default), 141

seekpos (virtual), 139

setbuf (default), 142

setbuf (virtual), 139

sync (default), 142

sync (virtual), 140

underflow (default), 142

underflow (virtual), 140

constructor, 126

default virtual members,

140-142

protected interface, 131-142

public interface, 126-131

virtual members, 137-140
streamoff, 76

157

streampos, 76
streams, GO
backing up, 83
buffering, 65, 77, 84, 90
conversion base, 88-89, 95, 100
copying prohibited, 67
end-of-file, 72-73, 83
error state, 72-74, 79
files, see files and stream 1/O
fill character, 93, 102
formatted input, 94-96
formatted output, 97-98
formatting flags, see formatting
flags
formatting state, 87-94
looking ahead, 83
manipulators, see manipulators
operators for, 67, 74
positioning, 75-76, 81-82, 86
precision variable, 93-94, 102
predefined, see predefined
streams
tying, 65, 77-78
unformatted input, 79-81
unformatted output, 85
width variable, 92-93, 102
strstreanm, 117, 119, 121
rdbuf, 121
str, 121
constructor, 119
strstream.h, 66, 117
stratreambuf, 63, 117, 119-123
freeze, 122
setpos, 123
str, 123
constructor, 119-121
suffix function, see osfx
sync (filebuf), 116
sync (istreanm), 83 _
sync (streambuf), 85, 131
default, 142
virtual, 140
sync_vith_stdio (ies), 76

158 Index

T w

t4cc, 33 whitespace, 78, 100

t4cclink, 15 width (ios), 92-93

t4ccstask, 29 width variable, see under streams
t4cctask, 28 workspace, see memory: stack
t4harn.bin, 18 write (ostreanm), 85

t8cc, 33 ws manipulator, 100

t8cclink, 15

t8ccstask, 29 X

t8cctask, 29
t8harn.bin, 18
tasks

building with linker, 28

stand-alone, 28-29
Tbug, 40
TDS, 5
tellg (fstream), 112
tellg (istrean), 82
tellp (fstream), 112
tellp (ostream), 86
temporary files, 34
threads, 27, 30
tie (ios), 65, 77-78
transputer

error flag, 21

links, 27

timers, 27

see also processor Lype,
trunc (open mode), 111
tying, see streams: tying

xalloc (ios), 104

U

unbuffered (streambuf), 137
underflow (streambuf)

default, 142

virtual, 140
unitbuf (formatting flag), 77, 84, 90
unsetf (ios), 92
uppercase (formatting flag), 89

VvV

variables
stack, 25
static, 25

	Contents
	Introduction
	Intended Audience
	Hardware Assumptions
	Document Structure
	Further Reading
	Conventions

	Part I - Getting Started
	1 Installing the Compiler
	1.1 Installing the Software
	1.2 The Search Path

	2 Confidence Testing
	Part II - Tutorial
	3 Developing C++ Programs
	3.1 Compiling
	3.2 Linking
	3.2.1 Linking More than One Object File
	3.2.2 Indirect Files
	3.2.3 Calling the Linker Directly
	3.2.4 Libraries

	3.3 Running
	3.3.1 Using C++ Programs as MS-DOS Commands
	3.3.2 Command-Line Arguments
	3.3.3 I/O Redirection and Piping

	3.4 Memory Use
	3.4.1 Default Memory Mapping
	3.4.2 Alternative Memory Mapping
	3.4.3 Limit on Program Memory

	3.5 Parallel Programming
	3.5.1 Building Parallel Programs
	3.5.2 Synchronising Access to the Libraries

	Part III - Reference
	4 C++ Compiler Reference
	4.1 Running the Compiler
	4.2 Compiler Switches
	4.2.1 Controlling the Object File
	4.2.2 Controlling Object Code
	4.2.3 Controlling Code Patch Sizes
	4.2.4 Controlling Debugging
	4.2.5 Controlling #include Processing
	4.2.6 Macro Definitions
	4.2.7 Information from the Compiler

	4.3 Predefined Macros
	4.4 Handling of #include Files

	5 The C++ Complex Mathematics Library
	5.1 Introduction to the complex class
	5.1.1 The complex Class

	5.2 Error Handling
	5.2.1 Default Error Handling
	5.2.2 Trapping Errors

	5.3 Operators
	5.4 Cartesian/Polar Functions
	5.5 Mathematical Functions
	5.6 Trigonometric and Hyperbolic Functions

	6 The Parallel C++ Stream Library
	6.1 Introduction
	6.1.1 Buffers and Streams
	6.1.2 Classes
	6.1.3 Predefined Streams
	6.1.4 Header Files

	6.2 Stream Input and Output
	6.2.1 Constructors and Assignment
	6.2.2 Input and Output
	6.2.3 Input
	6.2.4 Output

	6.3 Formatted Input and Output
	6.3.1 The Formatting State
	6.3.2 Extraction: The >> Operator
	6.3.3 Insertion: The << Operator
	6.3.4 Manipulators
	6.3.5 User Extensions

	6.4 Operations on Files
	6.4.1 Constructors
	6.4.2 Stream Operations
	6.4.3 Buffer Operations

	6.5 In-Store Operations
	6.5.1 Constructors
	6.5.2 Stream Operations
	6.5.3 Buffer Operations

	6.6 Operations on FILE Structures
	6.6.1 Constructor
	6.6.2 Other Members

	6.7 Interfaces to streambuf
	6.7.1 Constructors
	6.7.2 The Public Interface
	6.7.3 The Protected Interface

	Appendices
	A Distribution Kit
	A.1 Directory \tc2v2
	A.2 Directory \tc2v2\cc
	A.3 Directory \tc2v2\examples

	B Summary of Option Switches
	Bibliography
	Index

