
occam2
toolset
user manual - part 2

(occam libraries and appendices)

INMOS Limited

72 TDS 276 02 March 1991

Copyright © INMOS Limited 1991

e ,Ilnmos , IMS and occam are trademarks of INMOS Limited.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TDS 276 02

Contents overview
Contents

Preface

Libraries

The occam
libraries

Appendices

Describes the library procedures and func­
tions supplied with the toolset.

A Names defined by Lists all names and identifiers used within the
the software toolset.

B Transputer Lists full and restricted sets of transputer in-
instructions structions supported by the occam 2 toolset.

C Constants Lists files of constants supplied with the
toolset.

D Implementation of Describes how the compiler allocates memory
occam on the and gives details of type mapping, hardware

transputer dependencies and language.

E Configuration Defines the syntax of the occam 2 configu-
language ration language.

description

F Bootstrap loaders Describes bootstrap loaders and lists the
standard INMOS scheme.

G ITERM Describes the format of ITERM terminal sup-
port files.

H Host file server Describes the protocol of the host file server
protocol and lists the server functions.

I Glossary A glossary of terms.

J Bibliography Literature and documentation for further read-
ing.

The Index

72 TDS 276 02 March 1991

ii

72 TDS 276 02

Contents overview

March 1991

Contents
Contents overview

Contents iii

Preface ix

Libraries

1 The occam libraries 3
1.1 Introduction 3

1.1.1 Using the occam libraries 4
Linking libraries 4

1.1.2 Listing library contents 4
1.1.3 Toolset constants 4

1.2 Compiler libraries 5
1.2.1 User functions and procedures 6

Maths functions 8
20 block moves 11
Bit manipulation functions 12
Supplementary arithmetic support functions 13
Dynamic code loading support procedures 15
Transputer error flag manipulation 17
Rescheduling priority process queue 18

1.3 Maths libraries 19
1.3.1 Introduction 19

Inputs 20
Outputs 20
Accuracy 21
Symmetry 23
The Function .Specifications 23

1.3.2 Single length and double length elementary func-
tion libraries 25

1.3.3 IMS T400, T414 and T425 elementary function
library 48

1.4 Host file server library 70
1.4.1 Errors and the C run time library 70
1.4.2 Inputting real numbers 70
1.4.3 Procedure descriptions 71
1.4.4 File access routines 71

72 TDS 276 02 March 1991

iv Contents

Procedure definitions 73
1.4.5 General host access 82

Procedure definitions 83
1.4.6 Keyboard Input 89

Procedure definitions 90
1.4.7 Screen output 94

Procedure definitions 94
1.4.8 File output 97

Procedure definitions 99
1.4.9 Miscellaneous commands 102

Time processing 103
Buffers and mUltlplexors 105

1.5 Streamio library 108
1.5.1 Naming conventions 109
1.5.2 Stream processes 109

Procedure definitions 110
1.5.3 Stream input 116

Procedure definitions 116
1.5.4 Stream output 118

Procedure definitions 119
1.6 String handling library 124

1.6.1 Character identification 126 e1.6.2 String comparison 127
1.6.3 String searching 128
1.6.4 String editing 128
1.6.5 Line parsing 132

1.7 Type conversion library 133
1.7.1 Procedure definitions 135

1.8 Block CRC library 141
1.8.1 Function definitions 141

1.9 Extraordinary link handling library 142
1.9.1 Procedure definitions 142

1.10 Debugging support library 145
1.10.1 Procedure definitions 145

1.11 Mixed languages support library 147
1.11.1 Procedure definitions 1'47

1.12 DOS specific hostlo library 149
1.12.1 Procedure definitions 150

Appendices 155

A Names defined by the software 157

72 TDS 276 02 March 1991

Contents v

8 Transputer instruction set support 169
8.1 Pseudo-instructions 169
8.2 Prefixing instructions 170
8.3 Direct instructions 171
8.4 Operations 172

8.4.1 Short indirect Instructions 172
8.4.2 Long indirect instructions 172

8.5 Additional instructions for the T400, T414, T425 and T8 174
8.6 Additional instructions for the IMS T800, T801 and T805174

8.6.1 Floating-point instructions 174
8.7 Additional instructions for the IMS T225, T400, T425,

T800, T801 and T805 176
8.8 Additional instructions for the IMS T225, T400, 1425,

T801 and T805 177
8.9 Differences between ASM and GUY 177

C

o

Constants
C.1 Hostio constants
C.2 Streamio constants
C.3 Maths constants
C.4 Transputer link addresses
C.5 Rates of the transputer clocks
C.6 DOS specific constants

Implementation of occam on the transputer
0.1 Memory allocation by the compiler

0.1.1 Procedure code
0.1.2 Compilation modules
0.1.3 Workspace

0.2 Type mapping
0.3 Hardware dependencies
0.4 Language
0.5 Summary of implementation restrictions
0.6 Syntax of language extensions

0.6.1 ASM statement
0.6.2 PLACE statements
0.6.3 INLINE statement
0.6.4 *1 or *L character

179
179
183
184
185
185
186

187
187
187
188
189
191
192
193
196
198
199
200
200
201

72 TDS 276 02 March 1991

vi Contents

E Configuration language definition 203
E.1 New types and specifications 203
E.2 Software description 204
E.3 Hardware description 204 le
E.4 Mapping structure 206
E.5 Constraints 207
E.6 Changes from the IMS 0705/0605/0505 products 208

F Bootstrap loaders 209
F.1 Introduction 209

F.1.1 The example bootstrap 209
Transfer of control 210

F.1.2 Writing bootstrap loaders 210
F.2 Example user bootstrap 211
F.3 The INMOS Network Loader 216

G ITERM 221
G.1 Introduction 221
G.2 The structure of an ITERM file 221
G.3 The host definitions 222

G.3.1 ITERM version 222
G.3.2 Screen size 222 eG.4 The screen definitions 222
G.4.1 Goto X V processing 223

G.5 The keyboard definitions 224
G.6 Setting up the ITERM environment variable 225
G.7 An example ITERM 226

H Host file server protocol 229
H.1 The host file server· iserver 229
H.2 The server protocol 229

H.2.1 Packet size 229
H.2.2 Protocol operation 230

H.3 The server libraries 230
H.3.1 Problems with packet size 231

H.4 Porting the server 232
H.5 Defined protocol 232

H.5.1 Reserved values 232
H.5.2 File commands 233
H.5.3 Host commands 241 eH.5.4 Server commands 243

72 TDS 276 02 March 1991

Contents

Glossary

vii

247

J Bibliography
J.1 INMOS publications
J.2 INMOS techrtlcal notes
J.3 References

253
253
254
254

72 TDS 276 02 March 1991

viii

72 TDS 276 02

Contents

March 1991

Preface
The 'occam 2 toolset user manual is a combined user and reference guide to
the occam 2 toolset.

Part 2 'occam libraries and appendices' (this book) provides a detailed descrip­
tion of all the libraries supplied with the toolset. Technical reference data is given
in the appendices at the end of this book which also includes a glossary of terms
and a short bibliography.

A description of the toolset and how it is used to develop and run transputer
programs is given in Part 1 'User guide and tools' (72 TDS 275 02).

References which span the two parts, take the form of a part number followed
by a chapter or section number. Each part contains its own index.

This manual does not contain details of how to install the software, which is to
be found in the Delivery Manual that accompanies the shipment.

Host versions

The manual is designed to cover all host versions of the toolset:

IMS D7205 - IBM and NEC PC running MS-DOS.
IMS D5205 - Sun 3 systems running SunOS
IMS D4205 - Sun 4 systems running SunOS
IMS D6205 - VAX systems running VMS

72 TDS 276 02 March 1991

x

Conventions used in the manual

Preface

Convention Description

Italics Used in command line syntax to denote parameters for which _
values must be supplied. Also used for book titles and for •
emphasis.

Bold Used for new terms, pin signals, and the text of error mes­
sages.

Teletype Used for listings of program examples and to denote user
input and terminal output.

IKEYI Used to denote function keys for the debugger and simulator
tools. Keyboard layouts for specific terminals can be found in
the Delivery Manual that accompanies the shipment.

o Used to indicate the continuation of a function key description.

Braces Used to denote lists of items in command line syntax.

{ }

Brackets

[]

Used to denote optional items in command line syntax.

Option prefix Examples of command line input are duplicated to show both
option prefix characters. Use the line containing the'I' char­
acter if you have an MS-DOS or VMS based system and the
line containing the '-' character if you are using any other host
including UNIX.

72 TDS 276 02 March 1991

Libraries

72 TDS 276 02 March 1991

2

72 TDS 276 02

Libraries

March 1991

1 The occam libraries
1.1 Introduction

A comprehensive set of occam libraries is provided for use with the toolset.
They include the compiler libraries which are automatically referenced by the
compiler, and a number of user libraries to assist with common programming
tasks.

The user libraries provide standard mathematical functions, host i/o and file man­
agement procedures, file stream i/o support, and many other functions. A full list
of all the toolset libraries with brief descriptions of their contents can be found in
table 1.1.

Library Description

Multiple length integer arithmetic
Floating point functions

Compiler 32 bit IEEE arithmetic functions
Libraries 64 bit IEEE arithmetic functions

2D block move library
Bit manipulation and CRClibrary
Arithmetic instruction library

snglmath.lib Single length mathematical functions
dblmath.lib Double length mathematical functions
tbmaths.lib T4 series optimised maths functions
hostio.lib Host file server library
streamio.lib Stream i/o library
string. lib String library
eonvert.lib Type conversion library
ere. lib Block CRC library
xlink.lib Extraordinary link handling library
debug. lib Debugging support functions
ealle.lib Mixed languages support library
msdos.lib DOS specific hostio library

Table 1.1 Toolset libraries

72 TDS 276 02 March 1991

4 The occam libraries

1.1.1 Using the occam libraries

If a library routine is used in a program then the library must be declared with
the #USE directive and the declaration must be in scope where the routine is
used. The scope of a library, as with all occam declarations, is determined by
its level of indentation in the occam text.

An example. showing how to declare a library is given below.

#USE "hostio.lib"

Linking libraries

All libraries used by a program or program module must also be linked with
the main progam. This includes the compiler libraries even though they are
automatically referenced when the program is compiled.

1.1.2 Listing library contents

You can use the ilist tool to examine the contents of a library and determine
which routines are available. The tool displays procedural interfaces for routines
in each library module and the code size and workspace requirements for indi­
vidual modules. It can also be used to determine the transputer types and error
modes for which the code was compiled. (See chapter 20 for details of ilist).

1.1.3 Toolset constants

Constants and protocols used by the toolset libraries are defined in six include
files which are supplied with the toolset. Two of the six files provide constants
and definitions for the hostio and streamio libraries, a third provides mathematical
and trigonometric constants, the fourth contains the absolute transputer link ad­
dresses, the fifth contains the rates at which the two transputer clocks increment
on the transputer and the sixth provides constants to support the DOS specific
library routines. All files containing constant definitions must be declared in the
program before the library that references them.

Files of constants provided with the toolset are summarised in table 1.2. Full
listings of the files can be found in appendix C.

72 TDS 276 02 March 1991

1.2 Compiler libraries

File Description
hostio.inc Constants for the host file server interface
streamio.inc Constants for the stream i/o interfaces
mathvals.inc Maths constants
linkaddr.inc Addresses of transputer links
ticks.inc Rates of the two transputer clocks
msdos.inc DOS specific constants

Table 1.2 Files of constants

1.2 Compiler libraries

5

Compiler libraries are used internally by the compiler to implement multiple length
and floating point arithmetic, IEEE functions, and special transputer functions
such as bit manipulation and 2D block data moves. They are found automatically
by the compiler on the path specified by the ISEARCH host environment variable
and do not need to be referenced by the #USE directive.

The compiler library virtual . lib, is disabled (Le. automatic searching of the
library by the compiler can be suppressed) by using the compiler 'y' option. The
other compiler libraries are disabled by using the compiler 'E' option.

Separate libraries are supplied for the following processor types:

• T2 family

• TS·family

• 32-bit processors

All error modes are supported by each library.

A full list of the compiler libraries is given below:

File Processors
occam2.lib T2121T2221T225/M212
occama.lib T4001T4141T425ITAlTB
occam8.lib TSOOITS01ITS05
occamutl.lib All
virtual. lib All

The compiler library occamutl. lib contains routines which are called from
within some of the other compiler libraries and virtual. lib is used to support

72 TDS 276 02 March 1991

6 The occam libraries

interactive debugging. These two libraries support all processor types and error
modes.

File names of the compiler libraries must not be changed. The compiler as­
sumes these filenames, and generates an error if they are not found on the path
specified by the host environment variable I SEARCH.

Descriptions of some of the compiler library functions and procedures can be
found in the 'occam 2 Reference Manual'.

1.2.1 User functions and procedures

The following routines from the compiler libraries may be of interest to the ap­
plications programmer. Calls to these routines can be made directly and do
not have to reference the library in a #USE statement, provided the compiler 'E'
option is not used.

The functions are grouped as follows: maths functions, including some IEEE and
extended arithmetic routines; 2-D block moves; bit manipulation; functions for
cyclic redundancy checking (CRC) and supplementary arithmetic support func­
tions.

The procedures listed in this section are grouped as follows: dynamic code
loading support; rescheduling process priority queue and procedures to set the
transputer error flag.

It is worth noting the difference between the default occam behaviour of arith­
metic operations and the behaviour of the equivalent IEEE arithmetic functions.
The difference in the implementations concerns the treatment of NaNS ('Not a
Number') and Infs ('± infinity'). The default occam behaviour of arithmetic
operations is to cause an error if such quantities occur, whereas the IEEE func­
tions implement the ANSI/IEEE 754-1985 standard. The IEEE functions use of
infinities and NaNs to handle errors and overflows may be prefered in some in­
stances, in which case these functions must be explicitly called. For example if

72 TDS 276 02 March 1991

1.2 Compiler libraries

A, Band Care REAL32s:

A := B + C default occam behaviour.

7

A .- REAL320P(B, 0, C) IEEE function, round to
nearest only. The 0
indicates a '+'
operation.

A := IEEE320P(B, 1, 0, C) IEEE function with
rounding option. The
1 indicates round to
nearest. The 0
indicates a '+'
operation.

The IEEE floating point arithmetic functions are described in more detail in the
'occam 2 Reference Manua/'.

72 TDS 276 02 March 1991

8

Maths functions

The occam libraries

Result(s) Function Parameter specifiers

REAL32 ASS VAL REAL32 x

REAL32 SQRT VAL REAL32 x

REAL32 LOGB VAL REAL32 x

INT, FLOATING. UNPACK VAL REAL32 x
REAL32

REAL32 MINUSX VAL REAL32 x

REAL32 MULBY2 VAL REAL32 x

REAL32 DIVBY2 VAL REAL32 x

REAL32 FPINT VAL REAL32 x

BOOL ISNAN VAL REAL32 x

BOOL NOTFINITE VAL REAL32 x

REAL32 SCALEB VAL REAL32 x, VAL INT n

REAL32 COPYSIGN VAL REAL32 x, y

REAL32 NEXTAFTER VAL REAL32 x, y

BOOL ORDERED VAL REAL32 x, Y
SOOL, ARGUMENT.REDUCE VAL REAL32 x, y, y.err
INT32,
REAL32

REAL32 REAL320P VAL REAL32 x, VAL INT op,
VAL REAL32 Y

REAL32 REAL32REM VAL REAL32 x, Y
SOOL, IEEE320P VAL REAL32 x,
REAL32 VAL INT rm, op,

VAL REAL32 Y

SOOL, IEEE32REM VAL REAL32 x, Y
REAL32

SOOL REAL32EQ VAL REAL32 x, y

SOOL REAL32GT VAL REAL32 x, Y
INT IEEECOMPARE VAL REAL32 x, Y

72 TDS 276 02 March 1991

1.2 Compiler libraries 9

Result(s) Function Parameter speclfiers

REAL64 DABS VAL REAL64 x

REAL64 DSQRT VAL REAL64 x

REAL64 DLOGS VAL REAL64 x

INT, DFLOATING.UNPACK VAL REAL64 x
REAL64

REAL64 DMlNUSX VAL REAL64 x

REAL64 DMULBY2 VAL REAL64 x

REAL64 DDIVBY2 VAL REAL64 x

REAL64 DFPINT VAL REAL64 x

SOOL DISNAN VAL REAL64 x

SOOL DNOTFINITE VAL REAL64 x

REAL64 DSCALES VAL REAL64 x, VAL INT n

REAL64 DCOPYSIGN VAL REAL64 x, Y
REAL64 DNEXTAFTER VAL REAL64 x, Y
SOOL DOReERED VAL REAL64 x, Y
SOOL, DARGUMENT.REDUCE VAL REAL64 x, y, y.err
INT32,
REAL64

REAL64 REAL640P VAL REAL64 x, VAL INT op,
VAL REAL64 Y

REAL64 REAL64REM VAL REAL64 x, Y
SOOL, IEEE640P VAL REAL64 x,
REAL64 VAL INT rm, op,

VAL REAL64 Y

SOOL, IEEE64REM VAL REAL 64 x, Y
REAL64

BOOL REAL64EQ VAL REAL64 x, Y
BOOL REAL64GT VAL REAL64 x, Y
INT DIEEECOMPARE VAL REAL64 x, Y

72 TDS 276 02 March 1991

10 The occam libraries

Result(s) Function Parameter specifiers

INT LONGADD VAL INT left, right,
carry. in

INT LONGSUM VAL INT left, right,
carry. in

INT LONGSOB VAL INT left, right,
borrow. in

INT, INT LONGDIFF VAL INT left, right,
borrow. in

INT, INT LONGPROD VAL INT left, right,
carry. in

INT, INT LONGDIV VAL INT dividend.hi,
dividend. 10, divisor

INT, INT SHIFTRIGHT VAL INT hi. in, lo.in,
places

INT, INT SHIFTLEFT VAL INT hi.in, lo.in,
places

INT, INT, INT NORMALISE VAL INT hi.in, lo.in

INT ASHIFTRIGHT VAL INT argument, places

INT ASHIFTLEFT VAL INT argument, places

INT ROTATELEFT VAL INT argument, places

INT ROTATERIGHT VAL INT argument, places

SHIFTRIGHT and SHIFTLEFT return zeroes when the number of places to
shift is negative, or is greater than twice the transputer's word length. In this
case they may take a long time to execute.

ASHIFTRIGHT, ASHIFTLEFT, ROTATERIGHT and ROTATELEFT are all in­
valid when the number of places to shift is negative or exceeds the transputer's
word length.

72 TDS 276 02 March 1991

1.2 Compiler libraries

20 block moves

11

Procedure Parameter Specifiers

MOVE2D VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length

DRAW2D VAL [] [] BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length

CLIP2D VAL [] [] BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length

Procedure definitions

MOVE2D

PROC MOVE2D (VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

Moves a data block of size width by length starting at byte
Source [sy] [sx] to the block starting at Dest [dy] [dx].

DRAW2D

PROC DRAW2D (VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only non-zero bytes are transferred.

CLIP2D

PROC CLIP2D (VAL [] []BYTE Source,
VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only zero bytes are transferred.

72 TDS 276 02 March 1991

12

Bit manipulation functions

The occam libraries

Result Function Parameter Specifiers

INT BITCOUNT VAL INT Word, CountIn

INT BITREVNBITS VAL INT x, n

INT BITREVWORD VAL INT x

Function definitions

BITCOUNT

INT FUNCTION BITCOUNT (VAL INT Word, Count In)

Counts the number of bits set to 1 in Word, adds it to Countln, and
returns the total.

BITREVNBITS

INT FUNCTION BITREVNBITS (VAL INT x, n)

Returns an INT containing the n least significant bits of x in reverse
order. The upper bits are set to zero. The operation is invalid if n is
negative or greater than the number of bits in a word.

BITREVWORD

INT FUNCTION BITREVWORD (VAL INT x)

Returns an INT containing the bit reversal of x.

CRC functions

Result Function Parameter Specifiers

INT CRCWORD VAL INT data, CRCIn,
generator

INT CRCBYTE VAL INT data, CRCIn,
generator

72 TDS 276 02 March 1991

1.2 Complier libraries

Function descriptions

CRCWORD

INT FUNCTION CRCWORD (VAL INT data, CRCIn,
generator)

13

Performs a cyclic redundancy check over the single word data using
the CRC value obtained from the previous call. generator is the CRC
polynomial generator. Can be used iteratively on a sequence of words
to obtain the CRC.

CRCBYTE

INT FUNCTION CRCBYTE (VAL INT data, CRCIn,
generator)

As CRCWORD but performs the check over a single byte. The byte pro­
cessed is contained in the most significant byte of the word data.

For further information about CRC functions see' INMOS Technical note
26: Notes on graphics support and performance improvements on the
IMS TBOO'.

Supplementary arithmetic support functions

Result(s) Function Parameter specifiers

INT FRACMUL VAL "INT x, Y

INT, UNPACKSN VAL INT x
INT,
INT

INT ROUNDSN VAL INT Yexp, Yfrac,
Yquard

Function descriptions

FRACMUL

INT FUNCTION FRACMUL (VAL INT x, y)

Performs a fixed point multiplication of x and y, treating each as a binary
fraction in the range [-1, 1), and returning their product rounded to the
nearest available representation. The value of the fractions represented
by the arguments and result can be obtained by mUltiplying their INT
value by 2-31 (on a 32-bit processor) or 2- 15 (on a 16-bit processor).

72 TDS 276 02 March 1991

14 The occam libraries

The result can overflow if both x and y are -1.

This routine is compiled inline into a sequence of transputer instructions
on 32-bit processors, or as a call to a standard library routine for 16-bit
processors.

UNPACKSN

INT, INT, INT FUNCTION UNPACKSN (VAL INT x)

This returns three parameters; from left to right they are Xfrac, Xexp,
and Type. X is regarded as an IEEE single length real number (Le. a
RETYPED REAL32). The function unpacks X into Xexp, the (biased)
exponent, and Xfrac the fractional part, with implicit bit restored. It also
returns an integer defining the Type of X, ignoring the sign bit:

Type Reason

0 X is zero

1 X is a normalised or denormalised number

2 X is Inf

3 X is NaN

This routine is compiled inline into a sequence of transputer instructions
on 32-bit processors such as the INS T425, which do not have a floating
support unit, but do have special instructions for floating point operations.
For other 32-bit processors the function is compiled as a call to a standard
library routine. It is invalid on 16-bit processors, since Xfrac cannot fit
into an INT.

ROUNDSN

INT FUNCTION ROUNDSN (VAL INT Yexp, Yfrac,
Yguard)

This takes a possibly unnormalised fraction, guard word and exponent,
and returns the IEEE floating point value it represents. It takes care
of all the normalisation, post-normalisation, rounding and packing of the
result. The rounding mode used is round to nearest. The exponent
should already be biased.

The function normalises and post-normalises the number represented
by Yexp, Yfrac and Yguard into local variables Xexp, Xfrac, and
Xqaurd. It then packs the (biased) exponent Xexp and fraction Xfrac
into the result, rounding using the extra bits in Xquard. The sign bit is
set to O. If overfow occurs, Inf is returned.

72 TDS 276 02 March 1991

1.2 Compiler libraries 15

This routine is compiled inline into a sequence of transputer instructions
on 32-bit processors such as the IMS T425, which do not have a floating
support unit, but do have special instructions for floating point operations.
For other 32-bit processors the function is compiled as a call to a standard
library routine. It is invalid on 16-bit processors, since Xfrac cannot fit
into an INT.

Dynamic code loading support procedures

Procedure Parameter Specifiers

KERNEL.RUN VAL [] BYTE code,
VAL INT entry. offset,
[]INT workspace,

VAL INT
no.of.parameters

LOAD. INPUT. CHANNEL INT here,
CHAN OF ANY in

LOAD.INPUT.CHANNEL.VECTOR INT here,
[] CHAN OF ANY in

LOAD.OUTPUT.CHANNEL INT here,
CHAN OF ANY out

LOAD.OUTPUT.CHANNEL.VECTOR INT here,
[] CHAN OF ANY out

LOAD.BYTE.VECTOR INT here,
VAL [] BYTE bytes

Procedure definitions

KERNEL. RUN

PROC KERNEL. RUN (VAL [] BYTE code,
VAL INT entry.offset,
[]INT workspace,

VAL INT no.of.parameters)

The effect of this procedure is to call the procedure loaded in the code
buffer, starting execution at the location code [entry. offset] .

The code to be called must begin at a word-aligned address. To ensure
proper alignment either start the array at zero or realign the code on a
word boundary before passing it into the procedure.

72 TDS 276 02 March 1991

16 The occam libraries

The workspace buffer is used to hold the local data of the called pro­
cedure. The required size of this buffer and the code buffer must be
derived from information in the code file. I

The parameters passed to the called procedure should be placed at the
top of the workspace buffer by the calling procedure before the call of
KERNEL. RUN. The call to KERNEL. RUN returns when the called pro­
cedure terminates. If the called procedure requires a separate vector
space, then another buffer of the required size must be declared, and its
address placed as the last parameter at the top of workspace. As calls
of KERNEL. RUN are handled specially by the compiler it is necessary
for no •of •parameters to be a constant known at compile time and
to have a value ~ 3.

The workspace passed to KERNEL. RUN must be at least:

[ws.requirement + no.of.parameters + 2]INT

where ws • requirement is the size of workspace required, determined
when the called procedure was compiled, and stored in the code file and
no. of •parameters includes the vector space pointer if it is required.

The parameters must be loaded before the call of KERNEL. RUN. The
parameter corresponding to the first formal parameter of the procedure
should be in the word adjacent to the saved Iptr word, and the vector
space pointer or the last parameter should be adjacent to the top of
workspace where the Wptr word will be saved.

Note: code developed with the current toolset will not be able to call
code compiled by previous toolsets, if channel arrays are used.

LOAD.INPOT.CHANNEL

LOAD.INPOT.CHANNEL (INT here, CHAN OF ANY in)

The variable here is assigned the address of the input channel in.

LOAD.INPUT.CHANNEL.VECTOR

LOAD.INPOT.CHANNEL.VECTOR (INT here,
[] CHAN OF ANY in)

The variable here is assigned the address of the base element of the
channel array in (Le. the base of the array of pointers). Note this is a
change from the previous implementation of this procedure which used
to return the actual address of the input channel array.

72 TDS 276 02 March 1991

1.2 Compiler libraries

LOAD.OUTPUT.CHANNEL

LOAD.OUTPUT.CHANNEL (INT here, CHAN OF ANY out)

17

The variable here is assigned the address of the output channel out.

LOAD.OUTPUT.CHANNEL.VECTOR

LOAD.OUTPUT.CHANNEL.VECTOR (INT here,
[] CHAN OF ANY out)

The variable here is assigned the address of the base element of the
channel array out (Le. the base of the array of pointers). Note this is a
change from the previous implementation of this procedure which used
to return the actual address of the output channel array.

LOAD.BYTE.VECTOR

LOAD.BYTE.VECTOR (INT here, VAL []BYTE bytes)

The variable here is assigned the address of the byte array bytes.

Transputer error flag manipulation

Procedure Parameter Specifiers

CAUSEERROR ()

ASSERT VAL BOOL test

Procedure definitions

CAUSEERROR

CAUSEERROR ()

Inserts a seterr instruction into the program. If the program is in STOP
or UNIVERSAL mode it inserts a stopp instruction as well. The error is
then treated in exactly the same way as any other error would be treated
in the error mode in which the program is compiled. For example, in
HALT mode the whole processor will halt.

72 TDS 276 02 March 1991

18

ASSERT

PROC ASSERT (VAL BOOL test)

The occam libraries

At compile time the compiler will check the value of test and if it is
FALSE the compiler will give a compile time error; if it is TRUE, the
compiler does nothing. If test cannot be checked at compile-time then
the compiler will insert a run-time check to detect its status.

ASSERT is a useful routine for debugging purposes. Once a program is
working correctly the compiler option 'NA' can be used to prevent code
being generated to check for ASSERTS at run-time. If possible ASSERTs
will still be checked at compile time.

Rescheduling priority process queue

Procedure Parameter Speciflers

RESCHEDULE ()

Procedure definition

RESCHEDULE

RESCHEDULE ()

Inserts enough instructions into the program to cause the current process
to be moved to the end of the current priority scheduling queue, even if
the current process is a 'high priority' process.

72 TDS 276 02 March 1991

1.3 Maths libraries

1.3 Maths libraries

19

Elementary maths and trigonometric functions are provided in three libraries, as
follows:

Library Description

snqlmath.lib Single length library

dblmath.lib Double length library

tbmaths.lib TB optimised library

The single and double length libraries contain the same set of functions in single
and double length forms. By convention the double length forms begin with the
letter 'D'. Function names are in upper case.

The TB optimised library is a combined single and double length library con­
taining all the single and double length functions optimised for the T400, T414
and T425 processors. The standard maths libraries can also be used on the
T400, T414 and T425, but optimum performance on these processors can be
achieved by using the optimised functions.

The accuracy of the T400/T414/T425 optimised functions is similar to that of
the standard single length functions but results returned may not be identical
because different algorithms are used.

Functions in the optimised library have the same names as the equivalent func­
tions in the single and double length libraries. This means that the optimised
library cannot be used together with either the single or double length library on
the same processor. If the optimised library is used in code compiled for any
processor except a T400, T414 or T425, the compiler reports an error.

A set of constants for the maths libraries are provided in the include file
mathvals . inc, which is listed in appendix C.

1.3.1 Introduction

This, and the following subsections, contain .some notes on the presentation of
the elementary function libraries described in section 1.3.2, and the TB version
described in section 1.3.3.

These function subroutines have been written to be compatible with the ANSI
standard for binary floating-point arithmetic (ANSI-IEEE std 754-1985), as im­
plemented in occam. They are based on the algorithms in:
Cody, W. J., and Waite, W. M. [1980]. Software Manual for the Elementary
Functions. Prentice-Hall, New Jersey.

72 TDS 276 02 March 1991

20 The occam libraries

The only exceptions are the pseudo-random number generators, which are
based on algorithms in:
Knuth, D. E. [1981]. The Art of Computer Programming, 2nd. edition, Volume
2: SeminumericaJ Algorithms. Addison-Wesley, Reading, Mass.

Inputs

All the functions in the library (except RAN and DRAN) are called with one or two
parameters which are binary floating-point numbers in one of the IEEE standard
formats, ~ither 'single-length' (32 bits) or 'double-length' (64 bits). The parame­
ter(s) and the function result are of the same type.

NaNs and Infs

The functions will accept any value, as specified by the standard, including spe­
cial values representing NaNs ('Not a Number') and Infs ('Infinity'). NaNs are
copied to the result, whilst Infs mayor may not be in the domain. The do­
main is the set of arguments for which the result is a normal (or denormalised)
floating-point number.

Outputs

Exceptions

Arguments outside the domain (apart from NaNs which are simply copied through)
give rise to exceptional results, which may be NaN, +Inf, or -1nl. Infs mean
that the result is mathematically well-defined but too large to be represented in
the floating-point format.

Error conditions are reported by means of three distinct NaNs:

undefined.NaN

This means that the function is mathematically undefined for this argument, for
example the logarithm of a negative number.

unstable.NaN

This means that a small change in the argument would cause a large change
in the value of the function, so any error in the input will render the output
meaningless.

72 TDS 276 02 March 1991

1.3 Maths libraries

inexact.NaN

21

This means that although the mathematical function is well-defined, its value is
in range, and it is stable with respect to input errors at this argument, the limi­
tations of word-length (and reasonable cost of the algorithm) make it impossible
to compute the correct value.

The implementations will return the following values for these Not-a-Numbers:

Error Single length value Double length value

undefined.NaN #7F800010 #7FF00002 00000000

'unstable.NaN #7F800008 #7FF00001 00000000

inexact.NaN #7F800004 #7FFOOOOO 80000000

Accuracy

Range Reduction

Since it is impractical to use rational approximations (Le. quotients of polynomi­
als) which are accurate over large domains, nearly all the subroutines use math­
ematical identities to relate the function value to one computed from a smaller
argument, taken from the 'primary domain', which is small enough for such an
approximation to be used. This process is called 'range reduction' and is per­
formed for all arguments except those which already lie in the primary domain.

For most of the functions the quoted error is for arguments in the primary domain,
which represents the basic accuracy of the approximation. For some functions
the process of range reduction results in a higher accuracy for arguments outside
the primary domain, and for others it does the reverse. Refer to the notes on
each function for more details.

Generated Error

If the true value of the function is large the difference between it and the com­
puted value (the 'absolute error') is likely to be large also because of the limited
accuracy of floating-point numbers. Conversely if the true value is small, even a
small absolute error represents a large proportional change. For this reason the
error relative to the true value is usually a better measure of the accuracy of a
floating-point function, except when the ouput range is strictly bounded.

If f is the mathematical function and F the subroutine approximation, then the
relative error at the floating-point number X (provided f(X) is not zero) is:

RE(X) = (F(X) - f(X))
f(X)

72 TDS 276 02 March 1991

22 The occam libraries

Obviously the relative error may become very large near a zero of I(X). If the
zero is at an irrational argument (which cannot be represented as a floating-point
value), the absolute error is a better measure of the accuracy of the function near
the zero.

As it is impractical to find the relative error for every possible argument, statistical
measures of the overall error must be used. If the relative error is sampled at a
number of points X n (n = 1 to N), then useful statistics are the maximum relative
error and the root-mean-square relative error.

MRE = max IRE(Xn)1
1~n~N

N

RMSRE = E(RE(Xn))2
n=1

Corresponding statistics can be formed for the absolute error also, and are called
M AE and RMSAE respectively.

The M RE generally occurs near a zero of the function, especially if the true zero
is irrational, or near a singularity where the result is large, since the 'granularity'
of the floating-point numbers then becomes si.gnificant.

A useful unit of relative error is the relative magnitude of the least significant
bit in the floating-point fraction, which is called one 'unit in the last place' (ulp),
(Le. the smallest f such that 1 + f =11). Its magnitude depends on the floating­
point format: for single-length it is 2-23 = 1.19 * 10-7, and for double-length it is
2-52 =2.22 *10-16•

Propagated Error

Because of the limited accuracy of floating-point numbers the result of any cal­
culation usually differs from the exact value. In effect, a small error has been
added to the exact result, and any subsequent calculations will inevitably involve
this error term. Thus it is important to determine how each function responds to
errors in its argument. Provided the error is not too large, it is sufficient just to
consider the first derivative of the function (written I').

If the relative error in the argument X is d (typically a few ulp), then the absolute
error (E) and relative error (e) in I(X) are:

E = IXI'(X)dl == Ad

= IXI'(X)dl = Rd
e f(X)-

This defines the absolute and relative error magnification factors A and R. When
both are large the function is unstable, Le. even a small error in the argument,

72 TDS 276 02 March 1991

1.3 Maths libraries 23

such as would be produced by evaluating a floating-point expression, will cause
a large error in the value of the function. The functions return an unstable.NaN
in such cases which are simple to detect.

The functional forms of both A and R are given in the specification of each
function.

Test Procedures

For each function, the generated error was checked at a large number of argu­
ments (typically 100000) drawn at random from the appropriate domain. First
the double-length functions were tested against a 'quadruple-length' implemen­
tation (constructed for accuracy rather than speed), and then the single-length
functions were tested against the double-length versions.

In both cases the higher-precision implementation was used to approximate the
mathematical function (called f above) in the computation of the error, which
was evaluated in the higher precision to avoid rounding errors. Error statistics
were produced according to the formulae above.

Symmetry

The subroutines were designed to reflect the mathematical properties of the
functions as much as possible. For all the functions which are even, the sign
is removed from the input at the beginning of the computation so that the sign­
symmetry of the function is always preserved. For odd functions, either the
sign is removed at the start and then the appropriate sign set at the end of
the computation, or else the sign is simply propagated through an odd degree
polynomial. In many cases other symmetries are used in the range-reduction,
with the result that they will be satisfied automatically.

The Function Specifications

Names and Parameters

All single length functions except RAN return a single result of type REAL32,
and all except RAN, POWER and ATAN2 have one parameter, a VAL REAL32
for the argument of the function.

POWER and ATAN2 have two parameters which are VAL REAL32s for the two
arguments of each function.

RAN returns two results of type REAL32, INT32, and has one parameter which
is a VAL INT32.

72 TDS 276 02 March 1991

24 The occam libraries

In each case the double-length version of name is called Dname, returns a
REAL64 (except DRAN, which returns REAL64 , INT64), and has parameters
of type VAL REAL64 (VAL INT64 for DRAN).

Terms used In the Specifications

A and R Multiplying factors relating the absolute and relative errors in the output
to the relative error in the argument.

Exceptions Outputs for invalid inputs (Le. those outside the domain),. other
than NaN (NaNs are copied directly to the output and are not listed as
exceptions). These are all Infs or NaNs.

Generated Error The difference between the true and computed values of tt-le
function, when the argument is error-free. This is measured statistically
and displayed for one or two ranges of arguments, the first of which is
usually the primary domain (see below). The second range, if present,
is chosen to illustrate the typical behaviour of the function.

Domain The range of valid inputs, Le. those for which the output is a normal or
denormal floating-point number.

MAE and RMSAE The Maximum Absolute Error and Root-Mean-Square abso­
lute error taken over a number of arguments drawn at random from the
indicated range.

MRE and RMSRE The .Maximum Relative Error and Root-Mean-Square rela­
tive error taken over a number of arguments drawn at random from the
indicated range.

Range The range of outputs produced by all arguments in the Domain. The
given endpoints are not exceeded.

Primary Domain The range of arguments for which the result is computed using
only a single rational approximation to the function. There is no argument
reduction in this range.

Propagated Error The absolute and relative error in the function value, given a
small relative error in the argument.

ulp The unit of relative error is the 'unit in the last place' (ulp). This is the
relative magnitude of the least significant bit of the floating-point fraction
(Le. the smallest f such that 1 + f :f 1).
N.B. this depends on the floating-point format.
For the standard single-length format it is 2-23 = 1.19 * 10-7•

For the double-length format it is 2-52 = 2.22 *10-16•

This is also used as a measure of absolute error, since such errors can

72 TDS 276 02 March 1991

1.3 Maths libraries

be considered 'relative' to unity.

Specification of Ranges

25

Ranges are given as intervals, using the convention that a square bracket '[' or
T means that the adjacent endpoint is included in the range, whilst a round
bracket 'e or I)' means that it is excluded. Endpoints are given to a few
significant figures only.

Where the range depends on the floating-point format, single-length is indicated
with an S and double-length with a D.

For functions with two arguments the complete range of both arguments is given.
This means that for each number in one range, there is at least one (though
sometimes only one) number in the other range such that the pair of arguments
is valid. Both ranges are shown, linked by an 'x'.

Abbreviations

In the specifications, XMAX is the largest representable floating-point number:
in single-length it is approximately 3.4 * 1038 , and in double-length it is approxi­
mately 1.8 * 10308 .

Pi means the closest floating-point representation of the transcendental number
1[", In(2) the closest representation of loge(2), and so on.

In describing the algorithms, 'X' is used generically to designate the argument,
and 'result' (or RESULT, in the style of occam functions) to designate the output.

1.3.2 Single length and double length elementary function libraries

The versions of the libraries described by this section have been written using
only floating-point arithmetic and pre-defined functions supported in occam.
Thus they can be compiled for any processor with a full implementation of oc­
cam, and give identical results.

These two libraries will be efficient on processors with fast floating-point arith­
metic and good support for the floating-point predefined functions such as
MULBY2 and ARGUMENT. REDUCE. For 32-bit processors without special hard­
ware for floating-point calculations the alternative optimised library described in
section 1.3.3 using fixed-point arithmetic will be faster, but will not give identical
results.

A special version has been produced for 16-bit transputers, which avoids the
use of any double-precision arithmetic in the single precision functions. This is

72 TDS 276 02 March 1991

26 The occam libraries

distinguished in the notes by the annotation 'T2 special'; notes relating to the
version for TB and TB are denoted by 'standard'.

Single and double length maths functions are listed below. Descriptions of the
functions can be found in succeeding sections.

To use the single length library a program header must include the line

#USE "snglmath.lib"

To use the double length library a program header must include the line

#USE "dblmath.lib"

Result(s) Function Parameter speciflers

REAL32 ALOG VAL REAL32 X

REAL32 ALOG1O VAL REAL32 X

REAL32 EXP VAL REAL32 X

REAL32 POWER VAL REAL32 X, VAL REAL32 Y

REAL32 SIN VAL REAL32 X

REAL32 COS VAL REAL32 X

REAL32 TAN VAL REAL32 X

REAL32 ASIN VAL REAL32 X

REAL32 ACOS VAL REAL32 X

REAL32 ATAN VAL REAL32 X

REAL32 ATAN2 VAL REAL32 X, VAL REAL32 Y

REAL32 SINH VAL REAL32 X

REAL32 COSH VAL REAL32 X

REAL32 TANH VAL REAL32 X

REAL32,INT32 RAN VAL INT32 X

72 TDS 276 02 March 1991

1.3 Maths libraries

Result(s) Function Parameter specifiers

REAL64 DALOG VAL REAL64 X

REAL64 DALOG1O VAL REAL64 X

REAL64 DEXP VAL REAL64 X

REAL64 DPOWER VAL REAL64 x, VAL REAL64 Y

REAL64 DSIN VAL REAL64 X

REAL64 DCOS VAL REAL64 X

REAL64 DTAN VAL REAL64 X

REAL64 DASIN VAL REAL64 X

REAL64 DACOS VAL REAL64 X

REAL64 DATAN VAL REAL64 X

REAL64 DATAN2 VAL REAL64 x, VAL REAL64 Y

REAL64 DSINH VAL REAL64 X

REAL64 DCOSH VAL REAL64 X

REAL64 DTANH VAL REAL64 X

REAL64,INT64 DRAN VAL INT64 X

27

72 TDS 276 02 March 1991

28

Function definitions

ALOG
OALOG

The occam libraries

REAL32 FUNCTION ALOG (VAL REAL32 X)
REAL64 FUNCTION OALOG (VAL REAL64 X)

Compute 10ge(X).

Domain: (O,XMAX]

Range: [MinLog,MaxLog] (See note 2)

Primary Domain: [J2"/2,J2") = [0.7071,1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A =1, R = 1/loge(X)

Generated Error

Primary Domain Error: MRE RMSRE

Single Length(Standard): 1.7 ulp 0.43 ulp

Single Length(T2 special): 1.6 ulp 0.42 ulp

Double Length:' 1.4 ulp 0.38 ulp

The Algorithm

1 Split X into its exponent N and fraction F.

2 Find LnF, the natural log of F, with a floating-point rational ap­
proximation.

3 Compute In(2} * N with extended precision and add it to LnF to
get the result.

Notes

1) The term In(2) * N is much easier to compute (and more accurate)
than LnF, and it is larger provided N is not 0 (Le. for arguments outside
the primary domain). Thus the accuracy of the result improves as the
modulus of 10g(X) increases.

72 TDS 276 02 March 1991

1.3 Maths libraries 29

2) The minimum value that can be produced, MinLog, is the logarithm
of the smallest denormalised floating-point number. For single length
Minlog is -103.28, and for double length it is -745.2. The maximum
value MaxLog is the logarithm of XMAX. For single-length it is 88.72,
and for double-length it is 709.78.

3) Since Inf is used to represent all values greater than X M AX its log­
arithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

ALOG10
DALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

Compute log10(X).

Domain: (0, XMAX]

Range: [MinL10,MaxL10] (See note 2)

Primary Domain: [V'2/2,V'2) = [0.7071,1.4142)

Exceptions

All arguments outside the domain generate an undeflned.NaN.

Propagated Error

Generated Error

Primary Domain Error: MRE RMSRE

Single Length(Standard): ·1.70 ulp 0.45 ulp

Single Length(T2 special): 1.71 ulp 0.46 ulp

Double Length: 1.84 ulp 0.45 ulp

The Algorithm

1 Set temp:= ALOG (X) .

2 If temp is a NaN, copy it to the output, otherwise set
result = log(e) * temp

72 TDS 276 02 March 1991

30

EXP
DEXP

The occam libraries

Notes

1) See note 1 for ALOG.

2) The minimum value that can be produced, MinL10, is the base-10
logarithm of the smallest denormalised floating-point number. For sin­
gle length MinL10 is -44.85, and for double length it is -323.6. The
maximum value M axL10 is the base-1 0 logarithm of X M AX. For single
length M axL10 is 38.53, and for double-length it is 308.26.

3) Since Inf is used to represent all values greater than X M AX its log­
arithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

REAL32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)

Compute eX.

Domain: [-Inf, MaxLog) = [-Inf, 88.72)S, [-Inf, 709.78)0

Range: [0, Inf) (See note 4)

Primary Domain: [-Ln2j2,Ln2j2) = [-0.3466,0.3466)

Exceptions

All arguments outside the domain generate an Inf.

Propagated error

A = Xex , R=X

Generated error

Primary Domain Error: MRE RMSRE

Single Length(Standard): 0.99 ulp 0.25 ulp

Single Length(T2 special): 1.0 ulp 0.25 ulp

Double Length: 1.0 ulp 0.25 ulp

72 TDS 276 02 March 1991

1.3 Maths libraries 31

The Algorithm

1 Set N = integer part of X/ln(2).

2 Compute the remainder of X by In(2), using extended precision
arithmetic.

3 Compute the exponential of the remainder with a floating-point
rational approximation.

4 Increase the exponent of the result by N. If N is sufficiently
negative the result must be denormalised.

Notes

1) MaxLog is 10ge(XMAX).

2) For sufficiently negative arguments (below -87.34 for single-length
and below -708.4 for double-length) the output is denormalised, and so
the floating-point number contains progressively fewer significant digits,
which degrades the accuracy. In such cases the error can theoretically
be a factor of two.

3) Although the true exponential function is never zero, for large neg­
ative arguments the true result becomes too small to be represented
as a floating-point number, and EXP underflows to zero. This occurs for
arguments below -103.9 for single-length, and below -745.2 for double­
length.

4) The propagated error is considerably magnified for large positive ar­
guments, but diminished for large negative arguments.

POWER
DPOWER

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
REAL64 FUNCTION DPOWER (VAL REAL64 X, Y)

Compute X Y •

Domain: [0, Inf] x [-Inf, Inf]

Range: (-Inf, Inf)

Primary Domain: See note 3.

Exceptions

If the first argument is outside its domain, undefined.NaN is returned. If

72 TDS 276 02 March 1991

32 The occam libraries

the true value of X Y exceeds XMAX, Inf is returned. In certain other
cases other NaNs are produced: See note 2.

Propagated Error

A =Y XY (1 ± 10ge(X)), R =Y(1 ± 10ge(X)) (See note 4)

Generated error

Example Range Error: MRE RMSRE (See note 3)

Single Length(Standard): 1.0 ulp 0.25 ulp

Single Length(T2 special): 63.1 ulp 13.9 ulp

Double Length: 21.1 ulp 2.4 ulp

The Algorithm

Deal with special cases: either argument = 1, 0, +Inf or -Inf (see note
2). Otherwise:

(a) For the standard single precision:

1 Compute L = loge(X) in double precision, where X is the first
argument.

2 Compute W = Y x L in double precision, where Y is the second
argument.

3 Compute RESULT = eW in single precision.

(b) For double precision, and the single precision special version:

1 Compute L = log2(X) in extended precision, where X is the first
argument.

2 Compute W = Y x L in extended precision, where Y is the second
argument.

3 Compute RESULT = 2w in extended precision.

Notes

1) This subroutine implements the mathematical function X" to a much
greater accuracy than can be attained using the ALOG and EXP functions,
by performing each step in higher precision. The single-precision version
is more efficient than using DALOG and EXP because redundant tests are
omitted.

72 TDS 276 02 March 1991

1.3 Maths libraries

2) Results for special cases are as follows:

First Input (X) Second Input (V) Result

<0 ANY undefined.NaN

0 ~O undeflned.NaN

0 O<Y~XMAX 0

0 Inf unstable.NaN

0< X< 1 Inf 0

0< X< 1 -Inf Inf

1 -XMAX ~ Y ~ XMAX 1

1 ± Inf unstable.NaN

1 <X~XMAX Inf Inf

1 < X~ XMAX -Inf 0

Inf 1 ~ Y ~ Inf Inf

Inf -Inf~ Y ~ -1 0

Inf -1 < Y < 1 undefined.NaN

otherwise 0 1

otherwise 1 X

33

3) Performing all the calculations in extended precision makes the double­
precision algorithm very complex in detail, and having two arguments
makes a primary domain difficult to specify. As an indication of accuracy,
the functions were evaluated at 100000 points logarithmically distributed
over (0.1, 10.0), with the exponent linearly distributed over (-35.0, 35.0)
(single-length), and (-300.0, 300.0) (double-length), producing the er­
rors given above. The errors are much smaller if the exponent range is
reduced.

4) The error amplification factors are calculated on the assumption that
the relative error in Y is ± that in X, otherwise there would be separate
factors for both X and Y. It can be seen that the propagated error will
be greatly amplified whenever 10ge(X) or Y is large.

SIN
DSIN

REAL32 FUNCTION SIN (VAL REAL32 X)
REAL64 FUNCTION DSIN (VAL REAL64 X)

Compute sine(X) (where X is in radians).

72 TDS 276 02 March 1991

34 The occam libraries

Domain: [-Smax,Smax] = [-205887.4,205887.4]S (Standard),

[-4.2 * 106,4.2 * 106]S (T2 special)

= [-3.4 * 109,3.4 * 109]0

Range: [-1.0,1.0]

Primary Domain: [-Pi/2,Pi/2] = [-1.57,1.57]

Exceptions

All arguments outside the domain generate an inexact.NaN, except ±Inf,
which generates an undefined.NaN.

Propagated Error

A = X cos(X), R = X cot(X)

Generated error (See note 1)

Primary Domain [0, 2P~1

MRE RMSRE MAE RMSAE

Single Length

(Standard): 0.94 ulp 0.23 ulp 0.96 ulp 0.19 ulp

Single Length

(T2 special): 0.92 ulp 0.23 ulp 0.94 ulp 0.19 ulp

Double Length: 0.9 ulp 0.22 ulp 0.91 ulp 0.18 ulp

The Algorithm

1 Set N = integer part of IXIIPi.

2 Compute the remainder of IXI by Pi, using extended precision
arithmetic (double precision in the standard version).

3 Compute the sine of the remainder using a floating-point polyno­
mial.

4 Adjust the sign of the result according to the sign of the argument
and the evenness of N.

Notes

1) For arguments outside the primary domain the accuracy of the result
depends crucially on step 2. The extra precision of step 2 is lost if N
becomes too large, and the cut-off Smax is chosen to prevent this. In

72 TDS 276 02 March 1991

1.3 Maths libraries 35

any case for large arguments the 'granularity' of floating-point numbers
becomes a significant factor. For arguments larger than Smax a change
in the argument of 1 ulp would change more than half of the significant
bits of the result, and so the result is considered to be essentially inde­
terminate.

2) The propagated error has a complex behaviour. The propagated rel­
ative error becomes large near each zero of the function (outside the
primary range), but the propagated absolute error only becomes large
for large arguments. In effect, the error is seriously amplified only in an
interval about each irrational zero, and the width of this interval increases
roughly in proportion to the size of the argument.

3) Since only the remainder of X by Pi is used in step 3, the symmetry
sin(x + n1r) = ± sin(x) is preserved, although there is a complication due
to differing precision representations of 1r.

4) The output range is not exceeded. Thus the output of SIN is always
a valid argument for ASIN.

COS
DCOS

REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)

Compute cosine(X) (where X is in radians).

Domain: [-Cmax, Cmax] = [-205887.4,205887.4]S (Standard),

[-12868.0, 12868.0]S (T2 special)

= [-3.4 * 109 ,3.4 * 109]D

Range: [-1.0,1.0]

Primary Domain: See note 1.

Exceptions

All arguments outside the domain generate an inexact.NaN, except ±Inf,
which generates an undefined.NaN.

Propagated Error

A = -Xsin(X),

72 TDS 276 02

R = -Xtan(X) (See note 4)

March 1991

36 The occam libraries

Generated error

Range: [0,Pi/4) [0,2P~1

MRE RMSRE MAE RMSAE
Single Length

(Standard): 0.93 ulp 0.25 ulp 0.88 ulp 0.18 ulp

Single Length

(T2 special): 1.1 ulp 0.3 ulp 0.94 ulp 0.19 ulp

Double Length: 1.0 ulp 0.28 ulp 0.9 ulp 0.19 ulp

The Algorithm

1 Set N = integer part of (IXI+Pi/2)/Pi and compute the remainder
of (IXI +Pij2) by Pi, using extended precision arithmetic (double
precision in the standard version).

2 Compute the sine of the remainder using a floating-point polyno­
mial.

3 Adjust the sign of the r,esult according to the evenness of N.

Notes

1) Inspection of the algorithm shows that argument reduction always oc­
curs, thus there is no 'primary domain' for cos. So for all arguments the
accuracy of the result depends crucially on step 2. The standard single­
precision version performs the argument reduction in double-precision,
so there is effectively no los5 of accuracy at this step. For the T2 special
version and the double-precision version there are effectively K extra bits
in the representation of 1r(K = 8 for the former and 12 for the latter). If the
argument agrees with an odd integer multiple of 1r/2 to more than k bits
there is a loss of significant bits from the computed remainder equal to
the number of extra bits of agreement, and this causes a loss of accuracy
in the result.

2) The difference between cos evaluated at successive floating-point
numbers is given approximately by the absolute error amplification factor,
A. For arguments larger than Cmax this difference may be more than
half the significant bits of the result, and so the result is considered to
be essentially indeterminate and an inexact.NaN is returned. The extra
precision of step 2 in the double-precision and T2 special versions is lost
if N becomes too large, and the cut-off at Cmax prevents this also.

3) For small arguments the errors are not evenly distributed. As the
argument becomes smaller there is an increasing bias towards negative

72 TDS 276 02 March 1991

1.3 Maths libraries 37

errors (which is to be expected from the form of the Taylor series). For the
single-length version and X in [-0.1 ,0.1], 620/0 of the errors are negative,
whilst for X in [-0.01,0.01], 700k of them are.

4) The propagated error has a complex behaviour. The propagated rel­
ative error becomes large near each zero of the function, but the propa­
gated absolute error only becomes large for large arguments. In effect,
the error is seriously amplified only in an interval about each irrational
zero, and the width of this interval increases roughly in proportion to the
size of the argument.

5) Since only the remainder of (IXI + Pi/2) by Pi is used in step 3, the
symmetry cos(x+n1l") = ± cos(x) is preserved. Moreover, since the same
rational approximation is used as in SIN, the relation cos(x) = sin(x +
11"/2) is also preserved. However, in each case there is a complication
due to the different precision representations of 11".

6) The output range is not exceeded. Thus the output of COS is always
a valid argument for ACOS.

TAN
DTAN

REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)

Compute tan(X) (where X is in radians).

Domain: [-Tmax,Tmax] = [-102943.7, 102943.7]S(Standard),

[-2.1 * 106 ,2.1 * 106]S(T2 special),

= [-1.7 * 109
, 1.7 * 109

]D

Range: (-Inf, Inf)

Primary Domain: [-Pi/4,Pi/4] = [-0.785,0.785]

Exceptions

All arguments outside the domain generate an inexact.NaN, except ±Inf,
which generate an undefined.NaN. Odd integer multiples of 11"/2 may
produce unstable.NaN.

Propagated Error

A = X(1 + tan2(X)), R = X(1 + tan2(x))/ tan(X) (See note 3)

72 TDS 276 02 March 1991

38 The occam libraries

Generated error

Primary Domain Error: MRE RMSRE

Single Length(Standard): 1.44 ulp 0.39 ulp

Single Length(T2 special): 1.37 ulp 0.39 ulp

Double Length: 1.27 ulp 0.35 ulp

The Algorithm

1 Set N = integer part of X/(Pi/2), and compute the remainder of
X by Pi/2, using extended precision arithmetic.

2 Compute two floating-point rational functions of the remainder,
XNum and XDen.

3 If N is odd, set RESULT = -XDen/XNum, otherwise set
RESULT = XNum/XDen.

Notes

1) R is large whenever X is near to an integer multiple of 1("/2, and so tan
is very sensitive to small errors near its zeros and singularities. Thus for
arguments outside the primary domain the accuracy of the result depends
crucially on step 2, so this is performed with very high precision, using
double precision Pi/2 for the standard single-precision function and two
double-precision floating-point numbers for the representation of 1("/2 for
the double-precision function. The T2 special version uses two single­
precision floating-point numbers. The extra precision is lost if N becomes
too large, and the cut-off Tmax is chosen to prevent this.

2) The difference between TAN evaluated at successive floating-point
numbers is given approximately by the absolute error amplification factor,
A. For arguments larger than Smax this difference could be more than
half the significant bits of the result, and so the result is considered to be
essentially indeterminate and an Inexact.NaN is returned.

3) Tan is quite badly behaved with respect to errors in the argument.
Near its zeros outside the primary domain the relative error is greatly
magnified, though the absolute error is only proportional to the size of
the argument. In effect, the error is seriously amplified in an interval
about each irrational zero, whose width increases roughly in proportion
to the size of the argument. Near its singularities both absolute and
relative errors become large, so any large output from this function is
liable to be seriously contaminated with error, and the larger the argu­
ment, the smaller the maximum output which can be trusted. If step 3
of the algorithm requires division by zero, an unstable.NaN is produced

72 TDS 276 02 March 1991

1.3 Maths libraries

instead.

39

4) Since only the remainder of X by Pi/2 is used in step 3, the symmetry
tan(x + n1l") = tan(x) is preserved, although there is a complication due
to the differing precision representations of 11". Moreover, by step 3 the
symmetry tan (x) = 1/ tan (11" /2 - x) is also preserved.

ASIN
DASIN

REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)

Compute sine-1(X) (in radians).

Domain: [-1.0,1.0]

Range: [-Pi/2,Pi/2]

Primary Domain: [-0.5,0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A=X/~, R=x/(sin-l(x)~)

Generated Error

Primary Domain [-1.0, 1.0]

MRE RMSRE MAE RMSAE

Single Length: 0.58 ulp 0.21 ulp 1.35 ulp 0.33 ulp

Double Length: 0.59 ulp 0.21 ulp 1.26 ulp 0.27 ulp

The Algorithm

1 If IXI > 0.5, set Xwork := SQRT «(1 - IXI)/2). Compute Rwork =
arcsine(-2 *X work) with a floating-point rational approximation,
and set the result = Rwork + Pi/2.

2 Otherwise compute the result directly using the rational approxi­
mation.

3 In either case set the sign of the result according to the sign of
the argument.

72 TDS 276 02 March 1991

40

ACOS
DACOS

The occam libraries

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error: however since both
domain and range are bounded the absolute error in the result cannot
be large.

2) By step 1, the identity sin-1(x) = 1r/2 - 2 sin-1(J(1 - x)/2)) is pre­
served.

REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)

Compute cosine-1(X) (in radians).

Domain: [-1.0,1.0]

Range: [0, Pi]

Primary Domain: [-0.5,0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A = -X/~, R = -x/(sin-1(X)~)

Generated Error

Primary Domain [-1.0, 1.0]

MRE RMSRE MAE RMSAE

Single Length: 1.06 ulp 0.38 ulp 2.37 ulp 0.61 ulp

Double Length: 0.96 ulp 0.32 ulp 2.25 ulp 0.53 ulp

The Algorithm

1 If IXI > 0.5, set Xwork:= SQRT «(1 -IXI)/2). Compute
Rwork = arcsine(2 *X work) with a floating-point rational approx­
imation. If the argument was positive, this is the result, otherwise
set the result = Pi - Rwork.

72 TDS 276 02 March 1991

1.3 Maths libraries 41

2 Otherwise compute Rwork directly using the rational approxima­
tion. If the argument was positive, set result = Pi/2 - Rwork,
otherwise result = Pi/2 + Rwork.

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error, although this interval is
larger near 1 than near -1 , since the function goes to zero with an infinite
derivative there. However since both the domain and range are bounded
the absolute error in the result cannot be large.

2) Since the rational approximation is the same as that in AS IN, the
relation cos- 1(x) = 1r/2 - sin- 1(x) is preserved.

ATAN
DATAN

REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)

Compute tan-1(X) (in radians).

Domain: [-Inf, Inf]

Range: [-Pi/2,Pi/2]

Primary Domain: [-z,z], z = 2 - V3 = 0.2679

Exceptions

None.

Propagated Error

Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 0.56 ulp 0.21 ulp

Double Length: 0.52 ulp 0.21 ulp

72 TDS 276 02 March 1991

42 The occam libraries

The Algorithm

1 If IXI > 1.0, set Xwork = 1/IXI, otherwise Xwork = IXI.

2 If Xwork > 2 - v'3, set F = (Xwork * v'3 - 1)/(Xwork + v'3),
otherwise F = Xwork.

3 Compute Rwork = arctan(F) with a floating-point rational approx­
imation.

4 If Xwork was reduced in (2), set R = Pi/6 + Rwork, otherwise
R = Rwork.

5 If X was reduced in (1), set RESULT = Pi/2 - R, otherwise
RESULT=R.

6 Set the sign of the RESULT according to the sign of the argu­
ment.

Notes

1) For IXI > ATmax, Itan-1(X)I is indistinguishable from 11"/2 in the
floating-point format. For single-length, ATmax = 1.68 * 107, and for
double-length ATmax = 9 * 1015

, approximately.

2) This function is numerically very stable, despite the complicated argu­
ment reduction. The worst errors occur just above 2 - v'3, but are no
more than 3.2 ulp.

3) It is also very well behaved with respect to errors in the argument, Le.
the error amplification factors are always small.

4) The argument reduction scheme ensures that the identities tan- 1(X) =
11"/2 - tan- 1(1/X), and
tan-1 (X) = 11"/6 + tan- 1((v'3 *X - 1)/(v'3 + X)) are preserved.

ATAN2
DATAN2

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

Compute the angular co-ordinate tan- 1(Y/ X) (in radians) of a point
whose X and Y co-ordinates are given.

72 TDS 276 02 March 1991

1.3 Maths libraries

Domain: [-Inf, Inf] x [-Inf, Inf]

Range: (-Pi, Pi]

Primary Domain: See note 2.

Exceptions

(0, 0) and (±lnf,±lnf) give undefined.NaN.

Propagated Error

43

A=X(1 ±Y)/(X2 +Y2), R=X(1 ±Y)/(tan-1(Y/X)(X2 +y2
)) (See

note 3)

Generated Error (See note 2)

The Algorithm

1 If X, the first argument, is zero, set the result to ±1r/2, according
to the sign of Y, the second argument.

2 Otherwise set Rwork:= ATAN(Y/X). Then if Y < 0
set RESULT = Rwork - Pi, otherwise set
RESULT = Pi - Rwork.

Notes

1) This two-argument function is designed to perform rectangular-to-polar
co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the
generated error.

3) The error amplification factors were derived on the assumption that
the relative error in Y is ± that in X, otherwise there would be separate
factors for X and Y. They are small except near the origin, where the
polar co-ordinate system is singular.

SINH
DSINH

REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)

Compute sinh(X).

Domain: [-Hmax,Hmax] = [-89.4,89.4]8, [-710.5, 710.5]D

72 TD8 276 02 March 1991

44 The occam libraries

Range: (-1nl, 1nl)

Primary Domain: (-1.0, 1.0)

Exceptions

x < -Hmax gives -1nl, and X> Hmax gives 1nl.

Propagated Error

A = X cosh(X), R = X coth(X) (See note 3)

Generated Error

Primary Domain [1.0, XBig] (See note 2)

MRE RMSRE MRE RMSRE

Single Length: 0.91 ulp 0.26 ulp 1.41 ulp 0.34 ulp

Double Length: 0.67 ulp 0.22 ulp 1.31 ulp 0.33 ulp

The Algorithm

1 If IXI > XBig, set Rwork:= EXP <lxl-ln(2).

2 If X Big ~ IXI ~ 1.0, set temp:= EXP <IXI) , and set
Rwork = (temp - 1/temp)/2.

3 Otherwise compute sinh(IXI) with a floating-point rational approx­
imation.

4 In all cases, set RESULT = ±Rwork according to the sign of X.

Notes

1) H max is the point at which sinh(X) becomes too large to be repre­
sented in the floating-point format.

2) XBig is the point at which e~lxl becomes insignificant compared with
e1x1 , (in floating-point). For single-length it is 8.32, and for double-length
it is 18.37.

3) This function is quite stable with respect to errors in the argument.
Relative error is magnified near zero, but the absolute error is a better
measure near the zero of the function and it is diminished there. For
large arguments absolute errors are magnified, but since the function is
itself large, relative error is a better criterion, and relative errors are not
magnified unduly for any argument in the domain, although the output
does become less reliable near the ends of the range.

72 TDS 276 02 March 1991

1.3 Maths libraries

COSH
DCOSH

REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)

Compute cosh(X).

Domain: [-Hmax,Hmax] = [-89.4, 89.4]S, [-710.5,710.5]0

Range: [1.0, Inf)

Primary Domain: [-XBig,XBig] = [-8.32,8.32]S

[-18.37,18.37]0

Exceptions

IXI > Hmax gives Inf.

Propagated Error

45

A = Xsinh(X),

Generated Error

R = Xtanh(X) (See note 3)

Primary Oomain Error: MRE RMS

Single Length: 1.24 ulp 0.32 ulp

Double Length: 1.24 ulp 0.33 ulp

The Algorithm

1 If IXI > XBig, set result:= EXP (IXI-ln(2).

2 Otherwise, set temp:= EXP (IXI), and set
result = (temp + 1/temp)/2.

Notes

1) H max is the point at which cosh(X) becomes too large to be repre­
sented in the floating-point format.

2) XBig is the point at which e- lx1 becomes insignificant compared with
elxl (in floating-point).

3) Errors in the argument are not seriously magnified by this function,
although the output does become less reliable near the ends of the range.

72 TOS 276 02 March 1991

46

TANH
DTANH

The occam libraries

REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)

Compute tanh(X).

Domain: [-Inf, Inf]

Range: [-1.0,1.0]

Primary Domain: [-Log(3)j2, Log(3)j2] = [-0.549,0.549]

Exceptions

None.

Propagated Error

A = Xj cosh2(X), R = Xj sinh(X) cosh(X)

Generated Error

Primary Domain Error: MRE RMS

Single Length: 0.53 ulp 0.2 ulp

Double Length: 0.53 ulp 0.2 ulp

The Algorithm

1 If IXI > In(3)j2, set temp:= EXP (IXlj2). Then set
Rwork = 1 - 2j(1 + temp).

2 Otherwise compute Rwork = tanh(IXI) with a floating-point ratio­
nal approximation.

3 In both cases, set RESULT = ±Rwork according to the sign of
X.

Notes

1) As a· floating-point number, tanh(X) becomes indistinguishable from
its asymptotic values of ±1.0 for IXI > HTmax, where HTmax is 8.4 for
single-length, and 19.06 for double-length. Thus the output of TANH is
equal to ± 1.0 for such X.

2) This function is very stable and well-behaved, and errors in the argu­
ment are always diminished by it.

72 TDS 276 02 March 1991

1.3 Maths libraries

RAN
DRAN

REAL32,INT32 FUNCTION RAN (VAL INT32 X)
REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

47

These produce a pseudo-random sequence of integers, or a correspond­
ing sequence of floating-point numbers between zero and one. X is the
seed integer that initiates the sequence.

Domain: Integers (see note 1)

Range: [0.0, 1.0] x Integers

Exceptions

None.

The Algorithm

1 Produce the next integer in the sequence: N k+l = (aNk + 1)modM

2 Treat Nk+1 as a fixed-point fraction in [0,1), and convert it to float­
ing point.

3 Output the floating point result and the new integer.

Notes

1) This function has two results, the first a real, and the second an integer
(both 32 bits for single-length, and 64 bits for double-length). The integer
is used as the argument for the next call to RAN, Le. it 'carries' the
pseudo-random linear congruential sequence Nk' and it should be kept
in scope for as long as RAN is used. It should be initialised before the
first call to RAN but not modified thereafter except by the function itself.

2) If the integer parameter is initialised to the same value, the same
sequence (both floating-point and integer) will be produced. If a different
sequence is required for each run of a program it should be initialised to
some 'random' value, such as the output of a timer.

3) The integer parameter can be copied to another variable or used in
expressions requiring random integers. The topmost bits are the most
random. A random integer in the range [0, L] can conveniently be pro­
duced by taking the remainder by (L + 1) of the integer parameter shifted
right by one bit. If the shift is not done an integer in the range [-L, L]
will be produced.

4) The modulus M is 232 for single-length and 264 for double-length, and

72 TDS 276 02 March 1991

48 The occam libraries

the multipliers, a, have been chosen so that all M integers will be pro­
duced before the sequence repeats. However several different integers
can produce the same floating-point value and so a floating-point output
may be repeated, although the sequence of such will not be repeated
until M calls have been made.

5) The floating-point result is uniformly distributed over the output range,
and the sequence passes various tests of randomness, such as the 'run
test', the 'maximum of 5 test' and the 'spectral test'.

6) The double-length version is slower to execute, but 'more random' than
the single-length version. If a highly-random sequence of single-length
numbers is required, this could be produced by converting the output of
DRAN to single-length. Conversely if only a relatively crude sequence of
double-length numbers is required, RAN could be used for higher speed
and its output converted to double-length.

1.3.3 IMS T400, T414 and T425 elementary function library

The version of the library described by this section has been written for 32-bit
processors without hardware for floating-point arithmetic. Functions from it will
give results very close, but not identical to, those produced by the corresponding
functions from the single and double length libraries.

This is the version specifically intended to derive maximum performance from
the IMS T400, T4t4 and T425 processors. The single-precision functions make
use of the FMUL instruction available on 32-bit processors without floating-point
hardware. The library is compiled for transputer class TB.

The tables and notes at the beginning of section 1.3 apply equally here. However
all the functions are contained in one library. To use this library a program header
must include the line:

fUSE "tbmaths.lib"

72 TDS 276 02 March 1991

1.3 Maths libraries

Function definitions

ALOG

REAL32 FUNCTION ALOG (VAL REAL32 X)
REAL64 FUNCTION DALOG (VAL REAL64 X)

These compute: 10ge(X)

Domain: (O,XMAX]

Range: [MinLog,MaxLog] (See note 2)

Primary Domain: [V2/2, V2) = [0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

49

A == 1,

Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 1.19 ulp 0.36 ulp

Double Length: 2.4 ulp 1.0 ulp

The Algorithm

1 Split X into its exponent N and fraction F.

2 Find the natural log of F with a fixed-point rational approximation,
and convert it into a floating-point number LnF.

3 Compute In(2) *N with extended precision and add it to LnF to
get the result.

Notes

1) The term In(2) * N is much easier to compute (and more accurate)
than LnF, and it is larger provided N is not 0 (Le. for arguments outside
the primary domain). Thus the accuracy of the result improves as the
modulus of log(X) increases.

2) The minimum value that can be produced, MinLog, is the logarithm
of the smallest denormalised floating-point number. For single length

72 TDS 276 02 March 1991

50 The occam libraries

Minlog is -103.28, and for double length it is -745.2. The maximum
value MaxLog is the logarithm of XMAX. For single-length it is 88.72,
and for double-length it is 709.78.

3) Since Inf is used to represent all values greater than XMAX its log­
arithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

ALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

These compute: log10(X)

Domain: (O,XMAX]

Range: [MinL10,MaxL10] (See note 2)

Primary Domain: [V2/2,J2') = [0.7071,1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 1.43 ulp 0.39 ulp

Double Length: 2.64 ulp 0.96 ulp

The Algorithm

1 Set temp:= ALOG (X) .

2 If temp is a NaN, copy it to the output, otherwise set
result = log(e) * temp

Notes

1) See note 1 for ALOG.

72 TDS 276 02 March 1991

1.3 Maths libraries 51

2) The minimum value that can be produced, MinL10, is the base-10
logarithm of the smallest denormalised floating-point number. For sin­
gle length M inL10 is -44.85, and for double length it is -323.6. The
maximum value M axL10 is the base-1 0 logarithm of X M AX. For single
length M axL10 is 38.53, and for double-length it is 308.26.

3) Since Inf is used to represent all values greater than XMAX its log­
arithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

EXP

REAL32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)

These compute: eX

Domain: [-Inf, MaxLog) = [-Inf, 88.72)S, [-Inf, 709.78)0

Range: [0, Inf) (See note 4)

Primary Domain: [-Ln2f2,Ln2f2) = [-0.3466,0.3466)

Exceptions

All arguments outside the domain generate an Inf.

Propagated Error

A = Xex , R=X

Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 0.51 ulp 0.21 ulp

Double Length: 0.5 ulp 0.21 ulp

The Algorithm

1 Set N = integer part of Xf In(2).

2 Compute the remainder of X by In(2), using extended precision
arithmetic.

72 TDS 276 02 March 1991

52 The occam libraries

3 Convert the remainder to fixed-point, compute its exponential us­
ing a fixed-point rational function, and convert the result back to
floating point.

4 Increase the exponent of the result by N. If N is sufficiently
negative the result must be denormalised.

Notes

1) MaxLog is 10ge(XMAX).

2) The analytical properties of eZ make the relative error of the result
proportional to the absolute error of the argument. Thus the accuracy
of step 2, which prepares the argument for the rational approximation, is
crucial to the performance of the subroutine. It is completely accurate
when N = 0, Le. in the primary domain, and becomes less accurate as
the magnitude of N increases. Since N can attain larger negative values
than positive ones, EXP is least accurate for large, negative arguments.

3) For sufficiently negative arguments (below -87.34 for single-length
and below -708.4 for double-length) the output is denormalised, and so
the floating-point number contains progressively fewer significant digits,
which degrades the accuracy. In such cases the error can theoretically
be a factor of two.

4) Although the true exponential function is never zero, for large neg­
·ative arguments the true result becomes too small to be represented
as a floating-point number, and EXP underflows to zero. This occurs for
arguments below -103.9 for single-length, and below -745.2 for double­
length.

5) The propagated error is considerably magnified for large positive ar­
guments, but diminished for large negative arguments.

POWER

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
REAL32 FUNCTION DPOWER (VAL REAL64 X, Y)

These compute: X Y

Domain: [0, Inf] x [-1nl, 1nl]

Range: (-1nl, 1nl)

Primary Domain: See note 3.

72 TDS 276 02 March 1991

1.3 Maths libraries

Exc~ptions

53

If the first argument is outside its domain, undefined.NaN is returned. If
the true value of XY exceeds XMAX, Inf is returned. In certain other
cases other NaNs are produced: See note 2.

Propagated Error

A =YX~(1 ± 10ge(X)), R = Y(1 ± 10ge(X)) (See note 4)

Generated Error

Example Range Error: MRE RMSRE (See note 3)

Single Length: 1.0 ulp 0.24 ulp

Double Length: 13.2 ulp 1.73 ulp

The Algorithm

Deal with special cases: either argument = 1, 0, +Inf or -Inf (see note
2). Otherwise:

(a) For single precision:

1 Compute L = IOQ2(X) in fixed point, where X is the first argument.

2 Compute W = Y x L in double precision, where Y is the second
argument.

3 Compute 2w in fixed point and convert to floating-point result.

(b) For double precision:

1 Compute L = IOQ2(X) in extended precision, where X is the first
argument.

2 Compute W = Y x L in extended precision, where Y is the second
argument.

3 Compute RESULT = 2w in extended precision.

Notes

1) This subroutine implements the mathematical function x fJ to a much
greater accuracy than can be attained using the ALOG and EXP functions,
by performing each step in higher precision.

2) Results for special cases are as follows:

72 TDS 276 02 March 1991

54

SIN

The occam libraries

First Input (X) Second Input (Y) Result

<0 ANY undefined.NaN

0 ~O undefined.NaN

0 O<Y~XMAX 0

0 Inf unstable.NaN

0< X< 1 Inf 0

0< X< 1 -Inf Inf

1 -XMAX ~ Y ~ XMAX 1

1 ± Inf unstable.NaN

1 < X~ XMAX Inf Inf

1 < X~XMAX -Inf 0

Inf 1 ~ Y ~ Inf Inf

Inf -Inf~ Y ~ -1 0

Inf -1 < Y < 1 undefined.NaN

otherwise 0 1

otherwise 1 X

3) Performing all the calculations in extended precision makes the double­
precision algorithm very complex in detail, and having two arguments
makes a primary domain difficult to specify. As an indication of accuracy,
the functions were evaluated at 100000 points logarithmically distributed
over (0.1, 10.0), with the exponent linearly distributed over (-35.0,35.0)
(single-length), and (-300.0,300.0) (double-length), producing the errors
given above. The errors are much smaller if the exponent range is re­
duced.

4) The error amplification factors are calculated on the assumption that
the relative error in Y is ± that in X, otherwise there would be separate
factors for both X and Y. It can be seen that the propagated error will
be greatly amplified whenever loge(X) or Y is large.

REAL32 FUNCTION SIN (VAL REAL32 X)
REAL64 FUNCTION DSIN (VAL REAL64 X)

These compute: sine(X) (where X is in radians)

72 TDS 276 02 March 1991

1.3 Maths libraries

Domain: [-Smax,Smax] = [-12868.0, 12868.0]S,

[-2.1 * 108 ,2.1 *108]0

55

Range: [-1.0,1.0]

Primary Domain: [-PiI2,PiI2]

Exceptions

= [-1.57,1.57]

All arguments outside the domain generate an Inexact.NaN, except ±Inf,
which generates an undefined.NaN.

Propagated Error

A =X cos(X), R =X cot(X)

Generated Error (See note 3)

Range: Primary Domain [0,2Pi]

MRE RMSRE MAE RMSAE

Single Length: 0.65 ulp 0.22 ulp 0.74 ulp 0.18 ulp

Double Length: 0.56 ulp 0.21 ulp 0.64 ulp 0.16 ulp

The Algorithm

1 Set N = integer part of IXIIPi.

2 Compute the remainder of IXI by Pi, using extended precision
arithmetic.

3 Convert the remainder to fixed-point, compute its sine using a
fixed-point rational function, and convert the result back to floating
point.

4 Adjust the sign of the result according to the sign of the argument
and the evenness of N.

Notes

1) For arguments outside the primary domain the accuracy of the result
depends crucially on step 2. The extended precision corresponds to
K extra bits in the representation of '1r (K = 8 for single-length and 12
for double-length). If the argument agrees with an integer multiple of '1r

to more than K bits there is a loss of significant bits in the remainder,
equal to the number of extra bits of agreement, and this causes a loss
of accuracy in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the

72 TDS 276 02 March 1991

56

cos

The occam libraries

cut-off Smax is chosen to prevent this. In any case for large arguments
the 'granularity' of floating-point numbers becomes a significant factor.
For arguments larger than Smax a change in the argument of 1 ulp
would change more than half of the significant bits of the result, and so
the result is considered to be essentially indeterminate.

3) The propagated error has a complex behaviour. The propagated rel­
ative error becomes large near each zero of the function (outside the
primary range), but the propagated absolute error only becomes large
for large arguments. In effect, the error is seriously amplified only in an
interval about each irrational zero, and the width of this interval increases
roughly in proportion to the size of the argument.

4) Since only the remainder of X by Pi is used in step 3, the symmetry
sin(x +n1r) = ± sin(x) is preserved, although there is a complication due
to differing precision representations of 1r.

5) The output range is not exceeded. Thus the output of SIN is always
a valid argument for ASIN.

REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)

These compute: cosine (X) (where X is in radians)

Domain: [-Smax,Smax] = [-12868.0, 12868.0]S,

[- 2.1 * 108
, 2.1 *108

]0

Range: [-1.0, 1.0]

Primary Domain: See note 1.

Exceptions

All arguments outside the domain generate an Inexact.NaN, except ±Inf,
which generates an undefined.NaN.

Propagated Error

A = -Xsin(X),

72 TDS 27602

R = -xtan(X) (See note 4)

March 1991

1.3 Maths libraries

Generated Error

Range: [0,Pi/4) [0,2P'1

MRE RMSRE MAE RMSAE

Single Length: 1.0 ulp 0.28 ulp 0.81 ulp 0.17 ulp

Double Length: 0.93 ulp 0.26 ulp 0.76 ulp 0.18 ulp

57

The Algorithm

1 Set N = integer part of (IXI + Pi/2) / Pi.

2 Compute the remainder of (IXI + Pi/2) by Pi, using extended
precision arithmetic.

3 Compute the remainder to fixed-point, compute its sine using a
fixed-point rational function, and convert the result back to floating
point.

4 Adjust the sign of the result according to the evenness of N.

Notes

1) Inspection of the algorithm shows that argument reduction always oc­
curs, thus there is no 'primary domain' for cos. So for all arguments the
accuracy of the result depends crucially on step 2. The extended pre­
cision corresponds to K extra bits in the representation of 11" (K = 8 for
single-length and 12 for double length). If the argument agrees with an
odd integer multiple of 11"/2 to more than K bits there is a loss of signifi­
cant bits in the remainder, equal to the number of extra bits of agreement,
and this causes a loss of accuracy in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the
cut-off Smax is chosen to prevent this. In any case for large arguments
the 'granularity' of floating-point numbers becomes a significant factor.
For arguments larger than Smax a change in the argument of 1 ulp
would change more than half of the significant bits of the result, and so
the result is considered to be essentially indeterminate.

3) For small arguments the errors are not evenly distributed. As the
argument becomes smaller there is an increasing bias towards negative
errors (which is to be expected from the form of the Taylor series). For the
single-length version and X in [-0.1 ,0.1], 62°k of the errors are negative,
whilst for X in [-0.01,0.01], 700/0 of them are.

4) Tile propagated error has a complex behaviour. The propagated rel­
ative error becomes large near each zero of the function, but the propa-

72 TDS 276 02 March 1991

58

TAN

The accam libraries

gated absolute error only becomes large for large arguments. In effect,
the error is seriously amplified only in an interval about each irrational
zero, and the width of this interval increases roughly in proportion to the
size of the argument.

5) Since only the remainder of (IXI + Pi/2) by Pi is used in step 3, the
symmetry cos(x + n1r) = ± cos(x) is preserved. Moreover, since the same
rational approximation is used as in SIN, the relation cos(x) = sin(x+1r/2)
is also preserved. However, in each case there is a complication due to
the different precision representations of 1r.

6) The output range is not exceeded. Thus the output of COS is always
a valid argument for Acas.

REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)

These compute: tan(X) (where X is in radians)

Domain: [-Tmax,Tmax] = [-6434.0, 6434.0]S

[-1.05 * 108,1.05 *108]0
Range: (-Inf, Inf)

Primary Domain: [-Pi/4,Pi/4]

Exceptions

= [-0.785,0.785]

All arguments outside the domain generate an inexact.NaN, except ±Inf,
which generate an undefined.NaN. Odd integer multiples of 1r/2 may
produce unstable.NaN.

Propagated Error

A = X(1 + tan2(X)), R = X(1 + tan2(X))/ tan(X) (See note 4)

Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 3.5 ulp 0.23 ulp

Double Length: 0.69 ulp 0.23 ulp

The Algorithm

1 Set N = integer part of XJ(PiJ2).

72 TDS 276 02 March 1991

1.3 Maths libraries 59

2 Compute the remainder of X by Pi/2, using extended precision
arithmetic.

3 Convert the remainder to fixed-point, compute its tangent using a
fixed-point rational function, and convert the result back to floating
point.

4 If N is odd, take the reciprocal.

5 Set the sign of the result according to the sign of the argument.

Notes

1) R is large whenever X is near to an integer multiple of 1r/2, and
so tan is very sensitive to small errors near its zeros and singularities.
Thus for arguments outside the primary domain the accuracy of the result
depends crucially on step 2. The extended precision corresponds to K
extra bits in the representation of 1r/2 (K =8 for single-length and 12 for
double-length). If the argument agrees with an integer multiple of 1r/2
to more than K bits there is a loss of significant bits in the remainder,
approximately equal to the number of extra bits of agreement, and this
causes a loss of accuracy in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the
cut-off Tmax is chosen to prevent this. In any case for large arguments
the 'granularity' of floating-point numbers becomes a significant factor.
For arguments larger than Tmax a change in the argument of 1 ulp
would change more than half of the significant bits of the result, and so
the result is considered to be essentially indeterminate.

3) Step 3 of the algorithm has been slightly modified in the double­
precision version from that given in Cody & Waite to avoid fixed-point
underflow in the polynomial evaluation for sm~1I arguments.

4) Tan is quite badly behaved with respect to errors in the argument.
Near its zeros outside the primary domain the relative error is greatly
magnified, though the absolute error is only proportional to the size of
the argument. In effect, the error is seriously amplified in an interval
about each irrational zero, whose width increases roughly in proportion
to the size of the argument. Near its singularities both absolute and
relative errors become large, so any large output from this function is
liable to be seriously contaminated with error, and the larger the argu­
ment, the smaller the maximum output which can be trusted. If step 4
of the algorithm requires division by zero, an unstable.NaN is produced
instead.

5) Since only, the remainder of X by Pi/2 is used in step 3, the symmetry
tan(x + n1r) = tan(x) is preserved, although there is a complication due

72 TDS 276 02 March 1991

60

ASIN

The occam libraries

to the differing precision representations of 1r. Moreover, by step 4 the
symmetry tan (x) = 1/ tan(1r/2 - x) is also preserved.

REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)

These compute: sine-1(X) (in radians)

Domain: [-1.0,1.0]

Range: [-Pi/2,Pi/2]

Primary Domain: [-0.5,0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A=X/~, R=x/(sin-1(X)~)

Generated Error

Primary Domain [-1.0, 1.0]

MRE RMSRE MAE RMSAE

Single Length: 0.53 ulp 0.21 ulp 1.35 ulp 0.33 ulp

Double Length: 2.8 ulp 1.4 ulp 2.34 ulp 0.64 ulp

The Algorithm

1 If IXI > 0.5, set Xwork:= SQRT «(1 -IXI)/2).
Compute Rwork = arcsine(-2 * Xwork) with a floating-point ra­
tional approximation, and set the result = Rwork + Pi/2.

2 Otherwise compute the result directly using the rational approxi­
mation.

3 In either case set the sign of the result according to the sign of
the argument.

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result ;s liable to be contaminated with error: however since both

72 TDS 276 02 March 1991

1.3 Maths libraries 61

domain and range are bounded the absolute error in the result cannot
be large.

2) By step 1, the identity sin-1(x) = 1r/2 - 2Sin-1(y'(1 - x)/2)) is pre­
served.

ACOS

REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)

These compute: cosine-1(X) (in radians)

Domain: [-1.0,1.0]

Range: [0, PI1

Primary Domain: [-0.5,0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A =-X/~, R =-X/(sin-1(X)~)

Generated Error

Primary Domain [-1.0, 1.0]

MRE RMSRE MAE RMSAE

Single Length: 1.1 ulp 0.38 ulp 2.4 ulp 0.61 ulp

Double Length: 1.3 ulp 0.34 ulp 2.9 ulp 0.78 ulp

The Algorithm

1 If IXI > 0.5, set Xwork:= SQRT «(1 -IXI)/2). Compute
Rwork =arcsine (2 *Xwork) with a floating-point rational approx­
imation. If the argument was positive, this is the result, otherwise
set the result = Pi - Rwork.

2 Otherwise compute Rwork directly using the rational approxima­
tion. If the argument was positive, set result = Pi/2 - Rwork,
otherwise result = Pi/2 + Rwork.

72 TDS 276 02 March 1991

62

ATAN

The occam libraries

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error, although this interval is
larger near 1 than near -1, since the function goes to zero with an infinite
derivative there. However since both the domain and range are bounded
the absolute error in the result cannot be large.

2) Since the rational approximation is the same as that in ASIN, the
relation cos- 1(x) =11"/2 - sin-1(x) is preserved.

REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)

These compute: tan- 1(X) (in radians)

Domain: [-Inf, Inf]

Range: [-Pi/2,Pi/2]

Primary Domain: [-z,z], z = 2 - J3 = 0.2679

Exceptions

None.

Propagated Error

Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 0.53 ulp 0.21 ulp

Double Length: 1.27 ulp 0.52 ulp

The Algorithm

1 If IXI > 1.0, set Xwork = 1/IXI, otherwise Xwork =IXI.

2 If Xwork > 2 - J3, set F = (Xwork * J3 - 1)/(Xwork + J3),
otherwise F = Xwork.

3 Compute Rwork = arctan(F) with a floating-point rational approx­
imation.

72 TDS 276 02 March 1991

1.3 Maths libraries 63

4 If Xwork was reduced in (2), set R = Pi/6 + Rwork, otherwise
R = Rwork.

5 If X was reduced in (1), set RESULT = Pi/2 - R, otherwise
RESULT=R.

6 Set the sign of the RESULT according to the sign of the argu­
ment.

Notes

1) For IXI > ATmax, Itan- 1(X)I is indistinguishable from 1r/2 in the
floating-point format For single-length, ATmax = 1.68 * 107, and for
double-length ATmax = 9 *1015

, approximately.

2) This function is numerically very stable, despite the complicated argu­
ment reduction. The worst errors occur just above 2 - J3, but are no
more than 1.8 ulp.

3) It is also very well behaved with respect to errors in the argument, Le.
the error amplification factors are always small.

4) The argument reduction scheme ensures that the identities tan-1(X) =
1r/2 - tan- 1(1/X), and
tan- 1(X) = 1r/6 + tan- 1((J3 *X - 1)/(J3 + X)) are preserved.

ATAN2

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

These compute the angular co-ordinate tan- 1(Y/ X) (in radians) of a point
whose X and Y co-ordinates are given.

Domain: [-Inf, Inf] x [-Inf, Inf]

Range: (-Pi,Pi]

Primary Domain: See note 2.

Exceptions

(0, 0) and (±lnf,±lnf) give undefined.NaN.

Propagated Error

A=X(1 ±Y)/(X2 +Y2), R=X(1 ±Y)/(tan-1(Y/X)(X2 +y2)) (See
note 3)

72 TDS 276 02 March 1991

64

SINH

The occam libraries

Generated Error

See note 2.

The Algorithm

1 If X, the first argument, is zero, set the result to ±1r/2, according
to the sign of Y, the second argument.

2 Otherwise set Rwork := ATAN (Y/X). Then if Y < 0 set
RESULT = Rwork - Pi, otherwise set RESULT = Pi - Rwork.

Notes

1) This two-argument function is designed to perform rectangular-to-polar
co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the
generated error.

3) The error amplification factors were derived on the assumption that
the relative error in Y is ± that in X, otherwise there would be separate
factors for X and Y. They are small except near the origin, where the
polar co-ordinate system is singular.

REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)

These compute: sinh(X)

Domain: [-Hmax, Hmax] = [-89.4,89.4]S, [-710.5,710.5]0

Range: (-Inf, Inf)

Primary Domain: (-1.0,1.0)

Exceptions

X < -Hmax gives -Inf, and X > Hmax gives Inf.

Propagated Error

A = X cosh(X) , R = X coth(X) (See note 3)

72 TOS 276 02 March 1991

1.3 Maths libraries

Generated Error

Primary Domain [1.0, X Big] (See note 2)

MRE RMSRE MRE RMSRE

Single Length: 0.89 ulp 0.3 ulp 0.98 ulp 0.31 ulp

Double Length: 1.3 ulp 0.51 ulp 1.0 ulp 0.3 ulp

65

The Algorithm

1 If IXI > XBig, set Rwork := EXP (IXI-ln(2).

2 If X Big 2:: IXI 2:: 1.0, set temp := EXP (IXI) , and set
Rwork = (temp - 1/temp)/2.

3 Otherwise compute Rwork = sinh(IXI) with a fixed-point rational
approximation.

4 In all cases, set RESULT = ±Rwork according to the sign of X.

Notes

1) H max is the point at which sinh(X) becomes too large to be repre­
sented in the floating-point format.

2) XBig is the point at which e- lxl becomes insignificant compared with
elx1 , (in floating-point). For single-length it is 8.32, and for double-length
it is 18.37.

3) This function is quite stable with respect to errors in the argument.
Relative error is magnified near zero, but the absolute error is a better
measure near the zero of the function and it is diminished there. For
large arguments absolute errors are magnified, but since the function is
itself large, relative error is a better criterion, and relative errors are not
magnified unduly for any argument in the domain, although the output
does become less reliable near the ends of the \range.

COSH

REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)

These compute: cosh(X)

Domain: [-Hmax,Hmax] = [-89.4,89.4]8, [-710.5,710.5]0

72 TDS 276 02 March 1991

66 The occam libraries

Range: [1.0, Inf)

Primary Domain: [-XBig,XBig] = [-8.32,8.32]S

[-18.37, 18.37]0

Exceptions

IXI > Hmax gives Inf.

Propagated Error

A =Xsinh(X),

Generated Error

R = Xtanh(X) (See note 3)

TANH

Primary Domain Error: MRE RMS

Single Length: 0.99 ulp 0.3 ulp

Double Length: 1.23 ulp 0.3 ulp

The Algorithm

1 If IXI > XBig, set result := EXP (IXI-ln(2) .

2 Otherwise, set temp := EXP (IXI) , and set
result = (temp + 1/temp)/2.

Notes

1) H max is the point at which cosh(X) becomes too large to be repre­
sented in the floating-point format.

2) XBig is the point at which e- 1x1 becomes insignificant compared with
elx1 (in floating-point).

3) Errors in the argument are not seriously magnified by this function,
although the output does become less reliable near the ends of the range.

REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)

These compute: tanh(X)

72 TDS 276 02 March 1991

1.3 Maths libraries

Domain: [-Int, Int]

Range: [-1.0,1.0]

Primary Domain: [-Log(3)/2,Log(3)/2] = [-0.549,0.549]

Exceptions

None.

67

Propagated Error

A = X/ cosh2(X),

Generated Error

R = X/ sinh(X) cosh(X)

Primary Domain Error: MRE RMS

Single Length: 0.52 ulp 0.2 ulp

Double Length: 4.6 ulp 2.6 ulp

The Algorithm

1 If IXI > In(3)/2, set temp:= EXP (IXI/2). Then set
Rwork = 1 - 2/(1 + temp).

2 Otherwise compute Rwork = tanh(IXI) with a floating-point ratio­
nal approximation.

3 In both cases, set RESULT = ±Rwork according to the sign of
X.

Notes

1) As a floating-point number, tanh(X) becomes indistinguishable from
its asymptotic values of ±1.0 for IXI > HTmax, where HTmax is 8.4 for
single-length, and 19.06 for double-length. Thus the output of TANH is
equal to ± 1.0 for such X.

2) This function is very stable and well-behaved, and errors in the argu­
ment are always diminished by it.

RAN

REAL32,INT32 FUNCTION RAN (VAL INT32 X)
REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, and a corre­
sponding sequence of floating-point numbers between zero and one.

72 TDS 276 02 March 1991

68 The occam libraries

Domain: Integers (see note 1)

Range: [0.0, 1.0] x Integers

Exceptions

None.

The Algorithm

1 Produce the next integer in the sequence: NI:+1 = (aNI: + 1)modM

2 Treat NI:+1 as a fixed-point fraction in [0,1), and convert it to float­
ing point.

3 Output the floating point result and the new integer.

Notes

1) This function has two results, the first a real, and the second an integer
(both 32 bits for single-length, and 64 bits for double-length). The integer
is used as the argument for the next call to RAN, Le. it 'carries' the
pseudo-random linear congruential sequence NI:, and it should be kept
in scope for as long as RAN is used. It should be initialised before the
first call to RAN but not modified thereafter except by the function itself.

2) If the integer parameter is initialised to the same value, the same
sequence (both floating-point and integer) will be produced. If a different
sequence is required for each run of a program it should be initialised to
some 'random' value, such as the output of a timer.

3) The integer parameter can be copied to another variable or used in
expressions requiring random integers. The topmost bits are the most
random. A random integer in the range [0, L] can conveniently be pro­
duced by taking the remainder by (L + 1) of the integer parameter shifted
right by one bit. If the shift is not done an integer in the range [-L, L]
will be produced.

4) The modulus M is 232 for single-length and 264 for double-length, and
the multipliers, a, have been chosen so that all M integers will be pro­
duced before the sequence repeats. However several different integers
can produce the same floating-point value and so a floating-point output
may be repeated, although the sequence of such will not be repeated
until M calls have been made.

5) The floating-point result is uniformly distributed over the output range,
and the sequence passes various tests of randomness, such as the 'run
test', the 'maximum of 5 test' and the 'spectral test'.

72 TDS 27602 March 1991

1.3 Maths libraries 69

6) The double-length version is slower to execute, but 'more random' than
the single-length version. If a highly-random sequence of single-length
numbers is required, this could be produced by converting the output of
DRAN to single-length. Conversely if only a relatively crude sequence of
double-length numbers is required, RAN could be used for higher speed
and its output converted to double-length.

72 TDS 276 02 March 1991

70 The occam libraries

1.4 Host file server library

Library: hostio. lib

The host file server library contains--routines that are used to communicate with
the host file server. The routines are independent of the host on which the server
is running. Using routines from this library you can guarantee that programs will
be portable across all implementations of the toolset.

Constant and protocol definitions for the hostio library, including error and return
codes, are provided in the include file hostio . inc. A listing of the file can be
found in appendix C.

The result value from many of the routines in this library can take the value 2::
spr. operation. failed which is a server dependent failure result. It has
been left open with the use of 2:: because future server implementations may
give more information back via this byte.

1.4.1 Errors and the C run time library

The hostio routines use functions provided by the host file server. These are
defined in appendix H. The server is implemented in C and uses routines in a
C run time library, some of which are implementation dependent.

In particular, the hostio routines do not check the validity of stream identifiers, and
the consequences of specifying an incorrect streamid may differ from system
to system. For example, some systems may return an error tag, some may
return a text message. If you use only those stream ids returned by the hostio
routines that open files (so. open, so. open. temp, and so. popen . read),
invalid ids are unlikely to occur.

It is also possible in rare circumstances for a program to fail altogether with an
invalid streamid because of the way the C library is implemented on the system.
This error can only occur if direct use of the library to perform the operation
would produce the same error.

1.4.2 Inputting real numbers

Routines for inputting real numbers only accept numbers in the standard occam
format for REAL numbers. Programs that allow other ways of specifying real
numbers must convert to the occam format before presenting them to the library
procedure.

For details of occam syntax for real numbers see the 'occam 2 Reference

72 TDS 276 02 March 1991

1.4 Host file server library

Manual'.

1.4.3 Procedure descriptions

71

In the procedure descriptions, fs is the channel from the host file server, and
ts is the channel to the host file server. The SP protocol used by the host file
server channels is defined in the include file hostio. inc, which is listed in
appendix C.

The hostio routines are divided into six groups: five groups that reflect function
and use, and a sixth miscellaneous group. The five specific groups are:

• File access and management

• General host access

• Keyboard input

• Screen output

• File output.

Each group of routines is described in a separate section. Each section begins
with a list of the routines in the group with their formal parameters. This is
followed by a description of each routine in turn.

Note: for those routines which write data to a stream (including the screen), if
the data is not sent as an entire block then it cannot be guaranteed that the data
arrives contiguously at its destination. This is because another process writing
to the same destination may interleave its server request(s) with those of these
routines.

1.4.4 File access routines

This group includes routines for managing file streams, for opening and closing
files, and for reading and writing blocks of data.

72 TDS 276 02 March 1991

so. close

72 The occam libraries

Procedure Parameter Speclfiers

so. open CHAN OF SP fs, ts, VAL []BYTE name,
VAL BYTE type, mode, INT32 streamid,
BYTE result

so.open.temp CHAN OF SP fs, ts, VAL BYTE type,
[so.temp.filename.length]BYTE
filename,
INT32 streamid, BYTE result

so. popen . read CHAN OF SP fs, ts,
VAL []BYTE filename,
VAL []BYTE path.variable.name,
VAL BYTE open. type, INT full.len,
[]BYTE full.name, INT32 streamid,
BYTE result

CHAN OF SP fs, ts, VAL INT32 streamid,
BYTE result

so. read

so. write

so.gets

so.puts

so. flush

72 TDS 276 02

CHAN OF SP fs, ts, VAL INT32 streamid,
INT length, []BYTE data

CHAN OF SP fs, ts, VAL INT32 streamid,
VAL []BYTE data, INT length

CHAN OF SP fs, ts, VAL INT32 streamid,
INT length, []BYTE data, BYTE result

CHAN OF SP fs, ts, VAL INT32 streamid,
VAL []BYTE data, BYTE result

CHAN OF SP fs, ts, VAL INT32 streamid,
BYTE result

March 1991

1.4 Host file server library 73

Procedure

so.seek

so.tell

so.eof

so.ferror

so.remove

so.rename

Parameter Speclfiers

CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT32 offset, origin, BYTE result

CHAN OF SP fs, ts,
VAL INT32 streamid,
INT32 position, BYTE result

CHAN OF SP fs, ts,
VAL INT32 streamid, BYTE result

CHAN OF SP fs, ts,
VAL INT32 streamid, INT32 error.no,
INT length, []BYTE message,
BYTE result

CHAN OF SP fs, ts, VAL []BYTE name,
BYTE result

CHAN OF SP fs, ts,
VAL []BYTE oldname, newname,
BYTE result

so . test. exists CHAN OF SP fs, ts,
VAL []BYTE filename, BOOL exists

Procedure definitions

so.open

PROC so.open (CHAN OF SP fs, ts,
VAL [] BYTE name,
VAL BYTE type, mode,
INT32 streamid, BYTE result)

Opens the file given by name and returns a stream identifier streamid
for all future operations on the file until it is closed. If name does not
if')clude a directory then the file is searched for in the current directory.
File type is specified by type and the mode of opening by mode.

type can take the following values:

spt . binary File contains raw bytes only.

spt . text File contains text records separated by
newline sequences.

72 TDS 276 02 March 1991

74 The occam libraries

mode can take the following values:

spm.input
spm.output

spm.append

spm.existinq.update

spm. new. update

spm.append.update

Open existing file for reading.

Open new file, or truncate an existing
one, for writing.

Open a new file, or append to an exist­
ing one, for writing.

Open an existing file for update (reading
and writing), starting at beginning of the
file.

Open new file, or truncate existing one,
for update.

Open new file, or append to an existing
one, for update.

result can take the following values:

spr.ok
spr. bad. name
spr.bad.type
spr.bad.mode
spr.bad.packet.size

~ spr. operation. failed

The open was successful.

Null file name supplied.

Invalid file type.

Invalid open mode.

File name too large (Le.

> sp.max.openname.size)

If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

so.open.temp

PROC so.open.temp
(CHAN OF SP fs, ts,
VAL BYTE type,
[so.temp.filename.length]BYTE filename,
INT32 streamid, BYTE result)

Opens a temporary file in spm. new. update mode. The first filename
tried is tempO o. If the file already exists the nn suffix on the name
tempnn is incremented up to a maximum of 9999 until an unused num­
ber is found. If the number exceeds 2 digits the last character of temp
is overwritten. For example: if the number exceeds 99 the p is over­
written , as in tem9 99; if the number exceeds 999, the m is overwrit-

72 TDS 276 02 March 1991

1.4 Host file server library 75

ten, as in te9999. File type can be spt .binary or spt. text,
as with so. open. The name of the file actually opened is returned in
filename.

The result returned can take any of the following values:

spr.ok

spr.notok

spr.bad.type

~ spr. operation. failed

so.popen.read

The open was successful.

There are already 10,000 temporary
files.

Invalid file type specified.

If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

PROC so.popen.read
(CHAN OF SP fs, ts,
VAL []BYTE filename,
VAL []BYTE path.variable.name,
VAL BYTE open. type,
INT full.len, []BYTE full.name,
INT32 streamid, BYTE result)

As for so. open, but if the file is not found and the filename does not
include a directory, the routine uses the directory path string associated
with the host environment variable, given in path. variable. name,
and performs a search in each directory in the path in turn. This corre­
sponds to the searching rules used by the toolset, using the environment
variable ISEARCH, see part 1, section 2.10.3.

File type can be spt. binary or spt. text, as with so. open. The
mode of opening is always spm. input.

The name of the file opened is returned in full. name, and the length of
the file name is returned in full. len. If no file is opened, full.len
and full. name are undefined, and the result will not be spr. ok.

The result returned can take any of the following values:

72 TDS 276 02 March 1991

76

spr.ok

spr.bad.name

spr.bad.type

spr.bad.packet.size

spr.buffer.overflow

~ spr. operation. failed

so.close

The occam libraries

The open was successful.

Null name supplied.

Invalid file type specified.

File name too large

(Le. > sp. max •openname . size)

orpath.variable.name

is too large (Le.

> sp.max.getenvname.size).

The environment string referenced by
path. variable. name is longer
than 256 characters.

If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

PROC so.close (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Closes the stream identified by streamid.

The result returned can take any of the following values:

spr. ok The close was successful.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

72 TDS 276 02 March 1991

1.4 Host file server library

so.read

PROC so.read (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT length, []BYTE data)

77

Reads a block of bytes from the specified stream up to a maximum given
by the size of the array data. If length returned is not the same as
the size of data then the end of the file has been reached or an error
has occurred.

so.write

PROC so. write (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE data,
INT length)

Writes a block of data to the specified stream. If length is less than
the size of data then an error has occurred.

so.gets

PROC so.gets (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT length, []BYTE data,
BYTE result)

Reads a line from the specified input stream. Characters are read until
a newline sequence is found, the end of the file is reached, or
sp. max . readbuffer . size characters have been read. The charac­
ters read are in the first length bytes of data. The newline sequence
is not included in the returned array. If the read fails then either the end
of file has been reached or an error has occurred.

The result returned can take any of the following values:

72 TDS 276 02 March 1991

78

spr.ok

spr.bad.packet.size

spr.buffer.overflow

~ spr. operation. failed

so.puts

The occam libraries

The read was successful.

data is too large

(> sp. max. readbuffer . size).

The line was larger than the buffer
data and has been truncated to fit.

If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

spr.ok

spr.bad.packet.size

PROC so.puts (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE data, BYTE result)

Writes a line to the specified output stream. A newline sequence is added
to the end of the line. The size of data must be less than or equal to
the hostio constant sp. max. writebuffer. size.

The result returned can take any of the following values:

The write was successful.

SIZE data is too large (>
sp . max . writebuffer . size).

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

so. flush

PROC so. flush (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Flushes the specified output stream. All internally buffered data is written
to the stream. Write and put operations that are directed to standard
output are flushed automatically. The stream remains open.

The result returned can take any of the following values:

72 TDS 276 02 March 1991

1.4 Host file server library 79

spr. ok The flush was successful.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

so.seek

PROC so. seek (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT32 offset, origin,
BYTE result)

Sets the file position for the specified stream. A subsequent read or write
will access data at the new position.

For a binary file the new position will be offset bytes from the position
defined by origin. For a text file offset must be zero or a value
returned by so. tell, in which case origin must be spo. start.

origin may take the following values:

spo.start

spo.current
spo.end

The start of the file.

The current position in the file.

The end of the file.

The result returned can take any of the following values:

spr. ok The operation was successful.

spr . bad. origin Invalid origin.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

so.tell

PROC so.tell (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT32 position, BYTE result)

Returns the current file position for the specified stream.

72 TDS 276 02 March 1991

80 The occam libraries

The result returned can take any of the following values:

spr. ok The operation was successful.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

so.eof

PROC so.eof (CHAN OF SP fs, ts,
VAL INT32 streamid, BYTE result)

Tests whether the specified stream has reached the end of a file. The
end of file is reached when a read operation attempts to read past the
end of file.

The result returned can take any of the following values:

spr.ok
~ spr. operation. failed

so.ferror

End of file has been reached.

If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).
This result will also be obtained if eof
has not been reached.

PROC so.ferror (CHAN OF SP fs, ts,
VAL INT32 streamid,
INT32 error.no, INT length,
[]BYTE message, BYTE result)

Indicates whether an error has occurred on the specified stream. The
integer error. no is a host defined error number. The returned mes­
sage is in the first length bytes of message. length will be zero
if no message can be provided. If the returned message is longer than
505 bytes then it is truncated to this size.

The result returned can take any of the following values:

72 TDS 276 02 March 1991

1.4 Host file server library 81

spr. ok An error has occurred on the speci­
fied stream.

spr . buffer. overflow An error has occurred but the mes­
sage is too large for message and
has been truncated to fit.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).
This result will also be obtained if no
error has occured on the specified
stream.

so.remove

PROC so. remove (CHAN OF SP fs, ts,
VAL []BYTE name, BYTE result)

Deletes the specified file.

The result returned can take any of the following values:

spr.ok

spr.bad.name

spr.bad.packet.size

~ spr. operation. failed

so.rename

The delete was successful.

Null name supplied.

SIZE name is too large (>
sp . max. removename . size).

If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

PROC so.rename (CHAN OF SP fs, ts,
VAL [] BYTE oldname, newname,
BYTE result)

Renames the specified file.

The result returned can take any of the following values:

72 TDS 276 02 March 1991

82

spr.ok

spr.bad.name

spr.bad.packet.size

~ spr. operation. failed

so.test.exists

The occam libraries

The operation was successful.

Null name supplied.

File names are too large
(SIZE namel + SIZE name2 >
sp. max. renamename. size).

If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

PROC so.test.exists (CHAN OF SP fs, ts,
VAL []BYTE filename,
BOOL exists)

Tests if the specified file exists. The value of exists is TRUE if the file
exists, otherwise it is FALSE.

1.4.5 General host access

This group contains routines to access the host computer for system information
and services.

Procedure Parameter Specifiers

so.commandline CHAN OF SP fs, ts,
VAL BYTE all, INT length,
[]BYTE string, BYTE result

so.parse.command.line CHAN OF SP fs, ts,
VAL [] []BYTE option. strings,
VAL [] INT
option.parameters.required,
[]BOOL option.exists,
[] [2]INT option.parameters,
INT error.len, []BYTE line

so.getenv CHAN OF SP fs, ts,
VAL []BYTE name, INT length,
[]BYTE value, BYTE result

so. time CHAN OF SP fs, ts,
INT32 localtime , UTCtime

72 TDS 276 02 March 1991

1.4 Host file server library

Procedure Parameter Specifiers

so. system CHAN OF SP fs, ts,
VAL [] BYTE command,
INT32 status, BYTE result

so.exit CHAN OF SP fs, ts,
VAL INT32 status

so. core CHAN OF SP fs, ts,
VAL INT32 offset,
INT bytes.read,
[]BYTE data, BYTE result

so. version CHAN OF SP fs, ts,
BYTE version, host, os, board

Procedure definitions

so.commandline

PROC so.commandline (CHAN OF SP fs, ts,
VAL BYTE all, INT length,
[]BYTE string, BYTE result)

83

spr.ok

spr.buffer.overflow

Returns the command line passed to the server when it was invoked.
If all has the value sp. short. commandline then all valid server
options and their arguments are stripped from the command line, as is
the server command name. If all is sp. whole. commandline then
the command line is returned exactly as it was invoked. The returned
command line is in the first length bytes of string. If the command
line string is longer than 509 bytes then it is truncated to this size.

The result returned can take any of the following values:

The operation was successful.

Command line too long for string
and has been truncated to fit.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

72 TDS 276 02 March 1991

84

so.parse.command.line

The occam libraries

PROC so.parse.command.line
(CHAN OF SP fs, ts,
VAL [] []BYTE option.strings,
VAL []INT option.parameters.required,
[]BOOL option.exists,
[] [2]INT option.parameters,
INT er~or.len, []BYTE line)

This procedure reads the server command line and parses it for specified
options and associated parameters.

The parameter option. strings contains a list of all the possible
options and must be in upper case. Options may be any length up to
256 bytes and when entered on the command line may be either upper
or lower case.

To read a parameter that has no preceding option (such as a file name)
then the first option string should be empty (contain only spaces). For
example, consider a program to be supplied with a file name, and any of
three options 'A', 'B' and 'C'. The array option. strings would look
like this:

VAL option.strings IS [If If, "A", "B", "C"]:

The parameter option. parameters. required indicates if the cor­
responding option (in option. strings) requires a parameter. The
values it may take are:

spopt . never Never takes a parameter.

spopt . maybe Optionally takes a parameter.

spopt . always Must take a parameter.

Continuing the above example, if the file name must be supplied and
none of the options take parameters, except for 'C', which mayor may
not have a parameter, then option . parameters . required would
look like this:

VAL option.parameters.required IS
[spopt.always, spopt.never,
spopt.never, spopt.maybe]:

If an option was present on the command line the corresponding element
of option. exists is set to TRUE, otherwise it is set to FALSE.

72 TDS 276 02 March 1991

1.4 Host file server library 85

If an option was followed by a parameter then the position in the array
line where the parameter starts and the length of the parameter are
given by the first and second elements respectively in the corresponding
element in option. parameters.

If an error occurs whilst the command line is being parsed then
error. len will be greater than zero and line will contain an error
message of the given length. If no error occurs then line will contain
the command line as supplied by the host file server.

Most of the possible error messages are self-explanatory, however, it is
worth noting the meaning of the error 'Command line error: called In­
correctly'. This error means that either option. strings was null or
that SIZE option. exists, SIZE option. parameters or SIZE
option. parameters. required does not equal
SIZE option. strings.

so.getenv

PROC so.getenv (CHAN OF SP fs, ts,
VAL [] BYTE name,
INT length, []BYTE value,
BYTE result)

Returns the string defined for the host environment variable name.
The returned string is in the first length bytes of value. If
name is not defined on the system result takes the value ~

spr. operation. failed. If the environment variable's string is
longer than 509 bytes then it is truncated to this size.

The result returned can take any of the following values:

spr.ok

spr.bad.name

spr.bad.packet.size

spr.buffer.overflow

~ spr. operation. failed

72 TDS 276 02

The operation was successful.

The specified name is a null string.

SIZE name is too large (>
sp . max . getenvname . size).

Environment string too large for
value but has been truncated to fit.

If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

March 1991

86

so.time

The occam libraries

spr.ok

spr.bad.packet.size

PROC so.time (CHAN OF SP fs, ts,
INT32 localtime, UTCtime)

Return? the local time and Coordinated Universal Time. Both times are
expressed as the number of seconds that have elapsed since midnight
on 1st January, 1970. If UTC time is unavailable then it will have a value
of zero. The times are given as unsigned INT32s.

so.system

PROC so. system (CHAN OF SP fs, ts,
VAL []BYTE command,
INT32 status, BYTE result)

Passes the string command to the host command processor for execu­
tion. If the command string is of zero length result takes the value
spr •ok if there is a host command processor, otherwise an error is
returned. If command is non-zero in length then status contains the
host-specified value of the command, otherwise it is undefined.

The result returned can take any of the following values:

Host command processor exists.

The array command is too large (>
sp .max. systemcommand. size).

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned fail­
ure. (See sections C.1 and H.2.2).

so.exit

PROC so.exit (CHAN OF SP fs, ts,
VAL INT32 status)

Terminates the server, which returns the value of status to its caller.
If status has the special value sps. success then the server will
terminate with a host specific 'success' result. If status has the special
value sps. failure then the server will terminate with a host specific
'failure' result.

72 TDS 276 02 March 1991

1.4 Host file server library

so.core

PROC so.core (CHAN OF SP fs, ts,
VAL INT32 offset, INT bytes.read,
[]BYTE data, BYTE result)

87

spr.ok
spr.bad.packet.size

Returns the contents of the root transputer's memory as peeked from the
transputer when iserver is invoked with the analyse ('SA') option. The
start of the memory segment is given by offset which is an offset from
the base of memory (and is therefore positive). The number of bytes to
be read is given by the size of the data vector. The number of bytes
actually read into data is given by bytes. read. An error is returned
if offset is larger than the total amount of peeked memory.

The ~esult returned can take any of the following values:

The operation was successful.

The array data is too large (>
sp .max. corerequest. size).

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned fail­
ure. (See sections C.1 and H.2.2).

This procedure can also be used to determine whether the memory was
peeked (whether the server was invoked with the 'SA' option), by spec­
ifying a size of zero for data and offset. If the result returned is
spr . ok the memory was peeked.

so.version

PROC so. version (CHAN OF SP fs, ts,
BYTE version, host, os, board)

Returns version information about the server and the host on which it is
running. A value of zero for any of the items indicates that the information
is unavailable.

The version of the server is given by version. The value should be
divided by ten to yield the true version number. For example. a value of
15 means version 1.5.

The host machine type is given by host, and can take any of the follow­
ing values:

72 TDS 276 02 March 1991

88

sph.PC

sph.S370

sph.NECPC

sph.VAX

sph.SUN3

sph.BOX.SUN4

sph.BOX.SUN386

sph . BOX. APOLLO

The occam libraries

IBM PC

IBM 370 Architecture

NEC PC

DEC VAX

Sun Microsystems Sun 3

Sun Microsystems Sun 4

Sun Microsystems Sun 386i

Apollo

Values up to 127 are reserved for use by INMOS.

The host operating system is given by os, and can take any of the fol­
lowing values:

spo.DOS DOS

spo . HELlOS HELlOS

spo.VMS VMS

spo. SUNOS SunOS

spo.eMS CMS

Values up to 127 are reserved for use by INMOS.

The interface board type is given by board, and can take any of the
following values:

spb.B004

spb.B008

spb.B010

spb.BOll

spb.B014

spb.B015

spb.B016

spb.DRXll

spb.IBMCAT

spb.QTO

spb.ODPLINK

72 TDS 276 02

IMS B004

IMS B008

IMS B010

IMS B011

IMS B014

IMS B015

IMS B016

DRX-11

CAT

Caplin QTO

UDPlink

March 1991

1.4 Host file server library

Values up to 127 are reserved for use by INMOS.

1.4.6 Keyboard Input

89

Procedure
so.pollkey

so.qetkey

so. read. line

so. read.echo. line

so. ask

so.read.echo.int

so.read.echo.int32

so.read.echo.int64

so.read.echo.hex.int

so.read.echo.hex.int32

so.read.echo.hex.int64

so.read.echo.any.int

so.read.echo.rea132

so.read.echo.rea164

72 TDS 276 02

Parameter Speclflers
CHAN OF SP fs, ts,
BYTE key, result
CHAN OF SP fs, ts,
BYTE key, result
CHAN OF SP fs, ts,
INT len, []BYTE line,
BYTE result
CHAN OF SP fs, ts,
INT len, []BYTE line,
BYTE result
CHAN OF SP fs, ts,
VAL []BYTE prompt, replies,
VAL BOOL
display.possible.replies,
VAL BOOL echo. reply,
INT reply.number
CHAN OF SP fs, ts, INT n,
BOOL error
CHAN OF SP fs, ts,
INT32 n, BOOL error
CHAN OF SP fs, ts,
INT64 n, BOOL error
CHAN OF SP fs, ts,
INT n, BOOL error
CHAN OF SP fs, ts,
INT32 n, BOOL error
CHAN OF SP- fs, ts,
INT64 n, BOOL error
CHAN OF SP fs, ts,
INT n, BOOL error
CHAN OF SP fs, ts,
REAL32 n, BOOL error
CHAN OF SP fs, ts,
REAL64 n, BOOL error

March 1991

90

Procedure definitions

so.pollkey

The occam libraries

PROC so.pollkey (CHAN OF SP fs, ts,
BYTE key, result)

Reads a single character from the keyboard. If no key is available then it
returns immediately with ~ spr. operation. failed. The key is not
echoed on the screen.

The result returned can take any of the following values:

spr. ok A key was available and has been re­
turned in key.

;::: spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

so.getkey

PROC so.getkey (CHAN OF SP fs, ts,
BYTE key, result)

As so .pollkey but waits for a key if none is available.

so.read.line

PROC so.read.line (CHAN OF SP fs, ts, INT len,
[]BYTE line, BYTE result)

Reads a line of text from the keyboard, without echoing it on the screen.
The characters read are in the first len bytes of line. The line is read
until 'RETURN' is pressed at the keyboard. The line is truncated if line
is not large enough. A newline or carriage return is not included in line.

The result returned can take any of the following values:

spr. ok The read was successful.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

72 TDS 276 02 March 1991

1.4 Host file server library

so.read.echo.line

PROC so.read.echo.line (CHAN OF SP fs, ts,
INT len, []BYTE line,
BYTE result)

91

As so. read . line, but user input (except newline or carriage return)
is echoed on the screen.

so.ask

PROC so.ask (CHAN OF SP fs, ts,
VAL []BYTE prompt, ,replies,
VAL BOOL display.possible.replies,
VAL BOOL echo.reply,
INT reply.number)

Prompts on the screen for a user response on the keyboard. The prompt
is specified by the string prompt, and the list of permitted relies by the
string replies. Only single character responses are permitted, and
alphabetic characters are not case sensitive. For example if the permit­
ted responses are 'V', 'N' and 'Q' then the replies string would con­
tain the characters "YNQ", and 'y', en' and Iq' would also be accepted.
reply. number indicates which response was typed, numbered from
zero. " ? "is automatically output at the end of the prompt.

If display .possible. replies is TRUE the permitted replies are
displayed on the screen. If echo. reply is TRUE the user's response
is displayed.

The procedure will not return until a valid response has been typed.

so.read.echo.int

PROC so.read.echo.int (CHAN OF SP fs, ts, INT n,
BOOL error)

Reads a decimal integer typed at the keyboard and displays it on the
screen. The number must be terminated by 'RETURN'. The boolean'
error is set to TRUE if an invalid integer is typed, FALSE otherwise.

72 TDS 276 02 March 1991

92

so.read.echo.int32

The occam libraries

PROC so.read.echo.int32 (CHAN OF SP fs, ts,
INT32 n, BOOL error)

As so. read. echo. int but reads 32-bit numbers.

so.read.echo.int64

PROC so.read.echo.int64 (CHAN OF SP fs, ts,
INT64 n, BOOL error)

As so. read. echo. int but reads 64-bit numbers.

so.read.echo.hex.int

PROC so.read.echo.hex.int (CHAN OF SP fs, ts,
INT n, BOOL error)

As so. read. echo. int but reads a number in hexadecimal format.
The number may be in lower or upper case but must be prefixed with ei­
ther 'I', or '$' which directly indicates a hexadecimal number, or '%', which
means add MOSTNEG INT to the given hex (using modulo arithmetic).
For example, on a 32-bit transputer %70 is interpreted as #80000070,
and on a 16-bit transputer as #8070. This is useful when specifying
transputer addresses, which are signed and start at MOSTNEG INT.

so.read.echo.hex.int32

PROC so.read.echo.hex.int32 (CHAN OF SP fs, ts,
INT32 n, BOOL error)

As so. read. echo. hex. int but reads 32-bit numbers.

so.read.echo.hex.int64

PROC so.read.echo.hex.int64 (CHAN OF SP fs, ts,
INT64 n, BOOL error)

As so. read. echo. hex. int but reads 64-bit numbers.

72 TDS 276 02 March 1991

1.4 Host file server library

so.read.echo.any.int

PROC so.read.echo.any.int (CHAN OF SP fs, ts,
INT n, BOOL error)

93

As so. read. echo. int but accepts numbers in either decimal or hex­
adecimal format. Hexadecimal numbers may be lower or upper case but
must be prefixed with either 'I' or '$' which specifies the number directly,
or '%', which means add MOSTNEG INT to the given hex (using modulo
arithmetic). For example, on a 32-bit transputer %70 is interpreted as
#80000070, and on a 16-bit transputer as #8070. This is useful when
specifying transputer addresses, which are signed and start at MOSTNEG
INT.

so.read.echo.rea132

PROC so.read.echo.rea132 (CHAN OF SP fs, ts,
REAL32 n, BOOL error)

Reads a real number typed at the keyboard and displays it on the screen.
The number must conform to occam syntax and be terminated by 'RE­
TURN'. The boolean variable error is set to TRUE if an invalid number
is typed, FALSE otherwise.

so.read.echo.rea164

PROC so.read.echo.rea164 (CHAN OF SP fs, ts,
REAL64 n, BOOL error)

As so. read. echo. rea132 but for 64-bit real numbers.

72 TDS 276 02 March 1991

94 The occam libraries

1.4.7 Screen output

Procedure Parameter Speclfiers

so.write.char CHAN OF SP fs, ts,
VAL BYTE char

so.write.nl CHAN OF SP fs, ts

so.write.string CHAN OF SP fs, ts,
VAL [] BYTE string

so.write.string.nl CHAN OF SP fs, ts,
VAL [] BYTE string

so.write.int CHAN OF SP fs, ts,
VAL lNT n, field

so.write.int32 CHAN OF SP fs, ts,
VAL lNT32 n, VAL lNT field

so.write.int64 CHAN OF SP fs, ts,
VAL lNT64 n, VAL lNT field

so.write.hex.int CHAN OF SP fs, ts,
VAL lNT n, width

so.write.hex.int32 CHAN OF SP fs, ts,
VAL lNT32 n, VAL lNT width

so.write.hex.int64 CHAN OF SP fs, ts,
VAL lNT64 n, VAL lNT width

so.write.rea132 CHAN OF SP fs, ts,
VAL REAL32 r, VAL lNT lp, Dp

so.write.rea164 CHAN OF SP fs, ts,
VAL REAL64 r, VAL lNT lp, Dp

Procedure definitions

so.write.char

PROC so. write. char (CHAN OF SP fs, ts,
VAL BYTE char)

Writes the single byte char to the screen.

72 TDS 276 02 March 1991

1.4 Host file server library

so.write.nl

PROC so.write.nl (CHAN OF SP fs, ts)

Writes a newline sequence to the screen.

so.write.string

PROC so.write.string (CHAN OF SP fs, ts,
VAL [] BYTE string)

Writes the string string to the screen.

so.write.string.nl

PROC so.write.string.nl (CHAN OF SP fa, ta,
VAL [] BYTE string)

95

As so. write. string, but appends a newline sequence to the end
of the string.

so.write.int

PROC so.write.int (CHAN OF SP fs, ts,
VAL INT n, field)

Writes the value n (of type INT) to the screen as decimal ASCII dig­
its, padded out with leading spaces and an optional sign to the specified
field width. If the field width is too small for the number it is widened
as necessary; a zero value for field specifies minimum width. A neg­
ative value for field is an error.

so.write.int32

PROC so.write.int32 (CHAN OF SP fs, ts,
VAL INT32 n, VAL INT field)

As so. write. int but for 32-bit integers.

so.write.int64

PROC so.write.int64 (CHAN OF SP fs, ts,
VAL INT64 n, ~ INT field)

As so . write. int but for 64-bit integers.

72 TDS 276 02 March 1991

96

so.write.hex.int

The occam libraries

PROC so.write.hex.int (CHAN OF SP fs, ts,
VAL lNT n, width)

Writes the value n (of type lNT) to the screen as hexadecimal ASCII
digits, preceded by the 'I' character. The number of characters printed
is width + 1. If width is larger than the size of the number then the
number is padded with leading 'O's or 'F'S as appropriate. If width is
smaller than the size of the number, the number is truncated, from the
left, to width digits. A negative value for width is an error.

so.write.hex.int32

PROC so.write.hex.int64 (CHAN OF SP fs, ts,
VAL lNT32 n,
VAL lNT width)

As so . write. hex. int but for 32-bit integers.

so.write.hex.int64

PROC so.write.hex.int64 (CHAN OF SP fs, ts,
VAL lNT64 n,
VAL lNT width)

As so. write. hex. int but for 64-bit integers.

so.write.rea132

PROC so.write.rea132 (CHAN OF SP fs, ts,
VAL REAL32 r,
VAL lNT lp, Dp)

Writes the value r (of type REAL32) to the screen as ASCII characters
formatted using lp and Dp as described under REAL32TOSTRlNG (see
section 1.7).

Note : Due to fixed size internal buffers, this procedure will be invalid if
the string representing the real number is longer than 24 characters. If
this is a problem, it is suggested you write your own procedure to perform
this function. The procedure should include a buffer set to the required
size, a call to REAL32TOSTRl.NG, followed by a call to so. write.

72 TDS276 02 March 1991

1.4 Host file server library

so.write.real64

PROC so.write.real64 (CHAN OF SP fs, ts,
VAL REAL64 r,
VAL lNT lp, Dp)

97

As so . write. real32 but for 64-bit real numbers. The formatting
variables lp and Dp are described under REAL32TOSTRlNG (see sec­
tion 1.7).

Note : Due to fixed size internal buffers, this procedure will be invalid if
the string representing the real number is longer than 30 characters. If
this is a problem, it is suggested you write your own procedure to perform
this function. The procedure should include a buffer set to the required
size, a call to REAL64TOSTRlNG, followed by a call to so. write.

1.4.8 File output

These routines write characters and strings to a specified stream, usually a file.
The result returned can take the values spr. ok, spr. notok or
very rarely ~ spr. operation. failed.

72 TDS 276 02 March 1991

98 The occam libraries

Procedure Parameter Specifiers
so.fwrite.char CHAN OF SP fs, ts,

VAL lNT32 streamid,
VAL BYTE char, BYTE result

so.fwrite.nl CHAN OF SP fs, ts,
VAL lNT32 streamid,
BYTE result

so.fwrite.string CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL []BYTE string, BYTE result

so. fwrite . string. nl CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL []BYTE string, BYTE result

so.fwrite.int CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL lNT n, field, BYTE result

so.fwrite.int32 CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL lNT32 n, VAL lNT field,
BYTE result

so.fwrite.int64 CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL lNT64 n, VAL lNT field,
BYTE result

so. fwrite.hex. int CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL lNT n, width, BYTE result

so.fwrite.hex.int32 CHAN OF SP fs, ts,
VAL lNT32 streamid, n
VAL lNT width, BYTE result

so.fwrite.hex.int64 CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL INT64 n, VAL lNT width,
BYTE result

so.fwrite.rea132 CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL REAL32 r, VAL lNT lp, Dp,
BYTE result

so.fwrite.rea164 CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL REAL64 r, VAL lNT lp, Dp,
BYTE result

72 TDS 276 02 March 1991

1.4 Host file server library

Procedure definitions

so. fwrite. char

PROC so.fwrite.char (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL BYTE char,
BYTE result)

99

Writes a single character to the specified stream. The result spr. notok
will be returned if the character is not written.

so.fwrite.nl

PROC so.fwrite.nl (CHAN OF SP fs, ts,
VAL INT32 streamid,
BYTE result)

Writes a newline sequence to the specified stream.

If result takes a value ~ spr. operation. failed then this de­
notes a server returned failure, details of which are documented in section
C.1. (See also, section H.2.2).

so.fwrite.string

PROC so.fwrite.string (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL [] BYTE string,
BYTE result)

Writes a string to the specified stream. The result spr. notok will be
returned if not all the characters are written.

so.fwrite.string.nl

PROC so.fwrite.string.nl (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL []BYTE string,
BYTE result)

As so . fwrite . string, but appends a newline sequence to the end
of the string.

The result returned can take any of the following values:

72 TDS 276 02 March 1991

100 The occam libraries

spr . notok Not all of the characters were written.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

so.fwrite.int

PROC so.fwrite.int (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, field,
BYTE result)

Writes the value n (of type INT) to the specified stream as decimal
ASCII digits, padded out with leading spaces and an optional sign to the
specified field width. If the field width is too small for the number
it is widened as necessary; a zero value for field will give minimum
width. A negative value for field is an error.

The result spr . notok will be returned if not all of the digits are written.

so.fwrite.int32

PROC so.fwrite.int32 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT32 n, VAL INT field,
BYTE result)

As so. fwrite . int but for 32-bit integers.

so.fwrite.int64

PROC so.fwrite.int64 (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT64 n, VAL INT field,
BYTE result)

As so. fwrite. int but for 64-bit integers.

so.fwrite.hex.int

PROC so.fwrite.hex.int (CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL INT n, width,
BYTE result)

72 TDS 276 02 March 1991

1.4 Host file server library 101

Writes the value n (of type lNT) to the specified stream as hexadecimal
ASCII digits preceded by the 'I' character. The number of characters
printed is width + 1. If width is larger than the size of the number then
the number is padded with leading 'O's or 'F'S as appropriate. If width
is smaller than the size of the number, then the number is truncated,
from the left, to width digits. A negative value for width is an error.

The result spr. notok will be returned if not all the characters are writ­
ten.

so.fwrite.hex.int32

PROC so.fwrite.hex.int32 (CHAN OF SP fs, ts,
VAL lNT32 streamid, n
VAL lNT width,
BYTE result)

As so. fwrite . hex. int but for 32-bit integers.

so.fwrite.hex.int64

PROC so.fwrite.hex.int64 (CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL lNT64 n,
VAL lNT width,
BYTE result)

As so. fwrite . hex. int but for 64-bit integers.

so.fwrite.rea132

PROC so.fwrite ..rea132 (CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL REAL32 r,
VAL lNT lp, Dp,
BYTE result)

Writes the value r (of type REAL32) to the specified stream as
ASCII characters formatted using lp and Dp as described under
REAL32TOSTRlNG (see section 1.7).

The result spr. notok will be returned if not all the characters are writ­
ten.

Note : Due to fixed size internal buffers, this procedure will be invalid if
the string representing the real number is longer than 24 characters. If
this is a problem, it is suggested you write your own procedure to perform

72 TDS 276 02 March 1991

102 The occam libraries

this function. The procedure should include a buffer set to the required
size, a call to REAL32TOSTRlNG, followed by a call to so . write.

so. fwrite. rea164

PROC so.fwrite.rea164 (CHAN OF SP fs, ts,
VAL lNT32 streamid,
VAL REAL64 r,
VAL lNT lp, Dp,
BYTE result)

As so. fwrite. rea132 but for 64-bit real numbers. The formatting
variables lp and Dp are described under REAL32TOSTRlNG (see sec­
tion 1.7).

Note : Due to fixed size internal buffers, this procedure will be invalid if
the string representing the real number is longer than 30 characters. If
this is a problem, it is suggested you write your own procedure to perform
this function. The procedure should include a buffer set to the required
size, a call to REAL64TOSTRlNG, followed by a call to so. write.

1.4.9 Miscellaneous commands

The miscellaneous group includes procedures for:

• Time and date processing

• Buffering and multiplexing

72 TDS 276 02 March 1991

1.4 Host file server library

Time processing

Procedure Parameter Specifiers

so.time.to.date VAL INT32 input.time,
[so.date.len]INT date

so.date.to.ascii VAL [so.date.len]INT date,
VAL BOOL long.years,
VAL BOOL days.first,
[so.time.string.len]BYTE string

so.time.to.ascii VAL INT32 time,
VAL BOOL long.years,
VAL BOOL days.first
[so.time.string.len]BYTE string

so . today. date CHAN OF SP fa, ts,
[so.date.len]INT date

so.today.ascii CHAN OF SP fs, ts,
VAL BOOL long.years,
VAL BOOL days.first,
[so.time.string.len]BYTE string

so.time.to.date

PROC so.time.to.date (VAL INT32 input.time,
[so.date.len]INT date)

103

Converts time (as supplied by so. time) to six integers, stored in the
date array. The elements of the array are as follows:

Element of array Data

0 Seconds past the minute

1 Minutes past the hour

2 The hour (24 hour clock)

3 The day of the month

4 The month (1 to 12)

5 The year (4 digits)

72 TDS 276 02 March 1991

104

so.date.to.ascii

The occam libraries

PROC so.date.to.ascii
(VAL [so.date.len]INT date,
VAL BOOL long. years,
VAL BOOL days.first,
[so.time.string.len]BYTE string)

Converts an array of six integers containing the date (as supplied by
so. time. to. date) into an ASCII string of the form:

HH:MM:SS DDIMMlYYYY

If lo~g. years is FALSE then year is reduced to two characters, and
the last two characters of the year field are padded with spaces. If
days. first is FALSE then the ordering of day and month is changed
(to the U.S. standard).

so.time.to.ascii

PROC so.time.to.ascii
(VAL INT32 time,
VAL BOOL long.years,
VAL BOOL days.first
[so.time.string.len]BYTE string)

Converts time (as supplied by so. time) into an ASCII string, as de­
scribed for so. date. to. ascii.

so.today.date

PROC so.today.date (CHAN OF SP fs, ts,
[so.date.len]INT date)

Gives today's date, in local time, as six integers, stored in the date
array. The format of the array is the same as for so. time. to . date.
If the date is unavailable all elements in date are set to zero.

so.today.ascii

PROC so.today.ascii
(CHAN OF SP fs, ts,
VAL BOOL long.years, days. first,
[so.time.string.len]BYTE string)

72 TDS 276 02 March 1991

1.4 Host file server library 105

Gives today's date, in local time, as an ASCII string, in the same format
as procedure so. date. to. ascii. If the date is unavailable string
is filled with spaces.

Buffers and multiplexors

This group of procedures are designed to assist with buffering and multiplexing
data exchange between the program and host.

Procedure Parameter Specifiers

so.buffer

so.multiplexor

so.pri.multiplexor

so.overlapped.buffer

so.overlapped.multiplexor

CHAN OF SP fs, ts,
from.user, to.user,
CHAN OF SOOL stopper

CHAN OF SP fs, ts,
from. user, to.user,
CHAN OF SOOL stopper

CHAN OF SP fs, ts,
[]CHAN OF SP
from. user,
to.user,
CHAN OF BOOL stopper

CHAN OF SP fs, ts,
[]CHAN OF SP
from. user,
to.user,
CHAN OF BOOL stopper,
[]INT queue

CHAN OF SP fs, ts,
[]CHAN OF SP
from. user,
to.user,
CHAN OF SOOL stopper

so.overlapped.pri.multiplexor CHAN OF SP fs, ts,
[]CHAN OF SP
from. user,
to.user,
CHAN OF BOOL stopper,
[]INT queue

72 TDS 276 02 March 1991

106

so.buffer

The occam libraries

PROC so.buffer (CHAN OF SP fs, ts,
from. user, to. user,

CHAN OF BOOL stopper)

This procedure buffers data between the user and the host. It can be
used by processes on a network to pass data to the host across int9r­
vening processes. It is terminated by sending either a TRUE or FALSE
value on the channel stopper.

so.overlapped.buffer

PROC so.overlapped.buffer (CHAN OF SP fs, ts,
from. user,
to.user,

CHAN OF BOOL stopper)

Similar to so. buffer, but allows many host communications to occur
simultaneously through a train of processes. This can improve efficiency
if the communications pass through many processes before reaching the
server. It is terminated by either a TRUE or FALSE value on the channel
stopper.

so.multiplexor

PROC so.multiplexor (CHAN OF SP fs, ts,
[]CHAN OF SP from. user,

to. user,
CHAN OF BOOL stopper)

This procedure multiplexes any number of pairs of SP protocol channels
onto a single pair of SP protocol channels, which may go to the file server
or another SP protocol multiplexor (or buffer). It is terminated by sending
either a TRUE or FALSE value on the channel stopper. For n channels,
each channel is guaranteed to be able to pass on a message for every n
messages that pass through the multiplexor. This is achieved by cycling
the selection priority from the lowest index of from. user. However,
stopper always has highest priority.

72 TDS 276 02 March 1991

1.4 Host file server library

so.overlapped.multiplexor

PROC so.overlapped.multiplexor
(CHAN OF SP fs, ts,

[]CHAN OF SP from. user, to.user,
CHAN OF BOOL stopper,
[]INT queue)

107

Similar to so.multiplexor, but can pipeline server requests. The
number of requests than can be pipelined is determined by the size
of queue, which must provide one word for each request that can be
pipelined. If SIZE queue is zero then the routine simply waits for in­
put from stopper. Pipelining improves efficiency if the server requests
have to pass through many processes on the way to and from the server.
It is terminated by sending either a TRUE or FALSE value on the channel
stopper.

The multiplexing is done in the same cyclic manner as in
so. multiplexor. stopper has higher priority than any of
from. user.

so.pri.multiplexor

PROC so.pri.multiplexor
(CHAN OF SP fs, ts,

[]CHAN OF SP from.user, to.user,
CHAN OF BOOL stopper)

As so .multiplexor but the multiplexing is not done in a cyclic man­
ner; rather there is a hierarchy of priorities amongst the channels
from. user: from. user [i] is of higher priority than from. user
[j] , for i < j. Also stopper is of lower priority than any of from. user.

so.overlapped.pri.multiplexor

PROC so.overlapped.pri.multiplexor
(CHAN OF SP fs, ts,

[]CHAN OF SP from. user, to.user,
CHAN OF BOOL stopper,
[]INT queue)

As so.overlapped.multiplexor but the multiplexing is done in
the same prioritized manner as in so .pri .multiplexor. stopper
has higher priority than any of from. user.

72 TDS 276 02 March 1991

108 The occam libraries

1.5 Streamlo library

Library: streamio .lib

The streamio library contains routines for reading and writing to files and to
the terminal at a higher level of abstraction than the hostio library. The file
streamio. ine defines the KS and SS protocols and constants used by the
streamio library routines. The result value from many of the routines in this
library can take a value ~ spr. operation. failed which is a server depen­
dent failure result. It has been left open with the use of ~ because future server
implementations may give more failure information back via this byte. Names
for result values can be found in the file host io . ine.

The streamio routines can be classified into three main groups:

• Stream processes

• Stream input procedures

• Stream output procedures.

Stream input and output procedures are used to input and output characters in
keystream KS and screen stream SS protocols. KS and SS protocols must be
converted to the server protocol before communicating with the host.

Stream processes convert streams from keyboard or screen protocol to the
server protocol SP or to related data structures. They are used to transfer data
from the stream input and output routines to the host. Stream processes can
be run as parallel processes serving stream input and output routines called in
sequential code. For example, the following code clears the screen of a terminal
supporting ANSI escape sequences:

CHAN OF SS sern :
PAR

so.serstream.to.ANSI(fs, ts, sern)
SEQ
ss.goto.xy(sern, 0, 0)
ss.elear.eos(sern)
ss.write.endstream(sern)

The key stream and screen stream protocols are identical to those used in the
IMS D700 Transputer Development System (TDS) and facilitate the porting of
programs between the TDS and the toolset.

72 TDS 276 02 March 1991

1.5 Streamlo library

1.5.1 Naming conventions

109

Procedure names always begin with a prefix derived from the first parameter.
Stream processes, where the SP channel (listed first) is used in combination
with either the KS or SS protocols, are prefixed with 'so.'. Stream input rou­
tines, which use only the KS protocol are prefixed with 'ks . " and stream output
routines, which use only the SS protocol, are prefixed with 'ss. '. The single KS
to SS conversion routine, which uses both protocols, is prefixed with 'ks.'.

1.5.2 Stream processes

Procedure

so.keystream.from.kbd

so.keystream. from. file

so.keystream. from. stdin

Parameter Specifiers

CHAN OF SP fs, ts,
CHAN OF KS keys.out,
CHAN OF BOOL stopper,
VAL INT ticks.per.poll

CHAN OF SP fs, ts,
CHAN OF KS keys.out,
VAL [] BYTE filename,
BYTE result

CHAN OF SP fs, ts,
CHAN OF KS keys.out,
BYTE result

ks.keystream.sink CHAN OF KS keys

ks.keystream.to.scrstream CHAN OF KS keyboard,
CHAN OF SS scrn

ss.scrstream.sink CHAN OF SS scrn

so.scrstream.to.file CHAN OF SP fs, ts,
CHAN OF SS sern,
VAL []BYTE filename,
BYTE result

so.serstream.to.stdout

72 TDS 276 02

CHAN OF SP fs, ts,
CHAN OF SS scrn,
BYTE result

March 1991

110 The occam libraries

Procedure Parameter Specifiers

ss.scrstream.to.array CHAN OF SS scrn,
[] BYTE buffer

ss.scrstream.from.array CHAN OF SS scrn,
VAL []BYTE buffer

ss.scrstream.fan.out CHAN OF SS scrn,
screen.outl,
screen.out2

ss.scrstream.copy CHAN OF SS scrn.in,
scrn.out

so.scrstream.to.ANSI CHAN OF SP fs, ts,
CHAN OF SS scrn

so.scrstream.to.TVI920 CHAN OF SP fs, ts,
CHAN OF SS scrn

ss.scrstream.multiplexor []CHAN OF SS screen. in,
CHAN OF SS screen.out,
CHAN OF INT stopper

Procedure definitions

so.keystream.from.kbd

PROC so.keystream.from.kbd
(CHAN OF SP fs, ts,
CHAN OF KS keys.out,
CHAN OF BOOL stopper,
VAL INT ticks.per.poll)

Reads characters from the keyboard and outputs them one at a time
as integers on the channel keys. out. It is terminated by sending ei­
ther a TRUE or FALSE on the boolean channel stopper. The pro­
cedure polls the keyboard at an interval determined by the value of
ticks. per. poll, in transputer clock cycles, unless keys are avail­
able, in which case they are read at full speed. It is an error if
ticks. per. poll is less than or equal to zero.

After FALSE is sent on the channel stopper the procedure sends the
negative value ft. terminated on keys. out to mark the end of the
file.

72 TDS 276 02 March 1991

1.5 Streamlo library

so.keystream. from. file

PROC so.keystream.from.file
(CHAN OF SP fs, ts,
CHAN OF KS keys.out,
VAL []BYTE filename,
BYTE result)

111

spr.ok
spr.bad.packet.size

Reads lines from the specified text file and outputs them on keys. out.
Terminates automatically on error or when it has reached the end of
the file and all the characters have been output on the keys. out
channel. A '*c' is output to terminate a text line. The negative value
ft . terminated is sent on the channel keys. out to mark the end
of the file. The result returned can take any of the following values:

The operation was successful.

Filename too large Le.

SIZE filename >

sp.max.openname.size.

spr . bad. name Null file name.

~ spr. operation. failed The open failed or reading the file
failed. If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

so.keystream.from.stdin

PROC so.keystream.from.stdin
(CHAN OF SP fs, ts,
CHAN OF KS keys.out,
BYTE result)

As so. keystream. from. file, but reads from the standard input
stream. The standard input stream is normally assigned to the keyboard,
but can be redirected by the host operating system. End of file from
keyboard will terminate this routine. The result returned may take any of
the following values:

72 TDS 276 02 March 1991

112

spr.ok

~ spr. operation. failed

ks.keystream.sink

The occam libraries

The operation was successful.

Reading standard input failed. If
result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

PROC ks.keystream.sink (CHAN OF KS keys)

Reads word length quantities until ft. terminated is received, then
terminates.

ks.keystream.to.serstream

PROC ks.keystream.to.serstream (CHAN OF KS
keyboard,

CHAN OF SS sern)

Converts key stream protocol to screen stream protocol. The value
ft. terminated on keyboard terminates the procedure.

ss.serstream.sink

PROC ss.serstream.sink (CHAN OF SS sern)

Reads screen stream protocol and ignores it except for the stream ter­
minator from ss . write. endstream which terminates the procedure.

so.serstream.to.file

PROC so.serstream.to.file (CHAN OF SP fs, ts,
CHAN OF SS sern,
VAL []BYTE filename,
BYTE result)

Creates a new file with the specified name and writes the data sent on
channel sern to it. The sern channel uses the screen stream pro­
tocol which is used by all the stream output library routines (and is the
same as the inmos TDS screen stream protocol). It terminates on receipt
of the stream terminator from ss . write. endstream, or on an error
condition. The result returned can take any of the following values:

72 TDS 276 02 March 1991

1.5 Streamlo library 113

spr.ok

spr.bad.paeket.size

The data sent on sern was success­
fully written to the file.

Filename
too large Le. SIZE filename >
sp.max.openname.size.

spr . bad. name Null filename.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

If used in conjunction with so. serstream. fan. out this procedure
may be used to file a copy of everything sent to the screen.

so.serstream.to.stdout

PROC so.serstream.to.stdout (CHAN OF SP fs, ts,
CHAN OF SS sern,
BYTE result)

Performs the same operation as so. serstream. to. file, but writes
to the standard output stream. The standard output stream goes to the
screen, but can be redirected to a file by the host operating system. The
result returned can take any of the following values:

spr. ok The data sent on sern was success­
fully written to standard output.

~ spr. operation. failed If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

ss.serstream.to.array

PROC ss.serstream.to.array (CHAN OF SS sern,
[]BYTE buffer)

Buffers a screen stream whose total size does not exceed. the capacity
of buffer, for debugging purposes or subsequent onward transmission
using so. serstream. from. array. The procedure terminates on
receipt of the stream terminator from ss . write. endstream.

72 TDS 276 02 March 1991

114

ss.scrstream.from.array

The occam libraries

PROC ss.scrstream.from.array (CHAN OF SS scrn,
VAL []BYTE buffer)

Regenerates a screen stream buffered in buffer by a previous call of
so. scrstream. to. array. Terminates when all buffered data has
been sent.

ss.scrstream.fan.out

PROC ss.scrstream.fan.out
(CHAN OF SS scrn,

screen. out1,
screen.out2)

Sends copies of everything received on the input channel scrn to two
output channels. The procedure terminates on receipt of the stream
terminator from ss. write .'endstream without passing on the termi­
nator.

ss.scrstream.copy

PROC ss.scrstream.copy (CHAN OF 'SS scrn.in,
scrn.out)

Copies screen stream protocol input
on scrn. in to scrn. out. Terminates on receipt of the endstream
terminator fro~ ss . write. endstream, which is not passed on.

so.scrstream.to.ANSI

PROC so.scrstream.to.ANSI (CHAN OF SP fs, ts,
CHAN OF SS scrn)

Converts screen stream protocol into a stream of BYTEs according to
the requirements of ANSI terminal screen protocol. Not all of the screen
stream commands are supported.

The following tags are ignored:

st.ins.char, st.reset,st.terminate, st.help,
st. initialise, st.key.raw, st.key.cooked,
st. release, st. claim.

The procedure terminates on receipt of the stream terminator from
ss.write.endstrean

72 TDS 276 02 March 1991

1.5 Streamio library

so.scrstream.to.TVI920

PROC so.scrstream.to.TVI920 (CHAN OF SP fs, ts,
CHAN OF SS scrn)

115

Converts screen stream protocol into a stream of BYTEs according to the
requirements of TVI920 (and compatible) terminals. Not all of the screen
stream commands are supported. The following tags are ignored:

st.reset, st.terminate, st.help, st. initialise,
st. key. raw, st.key.cooked, st.release, st.claim.

The procedure terminates on receipt of the stream terminator from
ss.write.endstrea~

ss.scrstream.multiplexor

PROC ss.scrstream.multiplexor
([]CHAN OF SS screen. in,
CHAN OF SS screen.out,
CHAN OF INT stopper)

This procedure multiplexes up to 256 screen stream channels onto a
single screen stream channel. Each change of input channel directs
output to the next line of the screen, and each such line is annotated at
the left with the array index of the channel used followed by'>'. The tag
st . endstream is ignored. The procedure is terminated by the receipt
of any integer on the channel stopper. For n channels, each channel
is guaranteed to be able to pass on a message for every n messages
that pass through the multiplexor. This is achieved by cycling from the
lowest index of screen. in. However, stopper always has highest
priority.

72 TDS 276 02 March 1991

116 The occam libraries

1.5.3 Stream input

These routines read characters and strings from the input stream, in KS protocol.

Procedure Parameter Specifiers

ks.read.char CHAN OF KS source, INT char

ks.read.line CBAN OF KS source, INT len,
[]BYTE line, INT char

ks.read.int CHAN OF KS source,
INT number, char

ks.read.int64 CBAN OF KS source,
INT64 number, INT char

ks.read.rea132 CBAN OF KS source,
REAL32 number, INT char

ks.read.rea164 CBAN OF KS source,
REAL64 number, INT char

Procedure definitions

ks.read.char

PROC ks.read.char (CHAN OF KS source, INT char)

Returns in char the next word length quantity from source.

ks.read.line

PROC ks.read.line (CHAN OF KS source, INT len,
[]BYTE line, INT char)

Reads text into the array line up to but excluding '*c', or up to and
excluding any error code. Any '*n' encountered is thrown away. len
gives the number of characters in line. If there is an error its code is
returned as char, otherwise the value of char will be INT '*c'. If
the array is filled before a '*c' is encountered all further characters are
ignored.

72 TDS 276 02 March 1991

1.5 Streamio library

ks.read.int

PROC ks.read.int (CHAN OF KS source,
INT number, char)

117

Skips input up to a digit, #, + or -, then reads a sequence of digits to
the first non-digit, returned as char, and converts the digits to an integer
in number. char must be initialised to the first character of the input.
If the first significant character is a '#' then a hexadecimal number is
input, thereby allowing the user the option of which number base to use.
The hexadecimal may be in upper or lower case. char is returned as
ft . number. error if the number overflows the INT range.

ks.read.int64

PROC ks.read.int64 '(CHAN OF KS source,
INT64 number, INT char)

As ks . read. int, but for 64-bit integers.

ks.read.rea132

PROC ks.read.rea132 (CHAN OF KS source,
REAL32 number, INT char)

Skips input up to a digit, + or -, then reads a sequence of digits with
optional decimal point and exponent) up to the first invalid character, re­
turned as char. Converts the digits to a floating point value in number.
char must be initialised to the first character of the input. If there is
an error in the syntax of the real, if it is ± infinity, or if more than 24
characters read then char is returned as ft . number. error.

ks.read.rea164

PROC ks.read.rea164 (CHAN OF KS source,
REAL64 number, INT char)

As ks. read. rea132, but for 64-bit real numbers. Allows for reading
up to 30 characters.

72 TDS 276 02 March 1991

118 The occam libraries

1.5.4 Stream output

These routines write text, numbers and screen control codes to an output stream
in SS protocol.

Procedure

ss.write.char

ss.write.nl

ss.write.string

Parameter Speclfiers

CHAN OF SS scrn,
VAL BYTE char

CHAN OF SS scrn

CHAN OF SS scrn,
VAL [] BYTE str

ss.write.endstream CHAN OF SS scrn

ss.write.text.line CHAN OF SS scrn,
VAL [] BYTE str

ss.write.int CHAN OF SS scrn,
VAL INT number, field

ss.write.int64 CHAN OF SS scrn,
VAL INT64 number,
VAL INT field

ss.write.hex.int CHAN OF SS scrn,
VAL INT number, field

ss.write.hex.int64 CHAN OF SS scrn,
VAL INT64 number,
VAL INT field

72 TDS 276 02 March 1991

1.5 Streamio library 119

Procedure Parameter Specifiers

ss.write.rea132 CHAN OF SS sern,
VAL REAL32 number,
VAL lNT lp, Dp

ss.write.rea164 CHAN OF SS sern,
VAL REAL64 number,
VAL lNT lp, Dp

ss.goto.xy CHAN OF SS sern,
VAL lNT x, y

ss.clear.eol CHAN OF SS sern

ss.clear.eos CHAN OF SS sern

ss.beep CHAN OF SS sern

ss.up CHAN OF SS sern

ss.down CHAN OF SS sern

ss.left CHAN OF SS sern

ss. right CHAN OF SS sern

ss.insert.ehar CHAN OF SS sern, VAL BYTE eh

ss.delete.ehr CHAN OF SS sern

ss.delete.ehl CHAN OF SS sern

ss.ins.line CHAN OF SS sern

ss.del.line CHAN OF SS sern

Procedure definitions

ss.write.ehar

PROC ss.write.ehar (CHAN OF SS sern,
VAL BYTE ehar)

Sends the ASCII value ehar on sern, in scrstream protocol, to the
current position in the output line.

ss.write.nl

PROC ss.write.nl (CHAN OF SS sern)

Sends" *e*n" to sern.

72 TDS 276 02 March 1991

120

ss.write.strinq

The occam libraries

PROC ss.write.strinq (CHAN OF SS scrn,
VAL[]BYTE str)

Sends all characters in str to scrn.

ss.write.endstream

PROC ss.write.endstream (CHAN OF SS scrn)

Sends a special stream terminator value to scrn.

ss.write.text.line

PROC ss.write.text.line (CHAN OF SS scrn,
VAL []BYTE str)

Sends all of str to scrn ensuring that, whether or not the last character
of str is '*c', the last two characters sent are "*c*n".

ss.write.int

PROC ss.write.int (CHAN OF SS scrn,
VAL INT number, field)

Converts number into a sequence of ASCII decimal digits padded out
with leading spaces and an optional sign to the specified field width
if necessary. If the number cannot be represented in field characters
it is widened as necessary, a zero value for field will give minimum
width. The converted number is sent to scrn. A negative value for
field is an error.

ss.write.int64

PROC ss.write.int64 (CHAN OF SS scrn,
VAL INT64 number,
VAL INT field)

As ss. write. int but for 64-bit integers.

72 TDS 276 02 March 1991

1.5 Streamlo library

ss.write.hex.int

PROC ss.write.hex.int (CHAN OF SS sern,
VAL lNT number, field)

121

Converts number into a sequence of ASCII hexadecimal digits, using
upper case letters, preceded by"'. The total number of characters
sent is always field + 1, padding out with '0' or 'F' on the left if
necessary. The number is truncated at the left if the field is too narrow,
thereby allowing the less significant part of any number to be ,printed.
The converted number is sent to sern. A negative value for field is
an error.

ss.write.hex.int64

PROC ss.write.hex.int64 (CHAN OF SS sern,
VAL lNT64 number,
VAL lNT field)

As ss . write. hex. int but for 64-bit integer values.

ss.write.rea132

PROC ss.write.rea132 (CHAN OF SS sern,
VAL REAL32 number,
VAL lNT lp, Dp)

Converts number into an ASCII string formatted using lp and Dp, as de­
scribed for REAL32TOSTRlNG, (see section 1.7). The converted num­
ber is sent to sern. If the formatted form of number is larger than 24
characters then this procedure acts as an invalid process.

ss.write.rea164

PROC ss.write.rea164 (CHAN OF SS sern,
VAL REAL64 number,
VAL lNT lp, Dp)

As for ss . writ.e . rea132 but for 64-bit real values. See section 1.7,
REAL32TOSTRlNG for the details of the formatting effect of lp and cp.
If the formatted· form of number is larger than 30 characters then this
procedure acts as an invalid process.

72 TDS 276 02 March 1991

122

ss.qoto.xy

The occam libraries

PROC ss.qoto.xy (CHAN OF SS sern, VAL INT x, y)

Sends the cursor to screen position (x,y). The origin (0,0) is at the top
left corner of the screen.

ss.elear.eol

PROC ss.elear.eol (CHAN OF SS sern)

Clears screen from the cursor position to the end of the current line.

ss.elear.eos

PROC ss.elear.eos (CHAN OF SS sern)

Clears screen from the cursor position to the end of the current line and
all lines below.

ss.beep

PROC ss.beep (CHAN OF SS sern)

Sends a bell code to the terminal.

ss.up

PROC ss.up (CHAN OF SS sern)

Sends a command to the terminal to move the cursor one line up the
screen.

ss.down

PROC ss.down (CHAN OF SS sern)

Sends a command to the terminal to move the cursor one line down the
screen.

ss.left

PROC ss.left (CHAN OF SS sern)

Sends a command to the terminal to move the cursor one place left.

72 TDS 276 02 March 1991

1.5 Streamio library

ss.right

PROC ss.right (CHAN OF SS sern)

123

Sends a command to the terminal to move the cursor one place right.

ss.insert.ehar

PROC ss.insert.ehar (CHAN OF SS sern,
VAL BYTE ch)

Sends a command to the terminal to move the character at the cursor
and all those to the right of it one place to the right and inserts char at
the cursor. The cursor moves one place right.

ss.delete.ehr

PROC ss.delete.ehr (CHAN OF SS sern)

Sends a command to the terminal to delete the character at the cursor
and move the rest of the line one place to the left. The cursor does not
move.

ss.delete.ehl

PROC ss.delete.ehl (CHAN OF SS sern)

Sends a command to the terminal to delete the character to the left of
the cursor and move the rest of the line one place to the left. The cursor
also moves one place left.

ss.ins.line

PROC ss.ins.line (CHAN OF SS sern)

Sends a command to the terminal to move all lines below the current line
down one line on the screen, losing the bottom line. The current line
becomes blank.

ss.del.line

PROC ss.del.line (CHAN OF SS sern)

Sends a command to the terminal to delete the current line and move all
lines below it up one line. The bottom line becomes blank.

72 TDS 276 02 March 1991

124 The occam libraries

1.6 String handling library

Library: string. lib

This library contains functions and procedures for handling strings and scanning
lines of text. They assist with the manipulation of character strings such as
names, commands, and keyboard responses.

The library provides routines for:

• Identifying characters

• Comparing strings

• Searching strings

• Editing strings

• Scanning lines of text

Result Function Parameter Specifiers

BOOL is.in.range VAL BYTE char, bottom,
top

BOOL is.upper VAL BYTE char

BOOL is. lower VAL BYTE char

BOOL is.digit VAL BYTE char

BOOL is.hex.digit VAL BYTE char

BOOL is.id.char VAL BYTE char

INT compare.strings VAL []BYTE str1, str2

BOOL eqstr VAL [] BYTE sl,s2

INT string.pos VAL [] BYTE search, str

INT char.pos VAL BYTE search,
VAL []BYTE str

INT, BYTE search.match VAL []BYTE possibles, str

INT, BYTE search.no.match VAL []BYTE possibles, str

72 TDS 276 02 March 1991

1.6 String handling library 125

Procedure

str.shift

delete.string

insert.string

to. upper. case

to. lower. case

append. char

append. text

append.int

append.int64

append.hex.int

append.hex.int64

append.rea132

append.rea164

72 TDS 276 02

Parameter Speclflers

[]BYTE str,
VAL lNT start, len, shift,
BOOL not.done

lNT len, []BYTE str,
VAL lNT start, size,
BOOL not.done

VAL [] BYTE new. str,
lNT len, []BYTE str,
VAL lNT start, BOOL not.done

[]BYTE str

[]BYTE str

lNT len, []BYTE str,
VAL BYTE char

lNT len, []BYTE str,
VAL []BYTE text

lNT len, []BYTE str,
VAL INT number, field

lNT len, []BYTE str,
VAL lNT64 number, VAL INT field

lNT len, []BYTE str,
VAL lNT number, field

lNT len, []BYTE str,
VAL lNT64 number,
VAL lNT width

lNT len, []BYTE str,
VAL REAL32 number,
VAL l~T lp, Dp

lNT len, []BYTE str,
VAL REAL64 number,
VAL INT lp, Dp

March 1991

126 The occam libraries

Procedure Parameter Speclflers

next.word. from. line VAL [] BYTE line,
INT ptr, len,
[] BYTE word, BOOL ok

next.int.from.line VAL [] BYTE line,
INT ptr, number, BOOL ok

1.6.1 Character Identification

is.in.range

BOOL FUNCTION is.in.range (VAL BYTE char, bottom,
top)

Returns TRUE if the value of char is in the range defined by bottom
and top inclusive.

is.upper

BOOL FUNCTION is.upper (VAL BYTE char)

Returns TRUE if char is an ASCII upper case letter.

is.lower

BOOL FUNCTION is. lower (VAL BYTE char)

Returns TRUE if char is an ASCII lower case letter.

is.digit

BOOL FUNCTION is.digit (VAL BYTE char)

Returns TRUE if char is an ASCII decimal digit.

is.hex.digit

BOOL FUNCTION is.hex.digit (VAL BYTE char)

Returns TRUE if char is an ASCII hexadecimal digit. Upper or lower
case letters A-F are allowed.

72 TDS 276 02 March 1991

1.6 String handling library

is.id.char

BOOL FUNCTION is.id.char (VAL BYTE char)

127

Returns TRUE if char is an ASCII character which can be part of an
occam name.

1.6.2 String comparison

These two procedures allow strings to be compared for order or for equality.

compare.strings

INT FUNCTION compare.strings (VAL []BYTE str1,
str2)

This general purpose ordering function compares two strings according
to the lexicographic ordering standard. (Lexicographic ordering is the
ordering used in dictionaries etc., using the ASCII values of the bytes).
It returns one of the 5 results 0, 1, -1, 2, -2 as follows.

o The strings are exactly the same in length and content.

str2 is a leading substring of str1

-1 str1 is a leading substring of str2

2 str1 is lexicographically later than str2

-2 str2 is lexicographically later than str1

So ,if s is 'abcd':

compare. strings ("abc" , [s FROM 0 FOR 3]) == 0

compare. strings ("abc" , [s FROM 0 FOR 2]) 1

compare. strings ("abc", s) == -1

compare. strings ("be" , s) == 2

compare. strings ("a4" , s) == -2

eqstr

BOOL FUNCTION eqstr (VAL []BYTE 81,s2)

This is an optimised test for string equality. It returns TRUE if the two
strings are the same size and have the same contents, FALSE otherwise.

72 TDS 276 02 March 1991

128 The occam libraries

1.6.3 String searching

These procedures allow a string to be searched for a match with a single byte
or a string of bytes, for a byte which is one of a set of possible bytes, or for a
byte which is not one of a set of bytes. Searches insensitive to alphabetic case
should use to. upper. case or to. lower. case on both operands before
using these procedures.

string.pos

INT FUNCTION string.pos (VAL []BYTE search, str)

Returns the position in str of the first occurrence of a substring which
exactly matches search. Returns -1 if there is no such match.

char.pos

INT FUNCTION char.pos (VAL BYTE search,
VAL [] BYTE str)

Returns the position in str of the first occurrence of the byte search.
Returns -1 if there is no such byte.

search.match

INT, BYTE FUNCTION search.match
(VAL []BYTE possibles, str)

Searches str for anyone of the bytes in the array possibles. If one
is found its index and identity are returned as results. If none is found
then -1, 255(BYTE) are returned.

search.no.match

INT, BYTE FUNCTION search.no.match
(VAL []BYTE possibles, str)

Searches str for a byte which does not match anyone of the bytes in
the array possibles. If one is found its index and identity are returned
as results. If none is found then -1, 255(BYTE) are returned.

1.6.4 String editing

These procedures allow strings to be edited. The string to be edited is stored
in an array which may contain unused space. The editing operations supported
are: deletion of a number of characters and the closing of the gap created;

72 TDS 276 02 March 1991

1.6 String handling library 129

insertion of a new string starting at any position within a string, which creates a
gap of the necessary size.

These two operations are supported by a lower level procedure for shifting a
consecutive substring left or right within the array. The lower level procedure
does exhaustive tests against overflow.

str.shift

PROC str.shift ([]BYTE str, VAL INT start,
len, shift, BOOL not.done)

Takes a substring [str FROM start FOR len], and copies it to a
position shift places to the right. Any implied actions involving bytes
outside the string are not performed and cause the error flag not. done
to be set TRUE. Negative values of shift cause leftward moves.

delete. string

PROC delete. string (INT len, []BYTE str,
VAL INT start, size,
BOOL not.done)

Deletes size bytes from the string str starting at str [start].
There are initially len significant characters in str and it is decremented
appropriately. If start is outside the string, or start+size is greater
than len, then no action occurs and not. done is set TRUE.

insert. string

PROC insert. string (VAL []BYTE new.str, INT len,
[]BYTE str, VAL INT start,
BOOL not.done)

Creates a gap in str after str [start] and copies the string
new. str into it. There are initially len significant characters in str and
len is incremented by the length of new. str inserted. Any overflow
of the declared SIZE of str results in truncation at the right and setting
not. done to TRUE. This procedure may be used for simple concate­
nation on the right by setting start = len or on the left by setting
start = o. This method of concatenation differs from that using the
append. procedures in that it can never cause the program to stop.

72 TDS 276 02 March 1991

130

to.upper.case

PROC to.upper.case ([]BYTE str)

The occam libraries

Converts all alphabetic characters in str to upper case.

to. lower. case

PROC to.lower.case ([]BYTE str)

Converts all alphabetic characters in str to lower case.

append. char

PROC append. char (INT len, []BYTE str,
VAL BYTE char)

Writes a byte char into the array str at str [len]. len is incre­
mented by 1. Behaves like STOP if the array overflows.

append. text

PROC append. text (INT len, []BYTE str,
VAL [] BYTE text)

Writes a string text into the array str, starting at str [len] and
computing a new value for len. Behaves like STOP if the array overflows.

append.int

PROC append.int (INT len, []BYTE str,
VAL INT number, field)

Converts number into a sequence of ASCII decimal digits padded out
with leading spaces and an optional sign to the specified field width
if necessary. If the number cannot be represented in field characters
it is widened as necessary. A zero value for field will give minimum
width. The converted number is written into the array str starting at
str [len] and len is incremented. Behaves like STOP if the array
overflows or if field < O.

72 TDS 276 02 March 1991

1.6 String handling library

append.int64

PROC append.int64 (INT len, []BYTE str,
VAL INT64 number,
VAL INT field)

As append. int but for 64-bit integers.

append.hex.int

PROC append.hex.int (INT len, []BYTE str,
VAL INT number, width)

131

Converts number into a sequence of ASCII hexadecimal digits, using
upper case letters, preceded by 'I'. The total number of characters sent
is always width+l, padding out with '0' or 'F' on the left if necessary.
The number is truncated at the left if the field is too narrow, thereby allow­
ing the less significant part of any number to be printed. The converted
number is written into the array str starting at str [len] and len is
incremented. Behaves like STOP if the array overflows or if width < O.

append.hex.int64

PROC append.hex.int64 (INT len, []BYTE str,
VAL INT64 number,
VAL INT width)

As append. hex. int but for 64-bit integers.

append.rea132

PROC append.rea132 (INT len, []BYTE str,
VAL REAL32 number,
VAL INT lp, Dp)

Converts number into a sequence of ASCII characters formatted using
Ip and Dp as described under REAL32TOSTRING (see section 1.7).

The converted number is written into the array str starting at str [len]
and len is incremented. Behaves like STOP if the array overflows.

72 TDS 276 02 March 1991

132

append.rea164

The occam libraries

PROC append.rea164 (INT len, []BYTE str,
VAL REAL64 number,
VAL INT lp, Dp)

As append. rea132, but for 64-bit real values. The formatting variables
Ip and Dp are described under REAL32TOSTRING, (see section 1.7).

1.6.5 Line parsing

Depending on the initial value of the variable ok these two procedures either
read a line serially, returning the next word and next integer respectively, or the
procedures act almost like a SKIP (see below). The user should initialise the
variable ok as appropriate.

next.word. from. line

PROC next.word.from.line (VAL []BYTE line,
INT ptr, len,
[] BYTE word,

BOOL ok)

If ok is passed in as TRUE, on entry to the procedure, skips leading
spaces and horizontal tabs and reads the next word from the string line.
The value of ptr is the starting point of the search. A word continues
until a space or tab or the end of the string line is encountered.

If the end of the string is reached without finding a word, the boolean ok
is set to FALSE, and len is o. If a word is found but is too large for
word, then ok is set to FALSE, but len will be the length of the word
that was found; otherwise the found word will be in the first len bytes of
word.

The index ptr is updated to be that of the space or tab immediately after
the found word, or is SIZE line.

If ok is passed in as FALSE, len is set to 0, ptr and ok remain
unchanged, and word is undefined.

72 TDS 276 02 March 1991

1.7 Type conversion library

next.int.from.line

PROC next.int.from.line (VAL []BYTE line,
INT ptr, number,
BOOL ok)

133

If ok is passed in as TRUE, on entry to the procedure, skips leading
spaces and horizontal tabs and reads the next integer from the string
line. The value of ptr is the starting point of the search. The in­
teger is considered to start with the first non-space, non-tab character
found and continues until a space or tab or the end of the string line
is encountered.

If the first sequence of non-space, non-tab characters does not exist,
does not form an integer, or forms an integer that overflows the INT
range then ok is set to FALSE, and number is undefined; otherwise ok
remains TRUE, and number is the integer read. A + or - may be the
first character of the integer.

The index ptr is updated to be that of the space or tab immediately after
the found integer, or is SIZE line.

If ok is passed in as FALSE, then ptr and ok remain unchanged, and
number is undefined.

1.7 Type conversion library

Library: convert .lib

This library contains procedures for converting numeric variables to strings and
vice versa.

String to numeric conversions return two results, the converted value and a
boolean error indication. Numeric to string conversions return the converted
string and an integer which represents the number of significant characters writ­
ten into the string.

72 TDS 276 02 March 1991

134 The occam libraries

Procedure Parameter Speclflers

VAL INT n

VAL INT16 n

VAL INT32 n

VAL INT64 n

lNTTOSTRlNG

lNT16TOSTRlNG

lNT32TOSTRlNG

lNT64TOSTRlNG

HEXTOSTRlNG

HEX16TOSTRlNG

HEX32TOSTRlNG

HEX64TOSTRlNG

REAL32TOSTRlNG

INT len, []BYTE string,

INT len, []BYTE string,

INT len, []BYTE string,

lNT len, []BYTE string,

INT len, []BYTE string, VAL lNT n

INT len, []BYTE string, VAL INT16 n

INT len, []BYTE string, VAL INT32 n

lNT len, []BYTE string, VAL lNT64 n

lNT len, []BYTE string,
VAL REAL32 X, VAL lNT lp, Dp

REAL64TOSTRlNG lNT len, []BYTE string, VAL REAL64 X,
VAL lNT lp, Dp

BOOLTOSTRlNG lNT len, []BYTE string, VAL BOOL b

STRlNGTOlNT BOOL Error, lNT n, VAL []BYTE string

STRlNGTOlNT16 BOOL Error, lNT16 n,
VAL []BYTE string

STRlNGTOlNT32 BOOL Error, lNT32 n,
VAL []BYTE string

STRlNGTOlNT64 BOOL Error, lNT64 n,
VAL []BYTE string

STRlNGTOHEX BOOL Error, lNT n, VAL []BYTE string

STRlNGTOHEX16 BOOL Error, lNT16 n,
VAL []BYTE string

STRlNGTOHEX32 BOOL Error, lNT32 n,
VAL []BYTE string

STRlNGTOHEX64 BOOL Error, lNT64 n,
VAL []BYTE string

STRlNGTOREAL32 BOOL Error, REAL32 X,
VAL []BYTE string

STRlNGTOREAL64 BOOL Error, REAL64 X,
VAL []BYTE string

BOOL Error, b, VAL []BYTE stringSTRlNGTOBOOL

72 TDS 276 02 March 1991

1.7 Type conversion library

1.7.1 Procedure definitions

INTTOSTRING

PROC INTTOSTRING (INT len, []BYTE string,
VAL INT n)

135

Converts an integer value to a string. The procedure returns the dec­
imal representation of n in string and the number of characters in
the representation, in len. If string is not long enough to hold the
representation then this routine acts as an invalid process.

Similar procedures are provided forthe types INT16', INT32 and INT64.

INT16TOSTRING

PROC INT16TOSTRING (INT len, []BYTE string,
VAL INT16 n)

As INTTOSTRING but for 16-bit integers.

INT32TOSTRING

PROC INT32TOSTRING (INT len, []BYTE string,
VAL INT32 n)

As INTTOSTRING but for 32-bit integers.

INT64TOSTRING

PROC INT64TOSTRING (INT len, []BYTE string,
VAL INT64 n)

As INTTOSTRING but for 64-bit integers.

HEXTOSTRING

PROC HEXTOSTRING (INT len, []BYTE string,
VAL INT n)

The procedure returns the hexadecimal representation of n in string
and the number of characters in the representation, in len. All the words
of n, (in 4-bit wide word lenghts) are output so that leading zeroes are
included. The number of characters will be the number of bits in an INT
divided by four. A 'I' is not output by the HEXTOSTRING procedure. If
string is not long enough to hold the representation then this routine
acts as an invalid process.

72 TDS 276 02 March 1991

136 The occam libraries

Similar procedures are provided for the types HEX16, HEX32 and HEX64.

HEX16TOSTRlNG

PROC HEX16TOSTRlNG (lNT len, []BYTE string,
VAL lNT16 n)

As HEXTOSTRlNG but for 16-bit integers.

HEX32TOSTRlNG

PROC HEX32TOSTRlNG (lNT len, []BYTE string,
VAL lNT32 n)

As HE;XTOSTRlNG but for 32-bit integers.

HEX64TOSTRlNG

PROC HEX64TOSTRlNG (lNT len, []BYTE string,
VAL lNT64 n)

As HEXTOSTRlNG but for 64-bit integers.

REAL32TOSTRlNG

PROC REAL32TOSTRlNG (lNT len, []BYTE string,
VAL REAL32 X,
VAL lNT lp, Dp)

Converts a 32-bit real number (represented in single precision IEEE for­
mat) to a string of ASCII characters. len is the number of characters
(BYTES) of string used for the formatted decimal representation of the
number. (The following description applies to and notes the differences
between this procedure and REAL64TOSTRlNG).

Depending on the value of X and the two formatting variables lp and Dp
the procedure will use either a fixed or exponential format for the output
string. These formats are defined as follows:

72 TDS 276 02 March 1991

1.7 Type conversion library 137

Fixed : First, either a minus sign or space (an explicit plus
sign is not used), followed by a fraction in the form
<digits> . <digits>. Padding spaces are added to
the left of the sign indicator, as necessary. (Ip gives
the number of places before the point and op the
number of places after the point).

Exponential: First, either a minus sign or space (again, an explicit
plus sign is not used), followed by a fraction in the
form <digit> . <digits>, the exponential symbol (E),
the sign of the exponent (explicitly plus or minus), then
the exponent, which is two digits for a REAL32 and
three digits for a REAL64. (Op gives the number of
digits in the fraction (1 before the decimal point and
the others after)).

Possible combinations of Ip and 'op fall into three categories, described
below. Note the term 'Free format' means that the procedure may adopt
either fixed or exponential format, depending on the actual value of X.

1 If Ip=O, op=O, then free format is adopted. Exponential format
is used if the absolute value of x is less than 10-4 , but non­
zero, or greater than 109 (for REAL32), or greater than 1017 (for
REAL64); otherwise fixed format is used.

The value of len is dependent on the actual value of x with
trailing zeroes suppressed. The maximum length of the result
is 15 or 24, depending on whether it is REAL32 or REAL64
respectively.

If x is 'Not-a-Number' or infinity then the string will contain one of
the following: 'In£', '-In£' or 'NaN', (excluding the quotes).

2 If Ip>O, op>O, fixed format is used, unless the value needs
more than Ip significant digits before the decimal point, in which
case, exponential format is used. If exponential does not fit either,
then a signed string 'Ov' is produced. The length is always Ip +
op + 2 when Ip>O, op>O.

If x is 'Not-a-Number' or infinity then the string will contain one of
the following: 'In£', '-In£' or 'NaN', (excluding the quotes) and
padded out by spaces on the right to fill the field width.

3 If Ip=O, op>O, then exponential format is always used. The
length of the result is Dp + 6 or op + 7, depending on whether
x is a REAL32 or REAL64 , respectively.

If Ip=O, Dp=l, then a special result is produced consisting of

72 TDS 276 02 March 1991

138 The occam libraries

a sign, a blank, a digit and the exponent. The length is 7 or 8
depending on whether X is a REAL32 or REAL64. Note: this
result does not conform to the occam format for a REAL.

If X is 'Not-a-Number' or infinity then the string will contain one of
the following: 'Inf', '-Inf' or 'NaN', (excluding the quotes) and
padded out by spaces on the right to fill the field width.

All other combinations of Ip and Dp are errors.

If string is not long enough to hold the requested formatted real num­
ber as a string then these routines act as invalid processes.

REAL 64'l'OS'l'RING

PROC REAL64'l'OS'l'RING (IN'l' len, []BY'l'E string,
VAL REAL64 X,
VAL IN'l' lp, Dp)

As REAL32'l'OS'l'RING but for 64-bit numbers.

BOOL'l'OS'l'RING

PROC BOOLTOS'l'RING (IN'l' len, []BYTE string,
VAL BOOL b)

Converts a boolean value to a string. The procedure returns ''l'RUE' in
string if b is 'l'RUE and 'FALSE' otherwise. len contains the number
of characters in the string returned. If string is not long enough to
hold the representation then this routine acts as an invalid process.

STRINGTOINT

PROC STRINGTOINT (BOOL Error, INT n,
VAL []BYTE string)

Converts a string to a decimal integer. The procedure returns in n the
value represented in string. error is set to TRUE if a non-numeric
character is found in string or if string is empty. + or a - are
allowed in the first character position. n will be the value of the portion of
string up to any illegal characters, with the convention that the value of
an empty string is O. error is also set to TRUE if the value of string
overflows the range of INT, in this case n will contain the low order bits
of the binary representation of string. error is set to FALSE in all
other cases.

Similar procedures are provided for the types INT16, INT32 and INT64.

72 TDS 276 02 March 1991

1.7 Type conversion library

STRINGTOINT16

PROC STRINGTOINT16 (BOOL Error, INT16 n,
VAL []BYTE string)

As STRINGTOINT but converts to a 16-bit integer.

STRINGTOINT32

PROC STRINGTOINT32 (BOOL Error, INT32 n,
VAL []BYTE string)

As STRINGTOINT but converts to a 32-bit integer.

STRINGTOINT64

PROC STRINGTOINT64 (BOOL Error, INT64 n,
VAL [] BYTE string)

As STRINGTOINT but converts to a 64-bit integer.

STRINGTOHEX

PROC STRINGTOHEX (BOOL Error, INT n,
VAL []BYTE string)

139

The procedure returns in n the value represented by the hexadecimal
string. No 'I' is allowed in the input and hex digits must be in upper
case (A to F) rather than lower case (a to f). error is set to TRUE if a
non-hexadecimal character is found in string, or if string is empty.

n will be the value of the portion of string up to any illegal charac­
ter with the convention that the value of an empty string is O. error
is also set to TRUE if the value represented by string overflows the
range of INT ~ In this case n will contain the low order bits of the binary
representation of string. In all other cases error is set to FALSE.

Similar procedures are provided for the types HEX16, HEX32 and HEX64.

STRINGTOHEX16

PROC STRINGTOHEX16 (BOOL Error, INT16 n,
VAL [] BYTE string)

As STRINGTOHEX but converts to a 16-bit integer.

72 TDS 276 02 March 1991

140

STRINGTOHEX32

The occam libraries

PROC STRINGTOHEX32 (BOOL Error, INT32 n,
VAL [] BYTE string)

As STRINGTOHEX but converts to a 32-bit integer.

STRINGTOHEX64

PROC STRINGTOHEX64 (BOOL Error, INT64 n,
VAL []BYTE string)

As STRINGTOHEX but converts to a 64-bit integer.

STRINGTOREAL32

PROC STRINGTOREAL32 (BOOL Error, REAL32 X,
VAL []BYTE string)

Converts a string to a 32-bit real number. This procedure takes a string
containing a decimal representation of a real number and converts it
into the corresponding real value. If the value represented by string
overflows the range of the type then an appropriately signed infinity is
returned. Errors in the syntax of string are signalled by a 'Not-a­
Number' being returned and error being set to TRUE. The string is
scanned from the left as far as possible while the syntax is still valid. If

-there are any characters after the end of the longest correct string then
error is set to TRUE, otherwise it is FALSE. For example if string was
"12.34E + 2 + 1.0" then the value returned would be 12.34 x 102 with
error set to TRUE.

STRINGTOREAL64

PROC STRINGTOREAL64 (BOOL Error, REAL64 X,
VAL []BYTE string)

As STRINGTOREAL32 but converts to a 64-bit number.

STRINGTOBOOL

PROC STRINGTOBOOL (BOOL Error, b,
VAL []BYTE string)

Converts a string to a boolean value. The procedure returns TRUE in b if
the first four characters of string are 'TRUE' and FALSE if the first five
characters are 'FALSE'; b is undefined in other cases. TRUE is returned

72 TDS 276 02 March 1991

1.8 Block CRC library

in error if string is not exactly 'TRUE' or 'FALSE'.

1.8 Block CRC library

Library: ere. lib

141

The block CRC library provides two functions for generating CRC codes from byte
strings. OldCRC is some agreed initialisation value e.g. zero or the polynomial
generator. It may be, however, that the string that you want the CRC of, is not
all available at once. In this case, although an initialisation is still required once,
the value of the CRC from one segment of the string is used for OldCRC on the
next segment, until all segments of the string are eXhaus~ed.

For further information about CRC functions see 'INMOS Technical note 26:
Notes on graphics support and performance improvements on the IMS TBOO'.

Result Function Parameter Speclflers.

INT CRCFROMMSB VAL []BYTE InputString,
VAL INT PolynomialGenerator,
VAL INT OldCRC

INT CRCFROMLSB VAL []BYTE InputStrinq
VAL INT PolynomialGenerator,
VAL INT OldCRC

1.8.1 Function definitions

CRCFROMMSB

INT FUNCTION CRCFROMMSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator,
VAL INT OldCRC)

The string of bytes is polynomially divided by the generator, starting at
the most significant bit of the most significant byte.

CRCFROMLSB

INT FUNCTION CRCFROMLSB (VAL []BYTE InputStrinq,
VAL INT PolynomialGenerator,
VAL INT OldCRC)

The string of bytes is polynomially divided by the generator, starting at
the least significant bit of the least significant byte.

72 TDS 276 02 March 1991

142 The occam libraries

1.9 Extraordinary link handling library

Library: xlink .lib

The extraordinary link handling library contains routines for handling communi·
cation failures errors on a link. Four procedures are provided to allow failures on
input and output channels to be handled by timeout or by signalling the failure
on another channel. A fifth procedure allows the channel to be reset. The use
of these routines is described in part 1. section 10.5.

Procedure Parameter Speclflers

InputOrFail.t CHAN OF ANY c, []BYTE mess,
TIMER t, VAL INT time, BOOL aborted

OutputOrFail.t CHAN OF ANY c, VAL []BYTE mess,
TIMER t, VAL INT time, BOOL aborted

InputOrFail.c CHAN OF ANY c, []BYTE mess
CHAN OF INT kill, BOOL aborted

OutputOrFail.c CHAN OF ANY c, VAL []BYTE mess,
CHAN OF INT kill, BOOL aborted

Reinitialise

CAUTION:

CHAN OF ANY c

Use of the routines in xlink. lib during interactive debugging will lead to
undefined results.

1.9.1 Procedure definitions

The four procedures take as parameters a link channel c (on which the com­
munication is to take place). a byte vector mes s (which is the object of the
communication). and the boolean variable aQorted. The choice of a byte vec·
tor for the message allows an object of any type to be passed along the channel
providing it is retyped first.

InputOrFail.t

PROC InputOrFail.t (CHAN OF ANY c, []BYTE mess,
TIMER t, VAL INT time,
BOOL aborted)

72 TDS 276 02 March 1991

1.9 Extraordinary link handling library 143

This procedure is used for communication where failure is detected by a
timeout. It takes a timer parameter t, and an absolute time time. The
procedure treats the communication as having failed when the time as
measured by the timer t is AFTER the specified time time.

OutputOrFail·. t

PROC OutputOrFail.t (CHAN OF ANY c,
VAL []BYTE mess,
TIMER t, VAL INT time,
BOOL aborted)

This procedure is used for communication where failure is detected by a
timeout. It takes a timer parameter t, and an absolute time time. The
procedure treats the communication as having failed when the time as
measured by the timer t is AFTER the specified time time.

InputOrFail.c

PROC InputOrFail.c (CHAN OF ANY c, []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

This procedure provides, through an abort control·channel, for commu­
nication failure on a channel expecting an input. This is useful if failure
cannot be detected by a simple timeout. Any integer on the channel
kill will cause the channel c to be reset and this procedure to termi­
nate.

OutputOrFail.c

PROC OutputOrFail.c (CBAN OF ANY c,
VAL []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

This procedure provides, through an abort control channel, for commu­
nication failure on a channel attempting to output. This is useful if failure
cannot be detected by a simple timeout. Any integer on the channel
kill will cause the channel c to be reset and this procedure to termi­
nate.

72 TDS 27602 March 1991

144

Reinitialise

PROC Reinitialise (CBAN OF ANY c)

The occam libraries

This procedure may be used to reinitialise the link channel c after it is
known that all activity on the link has ceased.

Reinitialise must only be used to reinitialise a link channel after
communication has finished. If the procedure is applied to a link channel
which is being used for communication the transputer's error flag will be
set and subsequent behaviour is undefined.

72 TDS 276 02 March 1991

1.10 Debugging support library

1.10 Debugging support library

Library: debug .lib

145

The debugging support library provides four procedures. Two procedures are
provided to stop a process, one on a specified condition. The third procedure is
used to insert debugging messages and the fourth procedure is a timer process
for analysing deadlocks.

Procedure Parameter Speclflers

DEBUG.ASSERT VAL BOOL assertion

DEBUG.MESSAGE VAL [] BYTE message

DEBUG. STOP ()

DEBUG. TIMER CBAN OF INT stop

1.10.1 Procedure definitions

DEBUG.ASSERT

PROC DEBUG.ASSERT (VAL BOOL assertion)

If a condition fails this procedure stops a process and notifies the debug­
ger.

If assertion evaluates FALSE, DEBUG.ASSERT stops the process
and sends process data to the debugger. If assertion evaluates TRUE
no action is taken.

If the program is not being run within the breakpoint debugger and the
assertion fails, then the procedure behaves like DEBUG. STOP.

72 TDS 276 02 March 1991

146

DEBUG.MESSAGE

The occam libraries

PRoe DEBUG.MESSAGE (VAL []BYTE message)

This procedure sends a message to the debugger which is displayed
along with normal program output. Note: that only the first 83 characters
of the message are displayed.

If the program is not being run within the breakpoint debugger the pro­
cedure has no effect.

DEBUG. STOP

PROC DEBUG. STOP ()

This procedure stops the process and sends process data to the debug­
ger.

If the program is not being run within the breakpoint debugger then the
procedure stops the process or processor, depending on the error mode
that the processor is in.

DEBUG. TIMER

PROC DEBUG. TIMER (CHAN OF INT stop)

A timer process for use when analysing deadlocks in occam programs.
This procedure supports all current 16 and 32 bit transputers. The pro­
cedure remains on the timer queue until receipt of any integer value on
the channel stop, whereupon it will terminate. For an example of this
process see part 1, section 7.17.5.

72 TDS 276 02 March 1991

1.11 Mixed languages support library

1.11 Mixed languages support library

Library: callc .lib

147

This library provides four occam procedures for initialising static and heap areas
and terminating them after use. They are provided to support the incorporation of
code written in other languages such as C and FORTRAN into occam programs.
Only code which is in the standard TCOFF format, used by this toolset may be
incorporated using these procedures.

Procedure Parameter Speclflers

init.static [] INT static.area, INT
required. size, gosb

init.heap VAL INT gosb, [] INT
heap.area

terminate.heap.use VAL INT gosb

terminate.static.use VAL INT gosb

1.11.1 Procedure definitions

init.static

PROC init.static ([] INT static. area,
INT required. size, gosb)

This function is used to set aside and initialise an area of memory for use
as a static area.

The static area is an integer array declared in the occam calling pro­
gram. Two integer values are obtained, as follows:

required. size: The number of words of static space re­
quired.

gosb : A pointer to the base of the array which will
act as the global static base.

Note: the number of words of static space required is equivalent to the
size of the integer array. One element of the integer array is equivalent
to one word of memory.

If an error occurs when initialising the static area then the value
MOSTPOS INT is returned instead of the required size.

72 lOS 276 02 March 1991

148

init.heap

The occam libraries

PROC init.heap (INT qsb, VAL [lINT heap.area)

This procedure is used to set aside an area of memory for use as a heap.
The first argument is the gsb pointer returned by init . static, which
is required because the memory allocation routines make use of static
data.

As for the static area the heap area is declared as an integer array.
This array must be large enough to accommodate all calls to C mem­
ory allocation functions. The number of words of heap area required is
equivalent to the size of the integer array. One element of the integer
array is equivalent to one word of memory.

If the heap is used by a function before init . heap has been called
the memory allocation functions will fail with their normal error returns.

terminate.heap.use

PROC terminate.heap.use (VAL INT qsb)

terminate. heap. use should be call~d when the heap is no longer
required. It provides a clean way of terminating the use of the heap.

Once the heap terminate procedure has been called the state of the heap
is undefined and further calls to memory allocation functions will fail.

terminate. heap. use must be called before terminating the static
area because the heap requires static variables for its operation.

terminate.static.use

PROC terminate.static.use (VAL INT qsb)

terminate. static. use should be called when the static area is no
longer required, usually when no further calls to other languages will be
made. It provides a clean way of ending the use of the static area.

Once the static terminate procedure has been called the state of the
static area is undefined.

72 TDS 276 02 March 1991

1.12 DOS specific hostlo library

1.12 DOS specific hostio library

Library: msdos. lib

149

The MSDOS host file server library allows programs to use some facilities specific
to the IBM PC. A set of constants for the library are provided in the include file
msdos . inc, which is listed in appendix C.

Caution: Programs that use this DOS specific library will not be portable to
versions of the toolset on other hosts.

Procedure Parameter Specifiers

dos.receive.block CHAN OF SP fs, ts,
VAL INT32 location,
INT bytes.read, []BYTE block,
BYTE result

dos.send.block CHAN OF SP fs, ts,
VAL INT32 location,
VAL []BYTE block,
INT len, BYTE result

dos.call.interrupt CHAN OF SP fs, ts,
VAL INT16 interrupt,
VAL [dos.interrupt.regs.size]
BYTE register.block.in~

BYTE carry. flag,
[dos.interrupt.regs.size] BYTE
register.block.out,
BYTE result

dos.read.regs CHAN OF SP fs, ts,
[dos.read.regs.size] BYTE
registers,
BYTE result

dos.port.read CHAN OF SP fs, ts,
VAL INT16 port.location,
BYTE value, result

dos.port.write CHAN OF SP fs, ts,
VAL INT16 port.location,
VAL BYTE value, BYTE result

72 TDS 276 02 March 1991

150

1.12.1 Procedure definitions

dos.receive.block

The occam libraries

PROC dos.receive.block (CHAN OF SP fs, ts,
VAL INT32 location,
INT bytes.read,
[l BYTE block,
BYTE result)

Reads a block of data, starting at location, from host memory.
location is arranged as the segment in the top two bytes and the
offset in the lower two bytes, both unsigned.

The number bytes requested is SIZE block; the number of bytes read
is returned in bytes. read. The result returned can take any of the
following values:

spr. ok The read operation was successful.

spr . bad. packet. size Too many bytes were requested

to be read: (SIZE block) >
dos.max.receive.b1ock.buffer.size.

~ spr. operation. failed The read failed, so bytes. read =
O. If result takes a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

dos.send.block

PROC dos.send.block (CHAN OF SP fs, ts,
VAL INT32 location,
VAL [lBYTE block,
INT len, BYTE result)

Writes a block of data to host mem·ory, starting at location. The
location is arranged as the segment in the top two bytes and the
offset in the lower two bytes, both unsigned.

The number of bytes, requested to be written is SIZE block; the num­
ber of bytes written is returned in len. The result returned can take any
of the following values:

72 TDS 276 02 March 1991

1.12 DOS specific hostio library 151

spr. ok The write operation was successful.

spr . bad. packet. size Too many bytes were requested

to be written: (SIZE block) >
dos.max.send.block.buffer.size.

~ spr. operation. failed The write failed. If result takes a
value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

dos.call.interrupt

PROC dos.ca11.interrupt
(CBAN OF SP fs, ts,

VAL INT16 interrupt,
VAL [dos.interrupt.regs.size] BYTE register.b1ock.in,
BYTE carry.f1ag,
[dos.interrupt.regs.aize] BYTE register.b1ock.out,
BYTE resu1t)

Invokes an interrupt call on the host PC, with the processor's registers ini­
tialised to requested values. On return from the interrupt the values stored
in the processor's registers are returned in register. block. out,
along with the value of the carry flag on the PC, which is stored in
carry. flag.

The interrupt number is specified by interrupt. The registers are
represented by a block of bytes called register. block. in. This
block stores the values to be written to the registers. Each register value
occupies 4 bytes of a block. On the IBM PC the 2 most significant bytes
are ignored as this machine has only 2 byte registers (16 bit registers).
The layout of registers in the block is .as follows:

72 TDS 276 02 March 1991

152 The occam libraries

Register Start position in block End position in block

(least significant byte) (most significant byte)

ax 0 3

bx 4 7

ex 8 11

dx 12 15

di 16 19

si 20 23

cs 24 27

ds 28 31

es 32 35

ss 36 39

Note, however, that the CS and SS registers cannot be set.

The result returned can take any of the following values:

spr. ok The interrupt was successful.

~ spr. operation. failed The interrupt failed. If result takes
a value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

dos.read.reqs

PROC dos.read.reqs
(CHAN OF SP fs, ts,
[dos.read.reqs.size] BYTE reqisters,
BYTE result)

Reads the current values of some registers of the PC. The· values of
the registers are returned as a block of bytes, each register occupying 4
bytes of the block:

72 TDS 276 02 March 1991

1.12 DOS specific hostio library

Register Start position in block End position in block

(least significant byte) (most significant byte)

ax 0 3

bx 4 7

ex 8 11

dx 12 15

153

On the IBM PC the 2 most significant bytes are ignored as this machine
has only 2 byte registers (16 bit registers).

The result returned can take any of the following values:

spr.ok

~ spr. operation. failed

dos.port.read

The read was successful.

The read failed. If result takes a
value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

PROC dos.port.read (CHAN OF SP fs, ts,
VAL INT16 port.location,
BYTE value, result)

Reads the value at the port, specified by the port address,
port . location. The port address being in the input/output space
of the PC is an unsigned number between 0 and 64K.

No check is made to ensure that the value received from the port (if any)
is valid. The value returned in value is that of the given address at the
moment the port is read by the host file server.

The result returned can take any of the following values:

spr.ok

~ spr. operation. failed

72 TDS 276 02

The read was successful.

The read failed. If result takes a
value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

March 1991

154

dos.port.write

The occam libraries

PROC dos.port.write (CHAN OF SP fs, ts,
VAL INT16 port. location,
VAL BYTE value, BYTE result)

Writes the given value to the port specified by the port address,
port . location. The port address being in the input/output space
of the PC is an unsigned number between 0 and 64K.

No check is made to ensure that the value written to the port has been
correctly read by the device connected to the port (if any).

The result returned can take any of the following values:

spr.ok
~ spr. operation. failed

72 TDS 276 02

The write was successful.

The write failed. If result takes a
value

~ spr. operation. failed

then this denotes a server returned
failure. (See sections C.1 and H.2.2).

March 1991

Appendices

72 TDS 276 02 March 1991

156

72 TDS 276 02

Appendices

March 1991

A Names defined by the
software

All names which may appear in occam source text and which are defined either
by the language, the compiler or the libraries are given below in alphabetical
order.

Toolset constants are not included; for listings of the constants files see ap­
pendixC.

The names in this table are grouped into the following classes:

1 Language keyword. Keyword defined in the language reference manual.

2 Compiler keyword. Keyword defined by the current compiler implemen­
tation.

3 Compiler predefine. A procedure or function which is predeclared by the
compiler. On some processors these are implemented by a routine in
a library with the name indicated, on others they are implemented as in
line code.

4 System library. Library routines for special transputer system operations.
Consists of the libraries crc. lib and xlink . lib.

5 Maths library. A function in the elementary function libraries. The library
name depends on the version required (single or double length).

6 Maths support. Supporting functions for routines in tbmaths . lib.

7 I/O library. A procedure or function in the input/output and supporting
libraries (hostio . lib, streamio . lib, string. lib,
process . lib, and convert . lib). The library name which must be
used to access it is also shown.

8 Debug library. Routines to help with interactive debugging.

9 Compiler directive. A word in occam source code recognised by the
compilation system for special action at compile time. The word is pre­
ceded in occam source either by the character 'i' or by 'iPRAGMA'.

Any name which is not a language keyword may be redeclared as an identifier in
an occam program. However, redefining a name of a compiler library procedure
or function can have unexpected consequences and it is strongly recommended
that all the names in these tables are reserved for the uses specified.

72 TDS 276 02 March 1991

158 A Names defined by the software

Name Class Library Notes
ABS compiler predefine
ACOS maths library snglmath also tbmaths

AFTER language keyword
ALOG maths library snglmath also tbmaths

ALOG1O maths library snglmath also tbmaths

ALT language keyword
AND language keyword
ANY language keyword
append. char io library string
append.hex.int64 io library string
append.hex.int io library string

append.int64 io library string

append.int io library string

append.rea132 io library string

append.rea164 io library string

append. text io library string
ARGUMENT.REDUCE compiler predefine
ASHIFTLEFT compiler predefine
ASHIFTRIGHT compiler predefine
ASIN maths library snglmath also tbmaths

ASM compiler keyword
ASSERT compiler predefine
AT language keyword
ATAN maths library snglmath also tbmaths

ATAN2 maths library snglmath also tbmaths

BITAND language keyword
BITCOUNT compiler predefine
BITNOT language keyword
BITOR language keyword
BITREVNBITS compiler predefine
BITREVWORD compiler predefine
BOOL language keyword
BOOLTOSTRING io library convert
BYTE language keywOrd
CASE language keyword
CAUSEERROR compiler predefine
CHAN language keyword
char.pos io library string

CLIP2D compiler predefine
COMMENT compiler directive
compare. strings io library string

72 TDS 276 02 March 1991

Names defined by the software A 159

Name Class Library Notes
COPYSIGN compiler predefine
COS maths library snglmath also tbmaths

COSH maths library snglmath also tbmaths

CRCBYTE compiler predefine
CRCFROMLSB system library crc
CRCFROMMSB system library crc
CRCWORD compiler predefine
DABS compiler predefine
DACOS maths library dblmath also tbmaths

DALOG maths library dblmath also tbmaths

DALOG1O maths library dblmath also tbmaths

DARGOMENT.REDUCE compiler predefine
DASIN maths library dblmath also tbmaths

DATAN maths library dblmath also tbmaths

DATAN2 maths library dblmath also tbmaths

DCOPYSIGN compiler predefine
DCOS maths library dblmath also tbmaths

DCOSH maths library dblmath also tbmaths

DDIVBY2 compiler predefine
DEBUG.ASSERT debug library debug

DEBUG.MESSAGE debug library debug
DEBUG. STOP debug library debug
DEBUG. TIMER debug library debug
delete. string io library string
DEXP maths library dblmath also tbmaths

DFLOATING.UNPACK compiler predefine
DFPINT compiler predefine
DIEEECOMPARE compiler predefine

DISNAN compiler predefine
DIVBY2 compiler predefine
DLOGB compiler predefine
DMINUSX compiler predefine
DMULBY2 compiler predefine
DNEXTAFTER compiler predefine
DNOTFINITE compiler predefine
DORDERED compiler predefine
DPOWER maths library dblmath also tbmaths

DRAN maths library dblmath also tbmaths

DRAW2D compiler predefine
DSCALEB compiler predefine

72 TDS 27602 March 1991

160 A Names defined by the software

Name Class Library Notes
DSIN maths library dblmath also tbmaths

DSINH maths library dblmath also tbmaths

DSQRT compiler predetine
DTAN maths library dblmath also tbmaths

DTANH maths library dblmath also tbmaths

ELSE language keyword
eqstr io library string
EXP maths library snglmath also tbmaths
EXTERNAL compiler directive
FALSE language keyword
FLOATING. UNPACK compiler predetine
FOR language keyword
FPINT compiler predetine
FRACMUL compiler predetine
FROM language keyword
FUNCTION language keyword
GUY compiler keyword
HEX16TOSTRING io library convert
HEX32TOSTRING io library convert
HEX64TOSTRING io library convert
HEXTOSTRING io library convert
IEEE320P compiler predetine
IEEE32REM compiler predetine
IEEE640P compiler predetine
IEEE64REM compiler predetine
IEEECOMPARE compiler predetine
IF language keyword
IMPORT compiler directive
IN language keyword
INCLUDE compiler directive
INLINE compiler keyword
InputOrFail.c system library xlink
InputOrFail.t system library xlink
insert. string io library string

INT language keyword
INT16 language keyword
INT16TOSTRING io library convert
INT32 language keyword
INT32TOSTRING io library convert
INT64 language keyword

72 TDS 276 02 March 1991

Names defined by the software A 161

Name Class Library Notes
INT64TOSTRING io library convert
INTTOSTRING io library convert
IS language keyword
is.digit io library string
is.hex.digit io library string
is. id. char io library string
is.in.range io library string
is. lower io library string
is.upper io library string
ISNAN compiler predefine
KERNEL.RUN compiler predefine
ks.keystream.sink io library streamio
ks.keystream.to.scrstream io library streamio
ks.read.char io library streamio
Jcs . read. int io library streamio
ks.read.int64 io library streamio
ks.read.line io library streamio
ks.read.rea132 io library streamio
ks.read.rea164 io library streamio

72 TDS 276 02 March 1991

162 A Names defined by the software

Name Class Llbr Notes
LINKAGE compiler directive
LOAD.BYTE.VECTOR compiler predefine
LOAD.INPUT.CHANNEL compiler predefine
LOAD.INPUT.CHANNEL.VECTOR compiler predefine
LOAD.OUTPUT.CHANNEL compiler predefine
LOAD.OUTPUT.CHANNEL.VECTOR compiler predefine
LOGB compiler predefine
LONGADD compiler predefine
LONGDIFF compiler predefine
LONGDIV compiler predefine
LONGPROD compiler predefine
LONGSUB compiler predefine
LONGSUM compiler predefine
MINUS language keyword
MINUSX compiler predefine
MOSTNEG language keyword
MOSTPOS language keyword
MOVE2D compiler predefine
MULBY2 compiler predefine
next.int.from.line io library string
next. word. from. line io library string

NEXTAFTER compiler predefine
NORMALISE compiler predefine

NOT language keyword
NOTFINITE compiler predefine
OF language keyword
OPTION compiler directive
OR language keyword
ORDERED compiler predefine
OutputOrFail.c system library xlink

OutputOrFail.t system library xlink

PAR language keyword

PLACE language keyword
PLACED language keyword
PLUS language keyword
PORT language keyword

72 TDS 276 02 March 1991

Names defined by the software A

Name Class Library Notes
POWER maths library snglmath also tbmaths

PRAGMA compiler directive
PRI language keyword
PROC language keyword
PROCESSOR language keyword
PROTOCOL language keyword
RAN maths library snglmath also tbmaths

REAL32 language keyword
REAL32EQ compiler predefine
REAL32GT compiler predefine
REAL320P compiler predefine
REAL32REM compiler predefine
REAL32TOSTRING io library convert

REAL64 language keyword
REAL64EQ compiler predefine
REAL64GT compiler predefine
REAL640P compiler predefine
REAL64REM compiler predefine
REAL64TOSTRING io library convert
Reinitialise system library xlink
REM language keyword
RESCHEDULE compiler predefine
RESULT language keyword
RETYPES language keyword
ROTATELEFT compiler predefine
ROTATERIGHT compiler predefine
ROUND language keyword
ROUNDSN compiler predefine not T2s

SC compiler directive
SCALES compiler predefine
search.match io library string
search.no.match io library string

SEQ language keyword
SHIFTLEFT compiler predefine
SHIFTRIGHT compiler predefine
SIN maths library snglmath also tbmaths
SINH maths library snglmath also tbmaths

163

72 TDS 276 02 March 1991

164 A Names defined by the software

Name Class Library

SIZE language keyword

SKIP language keyword

so.ask io library hostio

so.buffer io library hostio

so. close io library hostio

so.commandline io library hostio

so. core io library hostio

so.date.to.ascii io library hostio

so.eof io library hostio

so.exit io library hostio

so.ferror io library hostio

so. flush io library hostio

so.fwrite.char io library hostio

so. fwrite.hex. int io library hostio

so. fwrite.hex. int32 io library hostio

so. fwrite.hex. int64 io library hostio

so. fwrite. int io library hostio

so.fwrite.int32 io library hostio

so. fwrite. int64 io library hostio

so.fwrite.nl io library hostio

so.fwrite.rea132 io library hostio

so.fwrite.rea164 io library hostio

so.fwrite.string io library hostio

so.fwrite.string.nl io library hostio

so.getenv io library hostio

so.getkey io library hostio

so.gets io library hostio

so.keystream.from.file io library streamio

so.keystream.from.kbd io library streamio

so.keystream.from.stdin io library streamio

so.multiplexor io library hostio

so. open io library hostio

so. open. temp io library hostio

so. overlapped. buffer io library hostio

so.overlapped.multiplexor io library hostio
so.overlapped.pri.multiplexor io library hostio

72 TDS 276 02 March 1991

Names defined by the software A

Name Class Library Notes
so.parse.command.line io library hostio
so.pollkey io library hostio
so.popen.read io library hostio
so.pri.multiplexor io library hostio
so.puts io library hostio
so.read io library hostio
so.read.echo.any.int io library hostio
so.read.echo.hex.int io library hostio
so.read.echo.hex.int32 io library hostio
so.read.echo.hex.int64 io library hostio
so.read.echo.int io library hostio
so.read.echo.int32 io library hostio
so.read.echo.int64 io library hostio
so.read.echo.line io library hostio
so.read.echo.rea132 io library hostio
so.read.echo.rea164 io library hostio
so.read.line io library hostio
so.remove io library hostio
so.rename io library hostio
so.scrstream.to.ANSI io library streamio
so.scrstream.to.file io.library streamio
so.scrstream.to.stdout io library streamio
so.scrstream.to.TVI920 io library streamio
so.seek io library hostio
so. system io library hostio
so.tell io library hostio
so.test.exists io library hostio
so. time io library hostio
so.time.to.ascii io library hostio
so.time.to.date io library hostio
so.today.ascii io library hostio
so. today. date io library hostio
so.version io library hostio
so.write io library hostio
so.write.char io library hostio
so.write.hex.int io library hostio
so.write.hex.int32 io library hostio
so.write.hex.int64 io library hostio
so.write.int io library hostio

165

72 TDS 276 02 March 1991

166 A Names defined by the software

Name Class Library

so.write.int32 io library hostio

so.write.int64 io library hostio

so.write.nl io library hostio

so.write.reaI32 io library hostio

so.write.reaI64 io library hostio

so.write.string io library hostio

so.write.string.nl io library hostio

sp.buffer io library hostio

sp.close io library hostio

sp.commandline io library hostio

sp.core io library hostio

sp.eof io library hostio

sp.exit io library hostio

sp.ferror io library hostio

sp.flush io library hostio

sp.getenv io library hostio

sp.getkey io library hostio

sp.gets io library hostio

sp.multiplexor io library hostio

sp.open io library hostio

sp.overlapped.buffer io library hostio

sp.overlapped.multiplexor io library hostio

sp.overlapped.pri.multiplexor io library hostio

sp.pollkey io library hostio

sp.pri.multiplexor io library hostio

sp.puts io library hostio

sp.read io library hostio

sp.receive.packet io library hostio

sp.remove io library hostio

sp.rename io library hostio

sp.seek io library hostio

sp.send.packet io library hostio

sp.system io library hostio

sp.tell io library hostio

sp.time io library hostio

sp.version io library hostio

sp.write io library hostio

SQRT compiler predefine

ss.beep io library streamio

72 TDS 276 02 March 1991

Names defined by the software A 167

Name Class Library Notes
ss.clear.eol io library streamio
ss.clear.eos io library streamio
ss.del.line io library streamio
ss.delete.chl io library streamio
ss.delete.chr io library streamio
ss.down io library streamio
ss.goto.xy io library streamio
ss.ins.line io library streamio
ss.insert.char io library streamio

ss.left io library streamio
ss.right io library streamio
ss.scrstream.copy io library streamio
ss.scrstream.fan.out io library streamio
ss.scrstream.from.array io library streamio
ss.scrstream.multiplexor io library streamio
ss.scrstream.sink io library streamio
ss.scrstream.to.array io library streamio

ss.up io library streamio

ss.write.char io library streamio
ss.write.endstream io library streamio
ss.write.hex.int io library streamio
ss.write.hex.int64 io library streamio
ss.write.int io library streamio
ss.write.int64 io library streamio
ss.write.nl io library streamio
ss.write.rea132 io library streamio
ss.write.rea164 io library streamio
ss.write.string io library streamio
ss.write.text.line io library streamio
STOP language keyword
str.shift io library string
string.pos io library string
STRINGTOBOOL io library convert

72 TDS 276 02 March 1991

168 A Names defined by the software

Name Class Library Notes
STRINGTOHEX io library convert
STRINGTOHEX16 io library convert
STRINGTOHEX32 io library convert
STRINGTOHEX64 io library convert
STRINGTOINT16 io library convert
STRINGTOINT32 io library convert
STRINGTOINT64 io library convert
STRINGTOINT io library convert
STRINGTOREAL32 io library convert
STRINGTOREAL64 io library convert
TAN maths library snglmath also tbmaths
TANH maths library snglmath also tbmaths
TIMER language keyword
TIMES language keyword
to. lower. case io library string
to.upper.case io library string
TRANSLATE compiler directive
TRUE language keyword
TRUNC language keyword
UNPACKSN compiler predefine not T2s
USE compiler directive
VAL language keyword
VALOF language keyword
VECSPACE compiler keyword
WHILE language keyword
WORKSPACE compiler keyword

72 TDS 276 02 March 1991

B Transputer instruction
set support

This appendix contains the list of transputer instructions supported by the toolset
restricted code insertion facility, and gives the mnemonic for each instruction. All
the instructions listed can be inserted into occam programs using the ASM
construct. The appendix ends with a summary of the differences between the
ASM and GUY constructs and describes the restrictions placed on the use of GUY
code.

The instructions described are available when the compiler is targetted to an
IMS T212, M212, T222, T225, T400, T414, T425, T800, T801, or T805 unless
otherwise indicated. Instructions that are only supported when the compiler is
targetted to certain processor types, are given in separate sections. The reader
is referred to the 'Transputer instruction set: a compiler writer's guide' for further
details of the instruction set. Details of the instructions listed in section B.8 are
given in 'The transputer databook'.

B.1 Pseudo-instructions

Pseudo-instructions are instructions to the assembler, rather than true transputer
instructions.

Expressions used in load or store pseudo instructions must be word sized or
smaller. To load a floating point value, use a LD to load its address, then a
FPLDNLSN or FPLDNLDB as required.

The following pseudo-instructions are implemented:

BYTE

LD

LDAB

LDABC

LDLABELDIFF

72 TDS 276 02

This instruction takes as an argument a list of constant val­
ues in the range 0 to 255, or a list of (constant) byte arrays
or strings. The assembler copies the literal bytes into the
instruction stream.
Loads a value into the Areg.
Loads values into the Areg and Breg. The left hand expres­
sionis placed in Areg.
Loads values into Areg, Breg and Creg. The leftmost ex­
pression is placed in Areg.
Loads the difference between the addresses of two labels into
Areg.

March 1991

170

ST

STAB

STABC

WORD

B Transputer Instruction set support

Stores the value from the Areg.
Stores values into the Areg and Breg. The leftmost element
receives Areg.
Stores values into the Areg, Breg, and Creg. The leftmost
element receives Areg.
Generates constants of the target-machine word length. This
instruction takes as an argument a list of INTs or INT (con­
stant) arrays.

The LD, LDAB, ST, and STAB instructions may use other registers and/or tem­
poraries. LDABC and STABC may use temporaries.

B.2 Prefixing instructions

The transputer instruction set is built up from 16 direct instructions, each with
a 4-bit argument field. The direct instructions include prefix instructions which
augment the 4-bit field in a direct instruction which follows them by their own
4-bit argument field, effectively allowing the argument to be extended to 32 bits.
Normally, the assembler will compute the prefix instructions required for operand
values greater than 4 bits automatically.

PFIX
NFIX

prefix
negative prefix

72 TDS276 02 March 1991

B.3 Direct Instructions

B.3 Direct instructions

171

The direct instructions form the core of the transputer instruction set. Each
direct instruction has a single operand, normally an integer constant, which -will
be encoded in the instruction itself and, if it is larger than will fit into the 4­
bit argument field of the direct instruction, into a series of PFIX and NFIX
instructions as well.

The transputer architecture is based around a three-register evaluation stack
and a single base register Wreg. The load and store 'local' instructions access a
word in memory at a displacement from Wreg given by the operand value used.
The displacement is scaled by the word size. The load and store 'non-local'
instructions use the top evaluation stack register (Areg) as the base instead of
Wreg, allowing computed base addresses to be used.

The operand of the J, CJ and CALL instructions is interpreted as a byte dis­
placement from the instruction pointer (program counter) register Iptr. LDPI is
similar but takes its operand from Areg.

ADC

AJW

CALL

CJ

EQC
J

LDC
LDL
LDLP
LDNL
LDNLP
OPR

STL
STNL

Add constant operand value to Areg
Adjust workspace pointer Wreg by constant operand value (scaled by
word length)
Call
Conditional jump Le. 'jump if zero otherwise pop Areg'. As with JUMP,
a label identifier may be used as argument to this instruction.
Test if Areg equals constant; Areg gets 1/0 result
Jump: the argument may be an identifier indicating a label for the
jump to go to; the assembler will compute the displacement required.
Load constant
Load local word
Load pointer to local word
Load non-local word
Load pointer to non-local word
'operate': the argument to this instruction is a code indicating a zero­
operand indirect instruction to be executed. Most of the transputer
instruction set is made up of these indirect instructiqns. Normally you
would use the mnemonic for the specific indirect instruction which you
require: the assembler will encode this as an opr instruction on your
behalf. However, it is possible to use opr explicitly, for example to
synthesise the instruction sequence for a new indirect instruction not
supported by the T414 and T800 transputers.
Store local word
Store non-local word

72 TDS 276 02 March 1991

172

8.4 Operations

B Transputer Instruction set support

The instructions in this section are all indirect instructions built out of the OPR
instruction. None of these instructions take an argument; instead, they work
solely with the transputer evaluation stack.

The arithmetic instructions take their operands from the top of the evaluation
stack (Areg, Breg) and push the result value back on the stack in Areg.

B.4.1

ADD

BSOB
DIFF
GT
LB
PROD
REV

SUB
WSUB

B.4.2

AND

BCNT
CCNTl
CSNGL
CSOBO
CWORD
DIV
FMUL
LAnD

LDIFF
LDIV

Short Indirect Instructions

Add
Byte subscript (Areg = Areg + Breg)
Difference
Greater than (result 'true' or 'false', placed in Areg)
Load byte
Product
Reverse top two stack elements
Subtract
Word subscript (Areg = Areg + 4*Breg) (32-bit)
Word subscript (Areg = Areg + 2*Breg) (16-bit)

Long Indirect instructions

Bit-wise and
Byte count
Check count from 1
Check single
Check subscript from 0
Check word
Divide
Fractional multiply (32-bit processors only)
Long add
Long difference
Long divide

72 TDS 276 02 March 1991

B.4 Operations

LOP I

LOPRI
LOTIMER
LMUL

LSHL
LSHR
LSUB
LSUM
MINT
MOVE
MOL
NORM
NOT
OR
REM

SB
SETERR
SHL
SHR
STTIMER
SUM
TESTERR
TESTHALTERR
TESTPRANAL
weNT
XDBLE
XOR
XWORD

72 TDS 276 02

173

Load pointer to instruction (Areg is byte displacement from
Iptr)
Load current priority
Load timer
Long multiply
Long shift left
Long shift right
Long subtract
Long sum
Minimum integer
Move block of memory (src: Creg dest: Breg len: Areg)
Multiply
Normalise
Bit-wise not
Bit-wise inclusive or
Remainder
Store byte
Set error
Shift left
Shift right
Store timer
Sum
Test error false and clear
Test halt-on-error
Test processor analysing
Word count
Extend to double
Bit-wise exclusive or
Extend to word

March 1991

174 8 Transputer Instruction set support

8.5 Additional instructions for the T400, T414, T425 and TB

The indirect instructions in this section may only be executed on a T400, T414
or T425 processor.

CFLERR
LDINF
POSTNORMSN

ROONDSN
UNPACKSN

Check single-length floating-point infinity or not-a-number
Load single-length infinity
Post-normalise correction of single-length floating-point
number
Round single-length floating-point number
Unpack single-length floating-point number

8.6 Additional instructions for the IMS T800, T801 and T805

The instructions in this section may only be executed on T800, T801 and T805
processors.

8.6.1 Floating-point Instructions

The indirect instructions in this section provide access to the T8 series built-in
floating-point processor. Note that the instructions beginning with 'FPU... ' are
doubly indirect: they are accessed by loading an entry code constant with a LDC
instruction, then executing an FPENTRY instruction, which is itself indirect. As
with ordinary indirect instructions, this indirection is handled transparently by the
assembler, although the FPENTRY instruction is also available.

The floating point load and store instructions use the integer Areg as a pointer
to the operand location.

FPADD
FPB32TOR64
FPCHKERR
FPDIV
FPDUP
FPENTRY

FPEQ
FPGT

72 TDS 276 02

Floating-point add
Convert 32-bit unsigned integer to 64-bit real
Check floating error
Floating-point divide
Floating duplicate
Floating point unit entry:. used to synthesise the 'FPU... '
instructions.
Floating point equality
Floating point greater than

March 1991

8.6 Additional Instructions for the IMS T800, T801 and T805 175

FPI32TOR32
FPI32TOR64
FPINT
FPLDNLADDDB
FPLDNLADDSN
FPLDNLDB
FPLDNLDBI
FPLDNLMULDB
FPLDNLMULSN
FPLDNLSN
FPLDNLSNI
FPLDZERODB
FPLDZEROSN
FPMUL
FPNAN
FPNOTFINITE
FPORDERED
FPREMFIRST
FPREMSTEP
FPREV
FPRTOI32
FPSTNLDB
FPSTNLI32
FPSTNLSN
FPSUB
FPTESTERR
FPUABS
FPUCHKI32
FPUCHKI64
FPUCLRERR
FPUDIVBY2
FPUEXPDEC32
FPUEXPINC32
FPUMULBY2
FPUNOROUND

72 TDS 276 02

Convert 32-bit integer to 32-bit real
Convert 32-bit integer to 64-bit real
Round to floating integer
Floating load non-local and add double
Floating load non-local and add single
Floating load non-local double
Floating load non-local indexed double
Floating load non-local and multiply double
Floating load non-local and multiply single
Floating load non-local single
Floating load non-local indexed single
Fload zero double
Load zero single
Floating-point multiply
Floating point not-a-number
Floating point finite
Floating point orderability
Floating-point remainder first step
Floating-point remainder iteration step
Floating reverse
Convert floating to 32-bit integer
Floating store non-local double
Store non local int32
Floating store non-local single
Floating-point subtract
Test floating error false and clear
Floating-point absolute
Check in range of 32-bit integer
Check in range of 64-bit integer
Clear floating error
Divide by 2.0
Divide by 232

Multiply by 232

Multiply by 2.0
Convert 64-bit real to 32-bit real without rounding

March 1991

176

FPUR32TOR64
FPUR64T0R32
FPORM
FPURN
FPURP
FPURZ
FPUSETERR
FPUSQRTFIRST
FPUSQRTLAST
FPUSQRTSTEP

B Transputer Instruction set support

Convert single to double
Convert double to single
Set rounding mode to round minus
Set rounding mode to round nearest
Set rounding mode to round positive
Set rounding mode to round zero
Set floating error
Floating-point square root first step
Floating-point square root end
Floating-point square. root step

B.7 Additional instructions for the IMS T22S, T400, T42S,
T800, T801 and T80S

The indirect instructions in this section supplement the T414's integer instruction
set.

BITCNT
BITREVNBITS
BITREVWORD
CRCBYTE
CRCWORD
DUP
WSUBDB

Count the number of bits set in a word
Reverse bottom n bits in a word
Reverse bits in a word
Calculate CRC on byte
Calculate Cyclic Redundancy Check (CRC) on word
Duplicate top of stack
Form double-word subscript

The following 2-dimensional block move instructions apply to the IMS T400,
T425, T800, T801 and T805 only:

MOVE2DALL 2-dimensional block copy
MOVE2DINIT Initialise data for 2-dimensional block move
MOVE2DNONZERO 2-dimensional block copy non-zero bytes
MOVE2DZERO 2-dimensional block copy zero bytes

72 TDS 276 02 March 1991

8.8 Additional Instructions for the IMS T225, T400, T425, T801 and T805177

8.8 Additional instructions for the IMS T22S, T400, T42S,
T801 and T80S

The indirect instructions listed in this section provide debugging and general
support functions.

CLRJOBREAK

SETJOBREAK

TESTJOBREAK

TlMERDISABLEH

TlMERDISABLEL

TlMERENABLEH

TlMERENABLEL

LDMEMSTARTVAL

POP
LDDEVID

Clear jump 0 break enable flag
Set jump 0 break enable flag
Test if jump 0 break flag is set
Disable high priority timer interrupt
Disable low priority timer interrupt
Enable high priority timer interrupt
Enable low priority timer interrupt
Load value of MemStart address
Pop processor stack
Load device identity

8.9 Differences between ASM and GUY

The ASM construct has very different semantics to GUY code. This means that
simply changing the word 'GUY' to 'ASM' within your code, will usually break the
code.

The following list summarises the differences between GUY and ASM code and
outlines the restrictions now placed on using GUY constructs.

• A primary instruction in ASM code always generates that primary instruc­
tion in the object file; this was not always the case with the GUY construct.

• There are differences in the instructions used to perform load and store
operations depending on whether a GUY or ASM construct is used.

- The statements LDL x and LDNL x in GUY code both generate
code which behaves as LD x in ASM code. They may generate
one or more transputer instructions.

- The statements LDLP x and LDNLP x in GUY code both gen­
erate code which behaves as LD ADDRESSOF x in ASM code.
They may generate one or more transputer instructions.

- The statements STL x and STNL x in GUY code both generate
code which behaves as ST x in ASM code. They may generate
one or more transputer instructions.

72 TDS 27602 March 1991

178 B Transputer Instruction set support

- If a GUY construct is changed to an ASM construct then changes
of loads and stores using any of these primary operations to the
corresponding pseudo-operations should always be performed.

- Use of these primary operations directly in ASM code is not usu­
ally necessary or desirable. In ASM code each primary load or
store statement will generate a single, possibly prefixed, trans­
puter instruction, whose operand is the offset within workspace of
the variable named. Whether the location at this offset is a value
or a pointer depends on whether the name is of a local variable
(or value parameter) or not.

• References to labels in GUY code are preceded by a full stop whereas
in ASM they are preceded by a colon.

• Symbolic access to channels is not permitted in GUY code although it
was in previous releases of the toolset (Le. the IMS 0705/0605/0505
products). This is due to the fact that the internal representation of chan­
nels has changed; the base data type of a channel is now 'pointer to
channel'. (See part 1 section 10.1.3).

In ASM code, LD c will return the address of the channel, whereas LD
ADDRESSOF c will return the address of a pointer to the channel.

72 TOS 276 02 March 1991

C Constants
This appendix lists the constants provided with the occam libraries. The con­
stants are supplied in text files and are given the extension • inc (for 'include').
These files should be placed on the path specified by the I SEARCH environment
variable.

There are six separate files containing toolset constants, as follows:

File Contents
hostio.inc Hostio values and protocols
streamio.inc Streamio values and protocols
mathvals.inc Mathematical constants
linkaddr.inc Transputer link addresses
ticks.inc Rates of the two transputer clocks
msdos.inc DOS specific constants

To use any of these files in a program, incorporate the file into the source using
the #INCLUDE directive as follows:

#INCLUDE "hostio.inc"

Constants must be declared before they are used in a program or library.

C.1 Hostio constants

-- hostio.inc
-- Copyright 1989 XNMOS Limited
-- updated for iserver v1.42 apart from buffer size 5-June-90 SRB
-- SP protoco1
PROTOCOL SP XS rNT16::[]BYTE :

-- Command tags
-- va1ues up to 127 are reserved ~or use by XNMOS
-- Fi1e command tags
VAL sp.open.tag XS 10(BYTE)
VAL sp.c1ose.tag XS 11(BYTE)
VAL sp.read.tag XS 12(BYTE)
VAL sp.write.tag XS 13(BYTE)
VAL sp.gets.tag XS 14(BYTE)
VAL sp.puts.tag XS 15(BYTE)
VAL sp.f1ush.tag XS 16(BYTE)
VAL sp.seek.tag XS 17(BYTE)
VAL sp.te11.tag XS 18(BYTE)
VAL ap.eof.tag XS 19(BYTE)
VAL sp.ferror.tag XS 20(BYTE)
VAL sp.remove.tag XS 21(BYTE)
VAL sp.rename.tag XS 22 (BYTE)

72 TDS 276 02 March 1991

180

VAL sp.getblock.tag IS 23 (BYTE)
VAL sp.putblock.tag IS 24(BYTE)
VAL sp.isatty.tag IS 25(BYTE)

Bost command tags
VAL sp.getkey.tag IS 30(BYTE)
VAL sp.pollkey.tag IS 31(BYTE)
VAL sp.getenv.tag IS 32(BYTE)
VAL sp.time.tag IS 33(BYTE)
VAL sp.system.tag IS 34(BYTE)
VAL sp. exit. tag IS 35 (BYTE)

Server command tags
VAL sp.command1ine.tag IS 40(BYTE)
VAL sp.core.tag IS .41 (BYTE)
VAL sp.version.tag IS 42(BYTE)

C Constants

OS specific command tags
These OS speci~ic tags will be ~ollowed by another tag
indicating which OS speci~ic ~unction is required

VAL sp.DOS.tag IS 50(BYTE)
VAL sp.HELIOS.tag IS 51(BYTE)
VAL sp.VMS.tag IS 52(BYTE)
VAL sp.SONOS.tag IS 53(BYTE)

-- Packet and buffer Sizes
VAL sp.max.packet.aize IS 512
-- bytes transferred, includes length , data
VAL sp.min.packet.size IS 8:
-- bytes transferred, includes length , data

VAL sp.max.packet.data.size IS sp.max.packet.size - 2
-- INT16 length
VAL sp.min.packet.data.size IS sp.min.packet.size - 2

INT16 length

Individual command maxima
VAL sp.max.openname.size IS sp.max.packet.data.size - 5
-- 5 bytes extra
VAL sp.max.readbuffer.size IS sp.max.packet.data.size - 3
-- 3 bytes extra
-- ditto for gets
VAL sp.max.writebuffer.size IS sp.max.packet.data.size - 7
-- 7 bytes extra
-- ditto ~or puts
VAL sp.max.removename.size IS sp.max.packet.data.size - 3
-- 3 bytes extra
VAL sp.max.renamename.size IS sp.max.packet.data.size - 5
-- 5 bytes extra
VAL sp.max.getenvname.size IS sp.max.packet.data.size - 3
-- 3 bytes extra
VAL sp.max.systemcommand.size IS sp.max.packet.data.size - 3
-- 3 bytes extra

72 TDS 276 02 March 1991

C.1 Hostio constants 181

VAL sp.max.corerequest.size
-- 3 bytes extra

IS sp.max.packet.data.size - 3

VAL sp.max.buffer.size IS sp.max.writebuffer.size
s~1er of read , write

Resu1t va1ues (spr.)

VAL spr.ok
-- success

IS o(BYTE)

5 (BYTE)

4 (BYTE)

1 (BYTE)
2 (BYTE)

3 (BYTE)

IS
IS

VAL spr.not.imp1emented
VAL spro.bad.name
-- fi1ename is nu11
VAL spr.bad.type IS
-- open fi1e type is incorrect
VAL spr.bad.mode IS
-- open fi1e mode is incorrect
VAL spr.inva1id.streamid IS
-- never opened that streamid
VAL spr.bad.stream.use IS 6 (BYTE)
-- reading an output fi1e, or vice versa
VAL spr.buffer.overf1ow IS 7 (BYTE)
-- buffer too sma11 for required data
VAL spr.bad.packet.size IS 8 (BYTE)
-- data too big or sma11 for packet
VAL spr.bad.origin IS 9 (BYTE)
-- seek origin is incorrect
VAL spr.fu11.name.too.short IS 10 (BYTE)
-- a truncation of a fi1ename wou1d be required
VAL spr.notok IS 127(BYTE) :

a genera1 fai1 resu1t

-- anything 128 or above is a server dependent 'fai1ure' resu1t
VAL spr.operation.fai1ed IS 128(BYTE)
-- genera1 fai1ure
VAL spr.fai1ed.operation IS 129(BYTE)

identica1 in meaning to spr.operation.fai1ed due
to historica1 accident

Predefined .treaDLS (spid.)
VAL spid.stdin IS O(INT32)
VAL spid.stdout IS 1(INT32)
VAL spid.stderr IS 2 (INT32)

-- Open types (spt.)
VAL spt.binary IS l(BYTE)
VAL spt.text IS 2 (BYTE) :

-- Open modes (spm.)
VAL spm.input IS l(BYTE)
VAL spm.output IS 2(BYTE)
VAL spm.append IS 3(BYTE)
VAL spm.existing.update IS 4(BYTE)
VAL spm.new.update :IS S(BYTE)

72 TDS 276 02 March 1991

182 C Constants

VAL spm.append.update IS 6 (BYTE)

-- Status va~ues (sps.)
VAL sps.success IS 999999999 (INT32)
VAL sps.fai~ure IS -999999999(INT32)

-- Seek origins (spo.)
VAL spo.start IS 1(INT32)
VAL apo.current IS 2 (INT32) :
VAL spo.end IS 3(INT32) :

(sph., spo., spb.)
(sph.)

127 are reserved for use by INMOS
IS l(BYTE)
IS 2(BYTE)
IS 3(BYTE)
IS 4(BYTE)
IS 5(BYTE)
IS 6(BYTE)
IS 7(BYTE)
IS 8(BYTE)

Version information
Bost types

va~ues up to
VAL sph.PC
VAL sph.NECPC
VAL sph.VAX
VAL sph. SON3
VAL sph.S370
VAL sph.BOX.SON4
VAL sph.BOX.SON386
VAL sph. BOX. APOLLO

OS types (spo.)
VAL spo.DOS IS l(BYTE)
VAL spo. HELlOS IS 2 (BYTE)
VAL spo.VMS IS 3(BYTE)
VAL spo.SONOS IS 4(BYTE)
VAL spo.eMS IS 5(BYTE)

va~ues up to 127 are reserved for use by INMOS

Interface Board types (spb.)
This determines the interface between the ~ink and the host

VAL spb.B004 IS l(BYTE)
VAL spb.B008 IS 2(BYTE)
VAL spb.B010 IS 3(BYTE)
VAL spb.B011 IS 4(BYTE)
VAL spb.B014 IS 5(BYTE)
VAL spb.DRX11 IS 6(BYTE)
VAL spb.QTO IS 7(BYTE)
VAL spb.B015 IS 8(BYTE)
VAL spb. IBMCAT IS 9 (BYTE)
VAL spb.B016 IS 10(BYTE) :
VAL spb. ODPLINK IS 11 (BYTE) :
-- v~ues up to 127 are reserved for use by INMOS

-- Command ~ine

VAL sp. short . comman~ine IS BYTE 0
-- remove server's own arguments
VAL sp. who~e . command~ine IS BYTE 1

inc~ude server's own arguments

va1ues for .o.parse.command~ineindicate whether
an option requires a fo~~owing parameter

VAL spopt.never IS 0 :

72 TDS 276 02 March 1991

C.2 Streamio constants

VAL spopt . maybe IS 1
VAL spopt.always IS 2

-- T~e string and date lengths
VAL so.time.string.len IS 19 :
-- enough for "BB:MM:SS DD/lII1IJ./YYYY"
VAL so.date.len IS 6:
-- enough ~or DDMMYY <as integers)

-- Temp filename length
VAL ao.temp.filename.length IS 6 :
-- six chars will work on anything!

C.2 Streamio constants

streamio.inc
Copyright 1989 rNNOS L~ted

Updated to match TDS3 strmhdr list; 4-Feb-91 SRB
VAL at.max.string.size IS 256 :
VAL ft.terminated IS -8 -- used to terminate a keystream
VAL ft.number.error IS -11 :
PROTOCOL ItS IS INT:
PROTOCOL SS

CASE
st. reset
at.up
st.down
at. left
at. right
at.goto; INT32; INT32
at.ins.char; BYTE
st. del. char
st. out. string; INT32::[]BYTE
at.clear.eol
st.clear.eoa
st.ins.line
st.del.line
st.beep
st. spare
at.terminate
st.help
at. initialise
st.out.byte; BYTE
st.out.int; INT32
st.key.raw
at.key.cooked
st. release
st. claim
st. endstream
st.set.poll; INT32

183

72 TDS 276 02 March 1991

184

C.3 Maths constants

C Constants

-- mathvals.inc
-- Copyright 1989 INMOS Limited
-- Appended the error condition NaNs for the implementation of
-- the maths libraries; 4/OCt/90 SRa
--{{{ Maths constants

--{{{ REAL32 Constants
~ REAL32 INFINITY RETYPES '7F800000(INT32)
VAL REAL32 ~NREAL RETYPES 'OOOOOOOl(INT32)
-- 1.40129846E-45
VAL REAL32 MAXREAL RETYPES '7F7FFFFF(INT32)
-- 3.40282347E+38
VAL REAL32 E RETYPES '402DF854(INT32)
-- 2.71828174E+OO
VAL REAL32 PI RETYPES '40490FDB(INT32)
-- 3.14159274E+OO
~ REAL32 LOGE2 RETYPES '3F317218(INT32)
-- 6.93147182E-01
~ REAL32 LOG10E RETYPES '3EDE5BD9(INT32)
-- 4.34294492E-01
~ REAL32 ROOT2 RETYPES ,3FB504F3(INT32)
-- 1.41421354E+OO
VAL LOGEPI IS 1.1447298858(REAL32) :
-- log to the base e of pi
VAL RADLAN IS 57.295779513(REAL32) :
-- the number of degrees in 1 radian
~ DEGREE IS 1.74532925199E-2(REAL32)
-- the number of radians in 1 degree
~ GAMMA IS O.5772156649(REAL32)
-~ Euler's constant

--{{{ implementation defined NaNs
~ REAL32 undefined.NaN RETYPES '7F800010(INT32)
~ REAL32 unst&ble.NaN RETYPES '7F800008(INT32)
VAL REAL32 inexact.NaN RETYPES '7F800004(INT32)
--}}}
--}}}

--{{{ REAL64 Constants
~ REAL64 DINFINITY RETYPES '7FFOOOOOOOOOOOOO(INT64):
VAL REAL64 D~NREAL RETYPES 'OOOOOOOOOOOOOOOl(INT64):
-- 4.9406564584124654E-324
~ REAL64 DMAXREAL RETYPES '7FEFFFFFFFFFFFFF(INT64):
-- 1.7976931348623157E+308
VAL REAL64 DE RETYPES '4005BFOA8B145769(INT64):
-- 2.7182818284590451E+OOO
~ REAL64 DPI RETYPES '400921FB54442D18 (INT64) :
-- 3.1415926535897931E+OOO
~ REAL64 DLOGE2 RETYPES ,3FE62E42FEFA39EF(INT64) :
-- 6.9314718055994529E-001
~ REAL64 DLOG10E RETYPES '3FDBCB7B1526E50E(INT64) :
-- 4.3429448190325182E-001
VAL REAL64 DROOT2 RETYPES '3FF6A09E667F3BCD(INT64):

72 TDS 276 02 March 1991

C.4 Transputer link addresses

-- 1.4142135623730951E+000
VAL DLOGEPI IS 1.1447298858494001741(REAL64)
-- 109 to the base e of pi
VAL DRADIAN IS 57.295779513082320877(REAL64)
-- the number of degrees in 1 radian
VAL DDEGREE IS 1.7453292519943295769E-2(REAL64)
-- the number of radians in 1 degree
VAL DGAMMA IS 0.57721566490153286061(REAL64)
-- Eu1er's constant

--{{{ ~p1ementation defined NaNs
VAL REAL64 Dundefined.NaN RETYPES #7FF0000200000000(INT64)
VAL REAL64 Dunstab1e.NaN RETYPES #7FF0000100000000(INT64)
VAL REAL64 Dinexact.NaN RETYPES '7FF0000080000000(INT64)
--}}}
--}}}
--}}}

C.4 Transputer link addresses

1inkaddr.inc
Copyright 1989 INMOS Limited

Transputer 1ink addresses

VAL 1inkO.in IS 4:
VAL 1inkO.out IS 0:

VAL 1ink1.in IS 5:
VAL 1ink1.out IS 1:

VAL 1ink2.in IS 6:
VAL 1ink2.out IS 2:

VAL 1ink3.in IS 7:
VAL 1ink3.out IS 3:

-- Transputer event address

VAL event.in IS 8:

C.5 Rates of the transputer clocks

ticks.inc
V1.0, 09/May/90
Copyright 1990 INMOS Limited
These va1ues are not for the A reV1S1on of the T414
(which is no 10nger supported).

185

72 TDS 276 02 March 1991

186 C Constants

o(BYTE)
1 (BYTE)
2 (BYTE)
3 (BYTE)
4 (BYTE)
5 (BYTE)

-- these values are the rates at which the two priority c10cks
-- increment on the transputer
VAL 10.ticks.per.•econd IS 15625 INT32
VAL hi.ticks.per.second IS 1000000 INT32

VAL 10.tick.in.micro.seconda IS 64 INT
1000000 / 10.ticks.per.second

VAL hi.tick.in.micro.seconds IS 1 INT
1000000 / hi.ticks.per.second

C.6 DOS specific constants

msdos.inc
Copyright 1989 INMOS Limited

DOS command tags
VAL dos.send.b1ock.tag IS
VAL dos.receive.b1ock.tag IS
VAL dos. c&11. interrupt. tag IS
VAL dos.read.regs.tag IS
VAL dos.port.write.tag IS
VAL dos.port.read.tag IS

c&11.interrupt register 1ayout
VAL dos.interrupt.regs.size IS 40

VAL dos.interrupt.regs.ax IS 0
VAL dos.interrupt.regs.bx IS 4
VAL dos.interrupt.regs.cx IS 8
VAL dos.interrupt.regs.dx IS 12
VAL dos.interrupt.regs.di IS 16
VAL dos.interrupt.regs.si IS 20
VAL dos.interrupt.regs.cs IS 24
VAL dos.interrupt.regs.da IS 28
VAL dos.interrupt.regs.es IS 32
VAL dos.interrupt.regs.ss IS 36

read.regs register 1ayout
VAL dos.read.regs.s!ze IS 16

VAL dos.read.regs.cs IS 0
VAL dos.read.regs.ds IS 4
VAL dos.read.regs.es IS 8
VAL do•. read.regs.ss IS 12

bu~~er size. (These depend on sp.max.packet.data.size)
VAL dos.max.send.b1ock.bu~~er.size IS

sp.max.packet.data.size - 8 :
VAL dos.max.receive.b1ock.bu~~er .•ize IS

ap.max.packet.data.size - 3 :

this is the smal1er o~ aend , receive
VAL dos.max.b1ock.bu~~er.size IS

dos.max.send.b1ock.buffer.size

72 TDS 276 02 March 1991

o Implementation of
occam on the
transputer

This appendix defines the toolset implementation of occam on the transputer.
It describes how the compiler allocates memory and gives details of type map­
ping, hardware dependencies and language. The appendix ends with the syntax
definition of the language extensions implemented by the occam compiler.

0.1 Memory allocation by the compiler

The code for a whole program occupies a contiguous section of memory. When
a program is loaded onto a transputer in a network, memory is allocated in the
following order starting at MemStart: workspace; code; separate vector space.
this is shown below:

Higher address
~

Free memory

Vector space

Code

t
Lower address

Workspace
MemStart

0.1.1 Procedure code

The compiler places the code for any nested procedures at higher addresses
(nearer MOSTPOS INT) than the code for the enclosing procedure. Nested
procedures are placed at increasingly lower addresses in the order in which

72 TDS 276 02 March 1991

188 Implementation of occam on the transputer

their definitions are completed. For the code in the following example:

PROC P ()
PROC Q ()

code for Q

PROC R ()
code for R

code for P

the layout of the code in memory is:

MOSTPOS INT
~

Higher address

Code for Q

Code for R

Code for P
Lower address~ ---,

t
MOSTNEG INT

Note: this is a change from the previous release of the occam compiler in the
IMS 0705/0605/0505 products.

0.1.2 Compilation modules

The order in which compilation modules are placed in memory, including those
referenced by a #PRAGMA LINKAGE directive, is controlled by a tinker directive.
Modules are placed in priority order, with the highest priority module being placed
at the lowest available address.

Note: the compiler will attempt to optimise floating point routines such as
REAL320P and RE.AL320PERR by giving them a high priority. This can be
overridden by using the compiler directive #PRAGMA LINKAGE in conjunction
with the tinker directive #SECTION.

72 TOS 276 02 March 1991

0.1 Memory allocation by the compiler

0.1.3 Workspace

189

Workspace is given priority usage of the on-chip RAM, before the arithmetic
handling library.

Workspace is allocated from higher to lower address (Le. the workspace for a
called procedure is nearer MOSTNEG INT than the workspace for the caller).
For example:

PROC P ()
code

here
code

PROC Q ()
P ()

In the above example when a is called, it will in turn call P. At the point labelled
here, the data layout in memory will be:

Higher address

Workspace for a

Workspace for P

Lower addressJ

In a PAR or PRI PAR construct the last textually defined process is allocated
the lowest addressed workspace. For example:

PAR
Pl
P2
P3

the workspace layout for the parallel processes will be:

72 TDS 276 02 March 1991

190 Implementation of occam on the transputer

Higher address

Workspace for P1

Workspace for P2

Workspace for P3

Lower address '--- --'

In a replicated PAR construct the instance with the highest replication count is
allocated the lowest workspace address. For example:

PAR i = 0 FOR 3
P [i]

the workspace layout for the parallel processes will be:

Higher address

Workspace for P[O]

Workspace for P[1]

Workspace for P[2]

Lower address~

Unless separate vector space is disabled, arrays larger than 8 bytes (apart from
those explicitly placed in the workspace) are allocated in a separate data space,
known as vector space. The allocation is done in a similar way to the allocation
of workspace, except that the data space for a called procedure is at a higher
address than the data space of its caller.

Arrays whose elements are word-sized or longer, and which occupy 8 bytes or
less, remain in workspace ego

[2]INT32

will be placed in workspace.

The variables within a single procedure or parallel process are allocated on the
basis of their estimated usage. The variables which the compiler estimates will
be used the most, are allocated lower addresses in the current workspace.

72 TDS 276 02 March 1991

0.2 Type mapping 191

From within a called procedure the parameters appear immediately above the
local variables. When an unsized vector is declared as a formal procedure
parameter an extra VAL INT parameter is also allocated to store the size of
the array passed as the actual parameter. This size is the number of elements
in the array. One extra parameter is supplied for each dimension of the array
unsized in the call, in the order in which they appear in the declaration.

If a procedure requires separate vector space, it is supplied by the calling proce­
dure. A pointer to the vector space supplied is given as an additional parameter.
If the procedure is at the outer level of a compilation unit, the vector space pointer
is supplied after all the actual parameters. Otherwise it is supplied before all the
actual parameters.

0.2 Type mapping

This section defines all the occam types and how they are represented on the
each target processor.

All objects are word aligned, ie. the lowest byte of the object is on a word
boundary. For objects of type BOOL and BYTE, the padding above the object
is guaranteed to be all bits zero: for all other objects, the value of any padding
bytes is undefined.

Arrays are packed, ie. there are no spaces between the elements. (Note: that
an object of type BOOL has one byte for each element).

Table D.1 summarizes the type mapping, for further information on data types
see Section 3 of the occam 2 Reference Manual.

Protocol tags are represented by a-bit values. The compiler allocates tag values
for each protocol from 0 (BYTE) upwards in order of declaration.

Values accessed through RETYPES must be aligned to the natural alignment for
that data type; BYTES and BOOLs may be aligned to any byte; INT16s on a 32
bit processor must be aligned to a half-word boundary and all other data types
must be aligned to a word boundary. This will be checked at run-time if it cannot
be checked at compile time. For example:

[20]BYTE array: -- This will be word aligned
INT32 x RETYPES [array FROM 1 FOR 4] Run-time check is

inserted
INT32 y RETYPES [array FROM i FOR 4] -- Run-time check is

-- inserted
INT32 z RETYPES [array FROM 8 FOR 4] No run-time check

inserted

72 TDS 276 02 March 1991

192 Implementation of occam on the transputer

Type Storage Range of values

BOOL 1 byte FALSE, TRUE

BYTE 1 byte o to 255

INT16 2 bytes -32768 to 32767
INT32 4 bytes -2,147,483,648 to

2,147,483,647
INT64 8 bytes -263 to (263 - 1)

INT 4 bytes -2,147,483,648 to
2,147,483,647

On T4001T4141T425 T8001T8011T805

INT 2 bytes -32768 to 32767
On T2121T2221T225 M212

REAL32 4 bytes IEEE single precision
format

REAL64 8 bytes IEEE double precision
format

CHAN 8 bytes Channels are
on T4001T41 41T425 T8001T80 11T805 implemented as a

CHAN 4 bytes pointer to a channel

on T2121T2221T225 M212 word.

PORT OF D as for D

TIMER none

Table D.1 occam data types

Channels may be RETYPEd. This allows the protocol on a channel to be
changed, in order to pass it as a parameter to another routine. This facility
should be used with care.

0.3 Hardware dependencies

• The number of priorities supported by the transputer is 2, (Le. high and
low), so a PRI PAR may have two component processes. The compiler
does not permit a PRI PAR statement to be nested inside the high pri­
ority branch of another. This is checked at compile time, even across
separately compiled units.

• The low priority clock increments at a rate of 15625 ticks per second, or

72 TDS 276 02 March 1991

0.4 Language 193

one tick = 64 microseconds (IMS T212, T222, T225, M212, T400, T414,
T425, T800, T801 and T805).

• The high priority clock increments at a rate of 1000000 ticks per second,
or one tick = 1 microsecond (IMS T212, T222, T225, M212, T400, T414,
T425, T800, T801 and T805).

• TIMER channels cannot be placed in memory with a PLACE statement.

0.4 Language

• The following directives are supported: # INCLUDE, fUSE, #COMMENT,
IMPORT, #OPTION and #PRAGMA. For more information about com­
piler directives see part 1, section 25.10.

• The following statements are supported: PLACE name IN VECSPACE,
PLACE name IN WORKSPACE and PLACE name AT WORKSPACE n

• The address used in a PLACE allocation is converted to a transputer
address by considering the address to be a word offset from MOSTNEG
INT.

For example, in order to access a BYTE memory mapped peripheral
located at machine address #1234, on a 32-bit processor:

PORT OF BYTE peripheral :
PLACE peripheral AT ('1234 >< (MOSTNEG INT» » 2
peripheral ! 0 (BYTE)

• The numbers used as PLACE addresses are word offsets from the bottom
of address space.

PLACE scalar channel AT n, places the channel word at that address.

PLACE array of channels AT n, places the the array of pointers at that
address.

Note: PLACE array of channels AT n maps an array of pointers to chan­
nels. This is a change from 0705/0605/0505 releases of the occam
compiler where this allocation was used to place an array of channels.

• A channel declared as CBAN OF ANY can be passed as an actual pa­
rameter in place of a formal channel parameter of anyprotocol. A channel
of a specific protocol cannot be passed in place of a formal channel pa­
rameter of CHAN OF ANY. Communications on a channel declared as
CHAN OF ANY must be identical at both ends of the channel.

72 TOS 276 02 March 1991

194 Implementation of occam on the transputer

• The keywords GUY and ASM introduce a section of transputer assembly
code.

• The keyword INLINE may be used immediately before the PROC or
FUNCTION keyword of any procedure or function declaration. This will
cause the body of the procedure or function to be expanded inline in any
call, and the declaration will not be compiled as a normal routine. Note:
the declaration is marked with the keyword, but the call is affected. This
means that you cannot inline expand procedures and functions which
have been declared by a #USE directive; to achieve that effect you may
put the source of the routine in an include file, marked with the INLINE
keyword, and include it with an #INCLUDE directive.

Examples:

INT INLINE FUNCTION sum3 (VAL INT x, y, z)
IS x + (y + z) :

INLINE PROC seterror ()
error := TRUE

• The compiler accepts the string escape characters as described in sec­
tion I of the occam 2 Reference Manual. The compiler also accepts
'* l' or '*L' as the first character of a string literal. This is expanded
to be the length of the string excluding the character itself. For example
stringl and string2 are identical:

VAL stringl is "*lFred" :
VAL string2 is "#04Fred" :

The use of '* l' is illegal if the string (excluding the '*1') is longer than
255 bytes, and will be reported as an error.

• Multidemensional arrays defined by a RETYPES definition may have one
element whose value is not explicitly stated. This may be anyone of the
elements. For example:

[6]INT a, f
[2] []INT b RETYPES a
[] [3]INT c RETYPES f

[24] INT d
[2] [] [6] e RETYPES d :

Note this is a change from the previous implementation of the compiler
in the IMS 0705/0605/0505 prOducts, and removes the restriction that

72 TDS 276 02 March 1991

0.4 Language

the inner-most element of the array could not be left unspecified.

195

• The compiler places restrictions on the syntax which is permitted at the
outermost level of a compilation unit; Le. not enclosed by any function
or procedure.

- No variable declarations are permitted.

- The file must contain at least one PROC or FUNCTION; a null
source file is illegal.

- No abbreviations containing function calls orVALOFs are allowed,
even if they are actually constant. For example:

VAL x IS (VALOF
SKIP
RESULT 99

)
VAL m IS max (27, 52)

This is illegal.
This is also
illegal.

• There is no limit on the number of significant characters in identifiers,
and the case of characters is significant.

• CASE statements are implemented as a combination of explicit test, bi­
nary searches, and jump tables, depending on the relative density of the
selection values. The choice has been made to optimlse the general
case where each selection is equally probable. The compiler does not
make any use of the order of the selections as they are written in the
source code.

• No assumption can be made about the relative priority of the guards of
an ALT statement; if priority is required, you must use a PRI ALT.

• The compiler expands tabs in source files to be every eight character
position. Tabs are permitted anywhere in a line except within strings or
character constants.

• If a name is used more than once in a single formal parameter list, the
last definition is used.

72 TDS 276 02 March 1991

196 Implementation of occam on the transputer

0.5 Summary of implementation restrictions

• FUNCTIONs may not return arrays, not even with fixed sizes.

• Multiple assignment of arrays of unknown size is not permitted.

• Replicated PAR count must be constant.

• There must be exactly two branches in a PRI PAR.

• Replicated PRI PARs are not allowed.

• Nested PRI PARs are not permitted.

The 0705/0605/0505 releases of the occam compiler did not check
this condition correctly, allowing some erroneous programs. Such code
should be modified as follows:

PRI PAR
high priority process
code which includes a PRI PAR

This can be re-written as the following:

PAR
PRI PAR

high priority process
SKIP

code which includes a PRI PAR

this is
illegal
this is
legal

VAL [] INT Y IS b :

• Table sizes must be known at compile time, for example:

PROC p ([] INT a, [] INT b)
VAL [] [] INT x IS [a]

• Constant arrays which are indexed by replicator variables are not consid­
ered to be constants for the purposes of compiler constant folding, even
if the start and limit of the replicator are also constant. This restriction
does not apply during usage checking.

• Maximum number of nested include files is 20.

• Maximum filename length is 128 characters.

72 TOS 276 02 March 1991

0.5 Summary of Implementation restrictions

• Maximum 256 tags allowed in PROTOCOLS.

197

• Maximum number of lexical levels is 254. (Nested PROCs and replicated
PARs).

• Maximum number of variables in a procedure or function is 2048.

If this limit is reached, it should be remembered that any occam code
can be 'wrapped up' into a separate procedure, and can still access 'non­
local' variables correctly. This will reduce the complexity of an enclosing
procedure and should allow the program to be compiled.

For example, suppose that the following program reaches this limit:

PROC p ()
variable declarations in here

SEQ
lots more variable declarations

SEQ
first block of code

lots more variable declarations
SEQ

second block of code

This could be modified to read as follows:

PROC P ()
variable declarations in here

SEQ
PROC localO ()

lots more variable declarations
SEQ

first block of code

localO()

PROC locall ()
lots more variable declarations

SEQ
second block of code

locall()

72 TDS 276 02 March 1991

198 Implementation of occam on the transputer

0.6 Syntax of language extensions

This section describes the syntax of the following extensions to occam:

• ASM

• PLACE name AT WORKSPACE n

• PLACE name IN WORKSPACE

• PLACE name IN VECSPACE

• INLINE

• The non-printable character '* l' or '*L'.

72 TDS 276 02 March 1991

0.6 Syntax of language extensions

0.6.1 ASM statement

The syntax of the ASM construct takes the following format:

199

process

asm.construct

asm.directive

labeldef

primary.op

asm.construct

ASM
{ asm.directive }

primary.op constant.expression
load.or.store.op name
branch.op :Iabel
secQndary.op
pseudo.op
labeldef

: label

direct instruction
prefixing instruction
OPR

load. or.store.op LDL
STL

LDNL I LDLP I LDNLP
STNL

branch.op

secondary-op

pseudo-op

asm.exp

72 TDS 276 02

J I CJ I CALL

any transputer operation

LD asm.exp
LDAB asm.exp , asm.exp
LDABC asm.exp , asm.exp , asm.exp
ST element
STAB element, element
STABC element, element, element
BYTE {, constant.expression }
WORD {, constant.expression }
LDLABELDIFF : label - : label

ADDRESSOF element
expression

March 1991

200 Implementation of occam on the transputer

Appendix B lists the transputer instructions and operations supported by the
restricted code insertion facility. All the instructions listed can be inserted into
occam programs using the ASM construct. Note: instructions should be speci­
fied in upper-case.

0.6.2 PLACE statements

The syntax of the PLACE statements extends the definition of an allocation as
defined in the 'occam 2 Reference Manual':

allocation = PLACE name AT expression
PLACE name AT WORKSPACE expression
PLACE name IN WORKSPACE
PLACE name IN VECSPACE

0.6.3 INLINE statement

The INLINE statement extends the syntax of a definition as defined in the
'occam 2 Reference Manual':

definition =

72 TDS 276 02

PROTOCOL name IS simple.protocol:
PROTOCOL name IS sequential.protocol:
PROTOCOL name

CASE
{ tagged.protoco/}

{INLINE} PROC name ({o , formal})
procedure.body

{1 , primitive type} {INLINE} FUNCTION name
({o , formal}) function.body

{1 , primitive type} {INLINE} FUNCTION name
({o , formal}) IS expression.list :

specifier name RETYPES element:
VAL specifier name RETYPES expression :

March 1991

0.6 Syntax of language extensions

0.6.4 *1 or *L character

201

The syntax of the non-printable character '*', as defined in section I of the
'occam 2 Reference Manual' has been extended. The first character of a literal
string may now take the value '*1' or '*L', which is used to represent the length
of the string, excluding the character itself.

The characters *, ' and" may be used in the following form:

*c *c carriage return = *#00
*1 *L string length ~ *#FF
*n *N newline = *#OA
*t *T tab = *#08
*8 *8 space = *#20
*, quotation mark
*" double quotation mark
** asterisk

Any byte value can be represented by *# followed by two hexadeximal digits.

72 TDS 276 02 March 1991

202

72 TDS 276 02

Implementation of occam on the transputer

March 1991

E Configuration
language definition

This appendix defines the syntax of the occam configuration language.

A configuration program file contains a sequence of specifications. These spec­
ifications should include one hardware description and one software description.
There will in general be at least one node declaration, and optionally edge dec­
larations and arc declarations. An optional mapping may appear either before
of after the software configuration, but after the declaration of any nodes, edges
or arcs which it references. These rules are applications of the normal occam
scope rules.

This syntax should be considered as extending the syntax of occam.

The #INCLUDE mechanism may be used to incorporate hardware descriptions,
software descriptions, or any other source text from other files.

E.1 New types and specifications

specification

node.declaration
edge.declaration
arc.declaration

hardware.description
software.description
mapping
node. declaration
edge.declaration
arc.declaration
channel.allocation

{o [expression] } NODE node.name :
{o [expression] } EDGE declared. edge.name :
{o [expression] } ARC arc.name :

The syntax adds the new primitive types NODE, EDGE and ARC, and structures
CONFIG, NETWORK and MAPPING to the occam language.

NODE declarations introduce processors (nodes of a graph). These processors
are physical if their type and memory size attributes are defined as part of the
hardware description, and logical otherwise.

EDGE declarations introduce external connections of the hardware description.

ARC declarations introduce named connections (arcs of a graph). Each arc
connects two edges, which may be attributes of nodes, or declared edges. Con-

72 TDS 276 02 March 1991

204 E Configuration language definition

nections need only be named if it is required to force a particular mapping of
channels, or if names are required to aid debugging.

E.2 Software description

A CONFIG declaration introduces the software description as an occam process.
Additional specifications and processes are added to occam: The processor
name in a PROCESSOR statement may be a physical processor name or the
name of a logical processor which is mapped onto a physical processor. A
channel allocation may allocate up to two channels onto a named arc of the
network.

software.description = {specification}
CONFIG [config.name]

process

specification channeiaHocation
node.declaration

channel.allocation PLACE { 1 , channel.name {o [subscript] }} ON
arc

process PROCESSOR processor.name {o [subscript] }
process

arc arc.name {o [subscript] }

E.3 Hardware description

The NETWORK keyword introduces a hardware description, an optionally named
structure which describes the types, connectivity and attributes of previously
declared processor nodes. Connections are defined in CONNECT statements.
Attributes are given values in SET statements. The attributes of a processor
node include an array of edges which are its links, a string which defines its
processor type, and an integer which is the memory size in bytes.

Connections and attribute settings may be combined in any order using the DO
constructor, including replication and conditionals. For each node which has a
type defined to be a processor the attributes with predefined names type and
memsize must be set once only. The connections connect declared edges and
edges of nodes, which have the predefined attribute name link. The boolean
attribute root may be set to TRUE for only one node in a network without a
connection to the predefined edge HOST. The attribute romsize defines the
size in bytes of read only memory on a node. Attributes are referenced by
subscripting node names with attribute names in brackets.

72 TDS 276 02 March 1991

E.3 Hardware description

hardware.description = {specification}
NETWORK [network.name J

network. item

205

specification

network.item

node.declaration
edge.declaration
arc.declaration

connection. item
setting.item
DO

{ network.item }
DO replicator

network.item
conditional. network. item
SKIP
STOP
abbreviation
network. item

condftionalnetworkftem

network.choice

guarded. network.choice

connection. item
with.clause
edge

setting. item

attribute.assignment
attribute
attribute. value

72 TDS 276 02

IF
{ network.choice }

guarded. network.choice
conditional.network.item
boolean

network. item

CONNECT edge TO edge [with.clause J
WITH arc.name
declared. edge.name {o [subscript] }
node.name {o [subscript] } [attribute.name]

{o [subscript] }

SET node.name {o [subscript] }
(attribute.assignment)

{ 1 , attribute} : = { 1 , attribute.value }
attribute.name { 0, [subscript] }
expression

March 1991

206

E.4 Mapping structure

E Configuration language definition

The keyword MAPPING introduces an optionally named mapping structure which
may be either before or after the software description.

A mapping may be used to associate logical processors with physical processors
and channels with arcs of the hardware network. Mapping of channels is optional
except in the case where one end of the arc is an external edge. The configurer
will normally choose a mapping from its knowledge of the connectivity of the
hardware and the implied connectivity derived from the use of channels as in the
software description.

The mapping may include code mappings and channel mappings. A logical
processor may appear on the left hand side of only one mapping item. A physical
processor may appear on the right hand side of one or more mapping items. A
code mapping may include a priority clause which will determine the priority at
which the process will run. The arc in a channel mapping must connect the
nodes onto which the processes using the channels are mapped. The effect
of channel mappings is identical to the corresponding channel allocations which
may appear in the software description.

mapping = {specification }
MAPPING [mapping.name J

map.item

specification node.declaration

map.item

conditional.map. item

mapping.choice

guarded. mapping.choice

72 TDS 276 02

code.mapping
channel.mapping
DO

{ map.item}
DO replicator

map. item
conditional.map. item
SKIP
STOP
abbreviation
map.item
setting.item
IF

{ mapping.choice }
guarded.mapping.choice
conditional.map. item
boolean

map.item

March 1991

E.5 Constraints

code. mapping
priority.clause
processor. list
processid
processor.name
node

channel.mapping
channel. list
channelid
arc

setting.item

attribute.assignment
attribute
attribute. value

E.5 Constraints

MAP processor. list ONTO node [priority.clause}
PRI expression
{ 1 , processid}
processor.name {o [subscript] }
node.name
node.name {o [subscript] }

MAP channel.list ONTO arc
{ 1 , channelid}
channel.name {o [subscript] }
arc.name {o [subscript] }

SET node.name {o [subscript] }
(attribute.assignment)

{ 1 , attribute} : = { 1 , attribute.value }
attribute.name { 0, [subscript] }
expression

207

The following constraints apply to all configurations:

• All physical processors whose types are set must be connected to each
other.

• Any physical processor whose type is set must have its memsize set.

• Logical processors may only be mapped onto physical processors whose
type has been set.

• Channels connecting processors of different word size must not use pro­
tocols based on the type INT.

• A priority expression must evaluate to 0 (high) or 1 (Iow).

72 TDS 276 02 March 1991

208 E Configuration language definition

E.6 Changes from the IMS 0705/0605/0505 products

The following changes are necessary to convert a configuration from· the lan­
guage used by previous INMOS configurers:

Channel allocations to physical hardware link addresses should be removed.

PROCESSOR statements should be modified to reference (logical or physical)
processor names, instead of processor numbers.

Each physical processor in the configuration should be declared in a NODE
declaration.

Each external connection from the network should be declared in an EDGE
declaration.

A hardware description setting attributes of all hardware processors and defin­
ing connections between them must be written.

If logical processors have been introduced then a mapping of these onto the
physical processors must be written.

Arcs connecting to external edges should be declared. Channels using these
arcs should be mapped.

Check that #USE lines refer to files containing linked code.

72 TDS 276 02 March 1991

F Bootstrap loaders
F.1 Introduction

Special loading procedures can be created for the program and used in place
of, or in addition to, the standard INMOS bootstrap. The file containing the new
bootstrap is specified by invoking the collector with the 'B' option.

User defined bootstraps must perform all the necessary operations to initialise
the transputer, load the network, and set up the software environment for the
application program.

Bootstraps are output to the program bootable file as the first section of code in
the bootable file. The bootstrap, consisting of the primary and secondary boot­
strap sequences, is followed by the standard INMOS network loader program,
which is output in small packets, each packet consisting of a maximum of 60
bytes. The last packet of the network loader is followed by a length byte of zero.

In most cases a custom bootstrap will interface directly with the standard IN­
MOS Network Loader, which places various pieces of code and data within the
transputer memory in a controlled way. However it is possible to skip the stan­
dard loader by sinking its code packets and following the commands used by
the network loader that are output after the network loader.

The general format of a custom bootstrap is a concatenated sequence of boot­
strap code segments each preceded by a length byte. The sequence can be
any length. The bootstrap program must be contained in a single file.

F.1.1 The example bootstrap

The example bootstrap loader provided on the toolset examples directory is
a combination of several files used in the standard INMOS bootstrap scheme.
The files have been combined into a single file to illustrate how to create a user­
defined bootstrap; the functionality is the same as that used in the the standard
INMOS scheme based on multiple files.

The program is written in transputer code and consists of two parts:

Primary bootstrap - performs processor setup operations such as initial­
ising the transputer links

Secondary bootstrap - sets up the software environment and interfaces
to the Network Loader.

72 TDS 276 02 March 1991

210

Transfer of control

F Bootstrap loaders

The calling sequence in the standard INMOS scheme is as follows:

The primary loader calls the secondary loader, which then calls the Network
Loader. When the Network Loader has completed its work control returns to
the secondary loader, which calls the application program via data set up by the
Network Loader.

Custom bootstraps should follow the same sequence.

F.1.2 Writing bootstrap loaders

Bootstrap loader programs should be written to perform the same operations
as the standard scheme, that is, hardware initialisation, setting up the software
environment, and calling the Network Loader. If you skip the Network Loader by
sinking its code bytes then you must ensure its function is reproduced in your
own code. If you do use the Network Loader you must ensure the interface
to it is correct by setting up the invocation stack. The method by which this is
achieved can be deduced from the example program listing.

If you wish to make only a few small changes to the standard loader, for exam­
ple, insert code to initialise some D-to-A convertors, then the example code can
be used and the required code can be inserted between the Primary and Sec­
ondary Loader code as an additional piece of bootstrap code in the sequence
of bootstraps. The rest of the code can be used as it stands.

If you decide to devise your own loading scheme and rewrite the Primary and
Secondary Loaders then you should be familiar with the design of the Transputer
and its instruction set. For engineering data about the transputer consult the
'Transputer Databook' and for information about how to use the instruction set
see the 'Transputer Instruction Set: a compiler writer's guide'.

72 TDS 276 02 March 1991

F.2 Example user bootstrap 211

F.2 Example user bootstrap

(c) Inmoa 1989

-- Assembly file for the Generic Primary bootatrap '!'A HAL'!' mode

-- VAL BASE
-- VAL COUNT

IS
IS

loop index
loop count

IS 0 atart of loader
IS 1 loader block length
IS 2 atart of next block to load
IS 3 link booted from
IS 4 -- work apace of loaded code
IS 5 -- return addreaa from loader
IS RETURN ADDRESS : -- workspace uaed by both

- -- preamble and loader
-- copy of MinInt

-- 1st param to loader (MinInt)
-- 2nd parameter to loader
-- 3nd parameter to loader
4th parameter to loader

-- 5th parameter to loader
-- 6th parameter to loader

7th parameter to loader
referenced from entry point
referneced from Data point
atart of boot part 2

LOAD_START
LOAD_LENGTH
NEXT ADDRESS
BOOTLINK
NEXT_WPTR
RETURN ADDRESS
TEMP_WORKSPACE

NOTPROCESS IS 6:
L:INKS IS NOTPROCESS
BOOTLINK IN PARAM IS 7
BOOTLINK:OUT_PARAM IS 8
MEMORY IS 9:
EXTERNAL ADDRESS IS 10 :
ENTRY POINT IS 11
DATA POINT IS 12 :
ENTRY ADDRESS IS 13
DATA ADDRESS IS 14
MEMSTART IS 15

-- VAL
-- VAL
-- V.AL
-- V.AL
-- VAL
-- VAL
-- VAL

-- VAL
-- VAL
-- VAL
-- VAL
-- VAL
-- V.AL
-- V.AL
-- V.AL
-- V.AL
-- VAL
-- V.AL

The initial workspace requirement ia found by readinq the workspace
requirement from the loader \occam\ and subtractinq the aize of the workapace

-- uaed by both the loader and the bootatrap (\verbltemp.workapacel). Tbia value
is incremented by 4 to accoDlUodate the workspace adjuatment by the call
inatruction uaed to preserve the proceaaor reqiatera.

initial. adjustment :- (loader.workapace + 4) - temp.workapace
occam work apace, + 4 for call to aave reqiatera, - adjuatment made

-- when enterinq occam. Muat be at leaat 4
IF

initial . adjustment <
initial.adjuatment :­

TRUE
SKIP

aet up work apace, aave reqisters,
aave Memstart and NotProceaa

aliqn

byte (Bndprimary-Primary) -- Lenqth of the primary bootatrap

Primary:

qlobal Primary

ajw INITIAL_ADJUSTMENT -- aee above (ia 20)
call 0 -- aave reqiatera

ldc _Start - AddrO -- diatance to atart byte
ldpi addreaa of atart

AddrO:
atl MEMSTART aave for later uae

mint
atl NOTPROCESS -- aave for later uae

72 TDS 276 02 March 1991

212 F Bootstrap loaders

initiali.. proce.. qu.u.. and cl.ar .rror
ldl NOTPROCESS
.tlf r •••t low priority qu.u.

ldl NOTPROCESS
.thf -- r •••t high priority qu.u.

-- u •• clrhalt.rr h.r. to cr.at. boot.trap for REDUCED application

••thalt.rr
t ••t.rr

••t halt on .rror
r.ad and cl.ar .rror bit

initiali•• T8 .rror and rounding
ldl MEMSTART -- Ch.ck if proc•••or ha. floating point unit by
ldl NOTPROCBSS ch.cking if (mematart >< mint) >- '70
xor
ldc '70
r.v
qt
.qc 0
cj Nofpu

-- Mematart for 1'5, 1'8
-- B - '70, A - (Mematart >< MINT)

fpt••t.rr -- floating ch.ck and cl.ar .rror in.truction

Nofpu:

-- index to word. to initiali••
no. word. to initiali••

-- oount of word. l.ft

-- index
NOTPROCESS
BASE
NOTPROCESS

-- point to next addr•••
o -- put NotProo... into addr•••ed word
BASB -- addr... of loop oontrol info
Endloop - Startloop -- r.turn jump

-- go back if more

initiali •• link and .v.nt word.
ldc 0
• tl BASB
ldc 11
.tl COUNT

Startloop:
ldl
ldl
ldl
w.ub
.tnl
ldlp
ldc
l.nd

Endloop:

••t up .ome load.r paramet.r.. S.. the paramet.r
.tructure of the load.r
ldl MEMSTART -- cl.ar data and .ntry addr•••••
• tl DATA ADDRESS
ldl MEMS'iART
atl ENTRY_ADDRESS

ldlp DATA_ADDRESS addr... of .ntry word
.tl DATA_POINT .tor. in param 7

ldlp ENTRY ADDRESS addr... of .ntry word
.tl ENTRY:POINT .tor. in param 6

ldl NOT_PROCESS
.tl EXTERNAL_ADDRESS -- buff.r off••t in param 5

ldl MEMSTART .tart of memory
.tl MEMORY .tor. in param 4

ldl BOOTLINX oopy of bootlink
.tl BOOTLINX_IN_PARAM -- .tor. in param 2

Now find the oorr••ponding output link and plao. in the paramet.r

ldl BOOTLINX
ldnlp -4
• tl BOOTLINX_OUT_PARAK

Calculat. the output link addr•••
.tor. in param 3

72 TDS 276 02 March 1991

F.2 Example user bootstrap

load bootloader over bootstrap
code must be 2 bytes shorter than bootstrap
ldlp LOAD_LENGTH -- packet size word
ldl BOOTLINK -- address of link
ldc 1 -- bytes to load
in input lenqth byte

213

ldl
ldl
ldl
in

NEMSTART
BOOTLINK
LOAD_LENGTH

area to load bootloader
address of link
message length

-- input bootloader

enter code just loaded

pfix 0
pfix 0
pfix 0
pfix 0
pfix 0
pfix 0
pfix 0
pfix 0
pfix 0
pfix 0
pfix 0

ldl MEMSTART
gcall

align

Endprimary :

-- For the next bootstrap to be 2 bytes bigger

start of loaded code
enter bootloader

-- (c) Inmos 1989
-- Assembly file for the generic secondary loader TA IGNORE mode

-- VAL BASB IS 1 loop index
-- VAL COUNT IS 2 loop count

-- VAL LOAD START IS 0 start of loader
-- VAL LOAD-LENGTH IS 1 loader block length
-- VAL NEXT::ADDRESS IS 2 start of next block to load
-- VAL BOOTLINIC IS 3 link booted from
-- VAL NEXT_WPTR IS 4 -- work space of loaded code
-- VAL RETURN ADDRESS IS 5 -- return address from loader
-- VAL TEMP_ WORKSPACB IS RETURN_ADDRESS : -- workspace used by both

-- preamble and loader
-- VAL NO'l'PROCESS IS 6 : -- copy of MinInt
-- VAL LINICS IS NOTPROCESS -- 1st param to loader (MinInt)
-- VAL BOOTLINIC IN PARA)(IS -- 2nd parameter to loader
-- VAL, BOOTLINIC::OOT_PARAM IS -- 3nd parameter to loader
-- VAL MEMORY IS 9 4th parameter to loader
-- VAL BUFFER IS 10 5
-- VAL NEXT POINT IS 11 6th parameter to loader
-- VAL ENTRY_POINT IS 12 7th parameter to loader
-- VAL DATA POINT IS 13 8th parameter to loader
-- VAL ENTRY ADDRESS IS 14 referenced from entry point
-- VAL DATA_ADDRESS IS 15 referenced from Data point
-- VAL NEXT_ADDRESS IS 16 referenced from Nexat point
-- VAL MEMSTART IS 17 start of boot part 2

-- VAL PACKET LENGTH IS 120 :
-- VAL OCCAMjiORKSPACE IS 18 :

72 TDS 276 02 March 1991

214 F Bootstrap loaders

byte (End.econdary-Secondary) -- Length of the .econdary boo.trap

Secondary:

global Secondary

initiali.e bootloader work.pace

ldc PAC1CKT LENGTH
ldlp NKMSTART+l
b.ub
.tl NEXT_ADDRESS

ldl NEXT_ADDRESS

ldlp MBMSTART+l
.tl MEMORY

ldlp IfEMP_ WOlUCSPACE
.tl NEXT_WPTa

ldc 0
.tl BUFFER

ldc 0
.tl LOAD_LENGTH

Loadcode:
ldl NEXT ADDRESS
.tl LOAD:START

-- buffer .ize
-- buffer .tart addre••

end of buffer addre••
-- .tart of area to load loader

-- buffer .tart addre••
-- Earlie.t place to load

-- pointer to loader'. work .pace zero
-- work apace pointer of loaded code

-- Buffer off.et from Buffer .tart

clear byte. to load

addre.. to load loader
current load point

-- packet length
-- addre•• of link
-- byte. to load
-- input length byte

load code until terminator
Startload:

ldlp LOAD LENGTH
ldl BOOTLINK
ldc 1
in

ldl LOAD LENGTH -- me••age length
cj Bndload quit if 0 byte.

ldl NEXT_ADDRESS .tart of area to load loader
ldl BOOTLINK addre.. of link
ldl LOAD_LENGTH -- me••age length
in -- input code block
ldl LOAD LENGTH -- me••age length
ldl NEXT:ADDRESS area to load
b.ub new area to load
.tl NEXT_ADDRESS .ave area to load

j Startload go back for next block
Endload:

initiali.e return addre•• and enter loaded code
ldc Return - Addrl off.et to return addre••
ldpi return addre••

Addrl:
.tl RETURN_ADDRESS .ave in WO

ldl
.tl

ldl
gajw
ldnl
gcall

Return:

BOOTLINK
OCCAM_WOlUCSPACB

-- Get bootlink and .ave for later
-- Save in area that will not be u.ed
-- by network loader

-- w.pace of loaded code
-- .et up hi. work .pace

addre.. of fir.t load packet
-- enter loaded code

72 TDS 276 02 March 1991

F.2 Example user bootstrap

Now .et up invooation .tack tor the Init_.y.tem

ajw (TEMP_WORKSPACB + 4) -- re.et work .paoe atter return

ldl OCCAN WORKSPACB get back boot link
.tl BOOTLINX

ldl DATA ADDRESS -- get addre•• ot proce••or .tructure
ldl MEMORY
b.ub
.tl DATA_POINT

ldl BNTRY ADDRESS -- convert to real entry addre••
ldl MEMORY
baub
.tl LOAD_START

ldl NOTPROCESS
.tl NEXT_POINT

ldl MEMORY -- make DAIfA ba.e ottaet and CODB ba.e ott.et the .&me

.tl BtJi'i"BR

ldl BNTRY ADDRESS
.tl IfBMPjiORKSPACB Set up entry point

ldl NEXT ADDRESS oonvert returned addre.. ot next .equenoe to
ldl MEMORY a real addre••
baub
.tl NEXT_ADDRESS

ldc 0
atl LOAD_LENGTH -- clear byte. to load

ldlp NOT PROCESS -- Top ot temp work.pace uaed by bootloac1er
.tl NEXT_WPTR

atart olock

ldo 0
.ttim.r

215

Startload

align

Endaeoonclary :

72 TDS 276 02

-- Go back tor more and over write the network loader

March 1991

216

F.3 The INMOS Network Loader

F Bootstrap loaders

The following code, written in occam, represents the standard network loader
program used by INMOS.

This generic loader is written and should be compiled with out any processor type
dependencie•. That i. the .ame object code i. used even if the processor i. one of
the sixteen bit variety

PROC Loader ([4] CHAN OF ANY
CHAN OF ANY
[4] BYTE
VAL INT
INT
INT
INT

link.,
bootlink. in, bootlink. out,
memory,
Buffer. address,
Next. address,
Entry. point,
Data.point)

--{{{ constant.
VAL data. field IS 13F
VAL data. field. bits IS 6 :
VAL tag. field IS ICO
VAL tag. field.bits IS 2
VAL message IS 0
VAL number IS 1
VAL operate IS 2
VAL prefix IS 3
VAL tag. prefix IS prefix « data. field.bits
VAL message. length IS 60 :

VAL load IS 0
VAL pas. IS 1
VAL open IS 2
VAL operate. open IS BYTE «operate « data. field. bits)

\/ open) :
VAL close IS 3 :
VAL operate. close IS BYTE «operate « data. field.bits)

\/ close) :
VAL address IS 4
VAL execute IS 5
VAL Data.position IS 6
VAL operate. execute IS BYTE «operate « data. field.bits)

\/ execute) :

VAL operate.data.postion IS BYTE «operate « data. field.bits)
\/ Data.position) :

VAL code. load IS 7:
VAL operate.code.load IS BYTE «operate « data.field.bits)

\/ code.load) :

VAL code. address IS 8:
VAL operate.code.address IS BYTE «operate « data.field.bits)

\/ code. address) :

VAL data . load
VAL operate. data .load

IS g:
IS BYTE «operate « data. field. bits)

\/ data. load) :

VAL data. address IS 10:
VAL operate.data.address IS BYTE «operate « data.field.bits)

\/ data. address) :

VAL Entry.position IS 11:
VAL operate.entry.position IS BYTE «operate « data.field.bits)

\/ Entry.position) :

72 TDS 276 02 March 1991

F.3 The INMOS Network Loader

VAL Boot.trap.load IS 12:
VAL Operate.boot.trap.load IS BYTE «operate « data. field.bits)

\/ Boot.trap.load) :

VAL Bootstrap. end IS 13:
VAL Operate .boot.trap. end IS BYTB «operate « data. field. bit.)

\/ Boot.trap. end) :

-- { { { VAlUABLES
BYTE oommand:
INT Bootstrap. depth, links. to . load, la.t. addres., output . link
BOOL loading:
SEQ

bootlink. in ? oommand
WHILE oommand <> operate. execute

INT tag, operand :
- - { { { prooes. oommand
SEQ

tag :- (INT oommand) » data. field.bits
operand :- (INT oommand) /\ data. field
Ii'

--{ {{ tag - message
tag - message

INT load. address
SEQ

Ii'
--{ {{ loading
loading

SEQ
load. address : - la.t. address
laat. address : - load. address PLUS operand

--{ {{ passing on
TRUE

load. address : - Buffer. addre••
--{ {{ read in mesaage
IF

operand <> 0
bootlink . in ? [memory FROM load. address FOR operand]

TRUE
SKIP

-- { { { send message to outputs
SEQ i - 0 FOR 4

Ii'
(link•. to.load /\ (1 « i» <> 0

SEQ
link.[i] , oommand
IF

operand <> 0
links[i] , [memory FROM load.addres. FOR operand]

TRUE
SKIP

TRUE
SKIP

-- { { { tag - operate
tag - operate

IF
--{ {{ operand - load
operand - load

SBQ
loading : - TRUE
link•. to . load : - 0

--{{ { operand - data. load
operand - data . load

SEQ
loading : == TRUE
links. to . load : - 0

--{ {{ operand - Code. load
operand - oode • load

SEQ

72 TDS 276 02

217

March 1991

218

loadinq :- TRUE

link•. to .load : - 0
--{ {{ operand - pa••
operand - pa••

SEQ
loadinq : - FALSE
link•• to • load : - 0

-- {{{ operand - open
operand - open

INT depth:
SEQ

depth :- 1
WHILE depth <> 0

SEQ
bootlink. in ? command
II'

command - operate. open
depth : - depth + 1

command - operate. clo.e
depth :. depth - 1

TRUE
SKIP

F Bootstrap loaders

II'
depth <> 0

link. [output •link] command
TRUE

SKIP
--{{{ operand - addre••
operand - addre••

SEQ
--{{ { read in load off.et
BOOL more:
SEQ

la.t. addre.. : - 0
more :- TRUB
WHILE more

SEQ
la.t.addre•• :- la.t.addre•• « data.field.bit.
bootlink. in ? coamand
la.t . addre.. :. la.t. addre.. PLUS

«INT command) /\ data. field)

more : - (INT command) >- tag-. prefix
--{{{ entry addre••
Next. addre.. : - la.t. addre••

operand - Data. po.i~ion
SEg

--{{{ read in data po.ition off.et
BOOL more:
SEg

Data.point :- 0
more :- nOB
WHILE more

SEg
Data.point :- Data.point « data. field. bit.
bootlink. in ? coamand
Data. point : - Data. point PLUS

«INT command) /\ data. field)

more :- (INT command) >- tag-.prefix
operand - Entry.po.ition

SEg
--{ {{ read in data position off.et
BOOL more:
SEQ

Entry.point :­
more :- nOB
WHILE more

SEQ
Entry •point :. Entry . point « data. field. bit.

72 TDS 276 02 March 1991

F.3 The INMOS Network Loader

bootlink. in ? cOlllD&lld
Entry. point : - Entry. point PLUS

«INT command) 1\ data. fi.ld)

more :- (INT command) >- tag.pr.fix
-- { {{ .ntry addr•••

operand - cod•. addr•••
SEg

--{ {{ read in load off.et
BOOL mor.:
SEg

la.t. addr... :.. 0
more :- TRUE
WHILE more

SEg
la.t.addre•• :- la.t.addr••• « data.field.bit.
bootlink. in ? coamand
la.t . addre.. : - la.t. addre.. PLUS

«INT command) 1\ data. field)

more : - (INT command) >- tag. pr.fix
Bntry. point : - la.t. addre••

operand - data. addre••
SBg

--{ {{ read in load off••t
BOOL more:
SBg

la.t. addr... : - 0
more : - TRUE
WHILE more

SEg
la.t.addr••• :- la.t.addr••• « data.fi.ld.bit.
bootlink. in ? coamand
la.t . addre.. : - la.t. addre.. PLUS

«INT command) 1\ data. field)

more : - (INT command) >- tag. pr.fix
--{ {{ .ntry addr•••
Data.point : - la.t. addr•••

operand - Boot.trap . load
INT load. addre.. :
INT Boot.trap.l.nqth
BOOL mor.:
SEg

Boot.trap. d.pth : - 0
Boot.trap.lenqth :- 0
load. addre.. : .. Buffer. addre••
more :- TRUE
bootlink. in ? command
more : = (INT command) >c data. field
WHILE more

SBg
Boot.trap.d.pth :- Boot.trap.d.pth PLUS 1
SEg i - 0 FOR 4

IF
(link•. to.load 1\ (1 « i» <> 0

SEg
link. (i) ! command

TRUE
SKIP

bootlink . in ? command
more :- (INT command) >- data. fi.ld

operand : - (INT command) 1\ data. fi.ld

II'
Boot.trap.depth > 0

-- {{{ read inag.
SEg

IF

72 TDS 276 02

219

March 1991

220 F Bootstrap loaders

operand <> 0
bootlink. in ? [memory FROM load. addreaa FOR operand]

TRUE
SKIP

-- { { { .endag. to output.
SEQ i - 0 FOR 4

IF
(link•. to . load /\ (1 « i» <> 0

SEQ
link. [i) , oommand
IF

operand <>
link. [i) [memory FROM load. addreaa

FOR operand]
TRUE

SKIP
TRUE

SKIP
TRUE

SEQ
more ::11: TRUE
-- The next prooeasor (a) are to be booted ,!, --
-- ao build a bootable paoket and output down link
WHILE more

SEQ
bootlink. in ? [memory FROM load. addreaa FOR operand]
load.address :- load.addres. PLUS operand
Bootatrap.lenqth : - Bootstrap.lenqth PLUS operand
bootlink . in ? oommand

Stop building when a proper oommand
-- ia received Thia ahould be when a
-- , Bootatrap. end' ia reoeived
more : - (INT oommand) < data. field
operand :- (INT oommand) /\ data. field

SEQ i - 0 FOR 4
IF

(links.to.load /\ (1 « i» <> 0
SEQ

linka [i) , (BYTE Bootatrap .lenqth)
IF

Bootatrap.lenqth <> 0
linka [i) , [memory FROM Buffer. addr.a.

FOR Bootatrap .lenqth]
TRUE

SKIP
TRUE

SKIP
operand - Bootatrap. end

SEQ
SEQ ii :& 0 FOR Bootatrap.depth

SEQ
-- Paas on all the other bootatrap enda
bootlink. in ? oommand
SEQ i = 0 FOR 4

IF
(links. to . load /\ (1 « i» <> 0

link. [i) , oommand
TRUE

SKIP
Bootatrap. depth :. 0

--{ {{ tag - number
TRUE

SEQ
output . link : - operand
link•. to . load : - link•. to . load \/ (1 « output . link)

bootlink. in ? oommand

72 TDS 276 02 March 1991

G ITERM
G.1 Introduction

This appendix describes the format of ITERM files; it is included for people who
need to write their own ITERM because they are using terminals that are not
supported by the standard ITERM file supplied with the toolset. You may of
course wish to tailor a standard ITERM to suit your own needs.

ITERMs are ASCII text files that describe the control sequences required to
drive terminals. Screen oriented applications that use ITERM files are terminal
independent.

ITERM files are similar in function to the UNIX termcap database and describe
input from, as well as output to, the terminal. They allow applications that use
function keys to be terminal independent and configurable.

Within the toolset, the ITERM file is only used by the debugger tool idebuq
and the T425 simulator tool isim.

G.2 The structure of an ITERM file

An ITERM file consists of three sections. These are the host, screen and key­
board sections. Sections are introduced by a line beginning with the section
letters 'H', 'g' or 'K'. Case is unimportant and the rest of the line is ignored. Sec­
tions consist of a number of lines beginning with a digit. A section is terminated
by a line beginning with the letter 'E'. The host section must appear first; other
sections may appear in any order in the file. Sections must be separated by at
least one blank line.

The syntax of the lines that make up the body of a section is best described in
an example:

3:34,56,23,7. comments

Each line starts with the index number followed by a colon and a list of numbers
separated by commas. Each line is terminated by a full stop (' • ') and anything
following it is treated as a comment. Spaces are not allowed in the data string
and an entry cannot be split across more than one line.

Comment lines, beginning with the character 'I', may be placed anywhere in an
ITERM file. Extra blank lines in the file are ignored.

72 TDS 276 02 March 1991

222 G ITERM

The index numbers in each section correspond to an agreed meaning for the
data. In the following sections the meaning of the data in each of the three
sections is described in detail.

G.3 The host definitions

G.3.1 ITERM version

This item identifies an ITERM file by version. It provides some protection against
incompatible future upgrades.

e.g. 1:2.

G.3.2 Screen size

This item allows applications to find out the size of the terminal at startup time.
The data items are the number of columns and rows, in that order, available on
the current terminal.

e.g. 2:80,25.

Screen locations should be numbered from 0, 0 by the application. Terminals
which use addressing from 1, 1 can be compensated for in the definition of goto
X, Y.

G.4 The screen definitions

The lists of values in the screen section represent control codes that perform
certain operations; the data values are ASCII codes to send to the display device.

ITERM version 2 defines the indices given in table G.1. These definitions are
used in the example ITERM file; for a complete listing of the file see section G.?

For example, an entry like: '8: 27 , 91, 75.' indicates that an application should
output the ASCII sequence 'ESe [K' to the terminal output stream to clear to
end of line.

72 TDS 276 02 March 1991

G.4 The screen definitions 223

Index Screen operation Index Screen operation
1 cursor up 9 clear to end of screen
2 cursor down 10 insert line
3 cursor left 11 delete line
4 cursor right 12 ring bell
5 goto x Y 13 home and clear screen
6 insert character 20 enhance on (not used)
7 delete character at cursor 21 enhance off (not used)
8 clear to end of line

Table G.1 ITERM screen operations

G.4.1 Goto X V processing

The entry for 5, 'goto X y', requires further interpretation by the application.
A typical entry for 'goto X Y' might be:

5:27,-11,32,-21,32

The negative numbers relate to the arguments required for X and Y.

... ,-ab,nn, ...

where: a is the argument number (Le. 1 f~r X, 2 for V).

b controls the data output format.
If b=1 output is an ASCII byte (e.g. 33 is output as !).
If b=2 output is an ASCII number (e.g. 33 is output as 3 3).

nn is added to the argument before output.

As a complete example, consider the following ITERM entry in the screen section:

5:27,91,-22,1,59,-12,1,72. ansi cursor control

This would instruct an application wishing to move the terminal cursor to X=14,
Y=8 (relative to 0,0) to output the following bytes to the screen:

Bytes in decimal: 27 91 57 59 49 53 72
Bytes in ASCII: ESC [9 1 5 H

72 TDS 276 02 March 1991

224

G.5 The keyboard definitions

G ITERM

Each index represents a single keyboard operation. The data specified after
each index defines the keystroke associated with that operation.

Multiple entries for the same index indicate alternative keystrokes for the opera­
tion.

ITERM version 2 defines the indices given in table G.2. These definitions are
used in the' example ITERM file; for a complete listing of the file see section G.7.

Index Function Index Function
2 delete character 39 goto line
6 cursor up 40 backtrace
7 cursor down 41 inspect
8 cursor left 42 channel
9 cursor right 43 top
12 delete line 44 retrace
14 start of line 45 relocate
15 end of line 46 info
18 line up 47 modify
19 line down 48 resume
20 page up 49 monitor
21 page down 50 word left
26 enter file 51 word right
27 exit file 55 top of file
28 refresh 56 end of file
29 change file 62 toggle hex
31 finish 65 continue from
34 help 66 toggle breakpoint
36 get address 67 search

Table G.2 ITERM key operations

72 TDS 276 02 March 1991

G.6 Setting up the ITERM environment variable

G.6 Setting up the ITERM environment variable

225

To use an ITERM the application has to find and read the file. An environment
variable (or logical name on VMS) called ITERM should be set up with the
pathname of the file as its value. For example, under MS-DOS the command
would be:

C:\> set ITERM=C:\ITOOLS\TOOLS\PCBANSI.ITM

Under UNIX you would set an environment variable. For example, the command
for csh users might be:

% setenv ITERM -/.iterm

Under VMS you would define a logical name. For example:

$ DEFINE ITERM SYS$LOGIN:VT100.ITM

For more details about setting environment variables see the Delivery Manual
that accompanies the release.

72 TDS 276 02 March 1991

226

G.7 An example ITERM

G ITERM

This is the toolset ITERM file for the IBM PC using the ANSI screen driver.

#--
#
IBM PC (BANSI) ITERM data file (derived from TDS3 ITERM)
Support for idebug and isim
IDEBOG version for BANSI.SYS driver:
Special care needed on screen codes 6, 7, 9, 10, 11
#
V1.1 - 10 July 90 (NH) Updated idebug and isim support
#
#--
host section
1:2.
2:80,25.
end of host section

screen control characters

screen section
#
1:27,91,65.
2:27,91,66.
3:27,91,68.
4:27,91,67.
5:27,91,-22,1,59,-12,1,72.
6:27,91,64.
7:27,91,80.
8:27,91,75.
9:27,91,74.
10:27,91,76.
11:27,91,77.
12:7.
13:27,91,50,74.
end of screen section

version.
screen size

DEBOGGER

cursor left

goto x y
insert char
delete char
clear to eol
clear to eos
insert line
delete line
bell
clear screen

SIMULATOR
cursor up
cursor down
cursor left
cursor right
goto x y
insert char
delete char
clear to eol
clear to eos
insert line
delete line
bell
clear screen

keyboard
#
#
2:8.
6:0,72.
7:0,80.
8:0,75.
9:0,77.
12:0,110.

section
KEY

I BACKSPACE

'UP
, DOWN

I LEFT
I RIGHT
, ALT F7

DEBOGGER

del char
cursor up
cursor down
cursor left
cursor right
delete line

SIMULATOR

cursor up
cursor down
cursor left
cursor right

72 TDS 276 02 March 1991

G.7 An example ITERM 227

12:21. , CTRL 0 delete line
12:24. , CTRL X delete line
14:0,65. , F7 start of line start of line
15:0,66. , F8 end of line end of line
18:0,67. , F9 line up
19:0,68. # F10 line down
20:0,112. # ALT 1'9 page up page up
21:0,113. # ALT 1'10 page down page down
26:0,71. # NUM 7 enter file
27:0,73. # NUM 9 exit file
28:27. # ESC refresh refresh
29:0,87. , SHIFT 1'4 change file
31:0,117. # CTRL NUM 1 finish
34:0,59. , F1 help help
36:0,63. # F5 get address
39:0,64. , F6 goto line
40:0,129. # ALT 0 backtrace
41:0,120. # ALT 1 inspect
42:0,121. # ALT 2 channel
43:0,122. , ALT 3 top
44:0,123. , ALT 4 retrace
45:0,124. # ALT 5 relocate
46:0,125. # ALT 6 info
47:0,126. # ALT 7 modify
48:0,127. , ALT 8 resume
49:0,128. , ALT 9 monitor
50:0,90. , SHIFT 1'7 word left
50:6. # CTRL I' word left
50:0,115. # CTRL NUM 4 word left
51:0,91. , SHIFT 1'8 word right
51:7. # CTRL G word right
51:0,116. # CTRL NUM 6 word right
55:0,92. # SHIFT 1'9 top of file
55:20. # CTRL T top of file
56:0,93. # SHIFT 1'10 end of file
56:2. # CTRL B end of file
62:0,108. , ALT 1'5 toggle hex
65:0,105. , ALT 1'2 continue from
66:0,99. # CTRL 1'6 toggle break
67:0,88. , SHIFT 1'5 search

end of keyboard stuff

idebug key that isn't really part of iterm but its here
all the same !
#
INTERRUPT CTRL A IDEBOG

THAT'S ALL FOLKS

72 TDS 276 02 March 1991

228

72 TDS 276 02

G ITERM

March 1991

H Host file server
protocol

This appendix describes the protocol of the host file server iserver.

H.1 The host file server iserver

The host file server iserver is implemented in C which facilitates porting to
other machines. This provides an easy method of porting the toolset (or pr67
grams written under the toolset) to new hosts. The server can, at a cost to
portability, be extended to accomodate new host features.

The source of the server and of the libraries used to communicate with the server
is supplied with the toolset.

H.2 The server protocol

Every communication to and from the server is a packet consisting of a counted
array of bytes. The count gives the length of the message and is sent in the first
two bytes of the packet as a signed 16 bit number. The structure of a server
packet is illustrated in figure H.1.

This protocol has been given the name SP, and is defined in occam as follows:

PROTOCOL SP IS INT16:: []BYTE :

H.2.1 Packet size

There is a maximum packet size of 1024 bytes and a minimum packet size of 8
bytes in the to-server direction (Le. a minimum message length of 6 bytes). The
server may take advantage of this knowledge.

The packet size must always be an even number of bytes. If the number of

message of length bO + (256 * b1)

72 TDS 276 02

Figure H.1 SP protocol packet

March 1991

230 H Host file server protocol

bytes is odd a dummy byte is added to the end of the packet and the packet
byte count rounded up by one.

The hostio library contains routines that ensure that the size restrictions are met
when sending a packet to the server (see section H.3).

H.2.2 Protocol operation

Every request sent to the server receives a reply of the same protocol, in strict
sequence, and no further requests are accepted until the reply has been sent.

Unless otherwise stated all integer types used by the protocol are signed. Num­
bers are transmitted as sequences of bytes (2 bytes for 16 bit numbers, 4 bytes
for 32 bit numbers) with the least significant byte first. Negative integers are
represented in 2s complement. Strings and other variable length blocks are
introduced by a 16 bit signed count.

All server calls return a result byte as the first item in the return packet. If the
operation succeeds the result byte is zero and if the operation fails the result
byte is non-zero. The result is one (1) in the special case where the operation
fails because the function is not implemented1• If the result is non-zero, some or
all of the return values may not be present, resulting ina smaller return packet
than if the call was successful.

H.3 The server libraries

The hostio library hostio . lib contains all the routines provided in the toolset
for communicating with the server. It contains a set of basic routines, hidden
from the user, from which the more complex user visible routines are built.

A naming convention has been adopted for the server libraries. The basic library
routines use the server protocol directly and map directly to server functions.
These have the prefix 'sp. '. Routines which use the basic routines and' are
visible to the user have the prefix 'so. '. The 'so.' routines documented in this
manual use underlying 'sp.' routines, and in some cases the mapping is one
to one.

The source of the hostio library is provided with the toolset and serves as an
example of how to use the SP protocol.

1Result values between 2 and 127 are defined to have particular meanings by occam
server libraries. Result values of 128 or above are specific to the implementation of a server.

72 TDS 276 02 March 1991

H.3 The server libraries 231

If you add your own libraries for server functions you are recommended to keep
to the naming convention.

There are two 'sp.' library routines included to help you extend the set of
available routines. These are sp. send. packet and sp . receive. packet.
These are described below.

sp.send.packet

PROC sp.send.packet (CHAN OF SP ts,
VAL []BYTE packet,
BOOL error)

This procedure sends a packet on the channel ts, provided that it meets
the requirements for a SP protocol packet. If the requirements are not
met then the packet is not sent and error is set to TRUE.

sp.receive.packet

PROC sp.receive.packet (CHAN OF SP fs,
INT16 length,
[] BYTE packet,
BOOL error)

This procedure receives a packet on the channel fs. The received packet
is in the first length bytes of packet. The value error is set to TRUE
if the size of the packet received exceeds sp .max . packet . data. size;
otherwise it is FALSE.

H.3.1 Problems with packet size

The maximum packet size which may be handled by iserver is 1024, this
causes a potential problem, however, for some routines in hostio .lib. This
is because the hostio routines have a maximum packet size of 512 bytes. The
hostio routines which may be affected are:

• so.getenv

• so. commandline

• so.ferror

• so.buffer

• so.overlapped.buffer

72 TDS 276 02 March 1991

232 H Host file server protocol

• so. multiplexor

• so.overlapped.multiplexor

• so.pri .multiplexor

• so.overlapped.pri .multiplexor

Should any of these routines receive a packet larger than 512 bytes, they will
act as invalid processes.

Care should be taken that the multiplexor and buffer routines listed above are
not used by any routines which are likely to exceed the 512 byte limit.

H.4 Porfing the server

In order to port the iserver to a new machine you must have a C compiler
for that machine. A number of Makefiles that can assist with porting to a new
machine are supplied in the toolset 'source' subdirectory.

The hostio library expects all the functions described below to be provided by
iserver.

H.5 Defined protocol

The functions provided by the iserver are split into three groups:

1 File commands, for interacting with files

2 Host commands, for interacting with the host

3 Server commands, for interacting with the server.

In the descriptions that follow, the arguments and results of server calls are listed
in the order that they appear in the data part of the packet. The size of a packet
is the aggregated size of all the items in the packet, rounded up to an even
number of bytes. occam types are used to define data items within the packet.

H.5.1 Reserved values

INMOS reserves the following values for its own use:

• Function tags in the range 0 to 127 inclusive.

72 TDS 276 02 March 1991

H.5 Defined protocol

• Result values in the range 0 to 255 inclusive.

• Stream identifiers 0, 1 and 2.

233

Some commands may return particular values, which may be reserved. The
range of reserved values is given with each command as appropriate.

H.5.2 File commands

Open files are identified with 32 bit descriptors. There are three predefined open
files:

o- standard input
1 - standard output
2 - standard error

If one of these is closed then it may not be reopened.

Fopen - Open a file

Synopsis: StreamId = Fopen(Name, Type, Mode)

To server: BYTE
INT16: : [] BYTE
BYTE
BYTE

Tag = 10
Name
Type = 1 or 2
Mode = 1 ... 6

From server: BYTE
INT32

Result
StreamId

Fopen opens the file Name and, if successful, returns a stream identifier
StreamId.

Type can take one of two possible values:

1 Binary. The file will contain raw binary bytes.

2 Text. The file will be stored as text records. Text files are host­
specified.

Mode can have 6 possible values:

1 Open an existing file for input.

72 TDS 276 02 March 1991

234 H Host file server protocol

2 Create a new file, or truncate an existing one, for output.

3 Create a new file, or append to an existing one, for output.

4 Open an existing file for update (both reading and writing), starting
at the beginning of the file.

5 Create a new file, or truncate an existing one, for update.

6 Create a new file, of append to an existing one, for update.

When a file is opened for update (one of the last three modes above) then
the resulting stream may be used for input or output. There are restric­
tions, however. An output operation may not follow an input operation
without an intervening Fseek, Ftell or Fflush operation.

The number of streams that may be open at one time is host-specified,
but will not be less than eight (including the three predefines).

Fclose - Close a file

Synopsis: Fclose(StreamId)

To server: BYTE
INT32

Tag = 11
StreamId

From server: BYTE Result

Fclose closes a stream StreamId which should be open for input or out­
put. Fclose flushes any unwritten data and discards any unread buffered
input before closing the stream.

72 TDS 276 02 March 1991

H.5 Defined protocol

Fread - Read a block of data

235

Synopsis: Data = Fread(Streamld, Count)

To server:

From server:

BYTE
INT32
INT16

BYTE
INT16: : [] BYTE

Tag = 12
Streamld
Count

Result
Data

This function is obsolete. See the definition of FGetBlock for its
replacement.

Fread reads Count bytes of binary data from the specified stream. Input
stops when the specified number of bytes are read, or the end of file is
reached, or an error occurs. If Count is less than one then no input is
done. The stream is left positioned immediately after the data read. If
an error occurs the stream position is undefined.

Result is always zero. The actual number of bytes returned may be
less than requested and Feof and Ferror should be used to check for
status.

72 TDS 276 02 March 1991

236

Fwrlte - Write a block of data

H Host file server protocol

Synopsis: Written = Fwrite(StreamId, Data)

To server:

From server:

BYTE
INT32
INT16: : [] BYTE

BYTE
INT16

Tag = 13
StreamId
Data

Result
Written

This function is obsolete. See the definition of FPutBlock for its
replacement.

Fwrite writes a given number of bytes of binary data to the specified
stream, which should be open for output. If the length of Data is less
than zero then no output is done. The position of the stream is advanced
by the number of bytes actually written. If an error occurs then the re­
sulting position if undefined.

Fwrite returns the number of bytes actually output in Written. Result
is always zero. The actual number of bytes returned may be less than
requested and Feof and Ferror should be used to check for status.

If the StreamId is 1 (standard output) then the write is automatically
flushed.

Fgets - Read a line

Synopsis:

To server:

Data

BYTE
INT32
INT16

Fgets(StreamId, Count)

Tag = 14
StreamId
Count

From server: BYTE Result
INT16::(]BYTE Data

Fgets reads a line from a stream which must be open for input. Charac­
ters are read until end of file is reached, a newline character is seen or
the number of characters read is not less than Count.

If the input is terminated because a newline is seen then the newline
sequence is not included in the returned array.

72 TDS 276 02 March 1991

H.5 Defined protocol 237

If end of file is encountered and nothing has been read from the stream
then Fgets fails.

Fputs - Write a line

Synopsis: Fputs(Streamld, String

To server:

From server:

BYTE
INT32
INT16: : [] BYTE

BYTE

Tag = 15
Streamld
String

Result

Fputs writes a line of text to a stream which must be open for output.
The host-specified convention for newline will be appended to the line
and output to the file. The maximum line length is host-specified.

Fflush - Flush a stream

Synopsis: Fflush(Streamld)

To server: BYTE
INT32

From server: BYTE

Tag = 16
Streamld

Result

Fflush flushes the specified stream, which should be open for output. Any
internally buffered data is written to the destination device. The stream
remains open.

72 TDS 276 02 March 1991

238

Fseek - Set position in a file

H Host file server protocol

Synopsis: Fseek(Streamld, Offset, Origin)

To server: BYTE
INT32
INT32
INT32

From server: BYTE

Tag = 17
Streamld
Offset
Origin

Result

Fseek sets the file position for the specified stream. A subsequent read
or write will access data at the new position.

For a binary file the new position will be Offset characters from Origin
which may take one of three values:

1 Set, the beginning of the file

2 Current, the current position in the file

3 End, the end of the file.

For a text stream, Offset must be zero or a value returned by Ftell. If
the latter is used then Origin must be set to 1.

Ftell - Find out position in a file

Synopsis: Position

To server: BYTE
INT32

From server: BYTE
INT32

Ftell(Streamld

Tag = 18
Streamld

Result
Position

Ftell returns the current file position for Streamld.

72 TDS 276 02 March 1991

H.5 Defined protocol

Feof - Test for end of file

239

Synopsis: Feof(Streamld

To server: BYTE
INT32

From server: BYTE

Taq = 19
Streamld

Result

Feof succeeds if the end of file indicator for Streamld is set.

Ferror - Get file error status

Synopsis: ErrorNo, Messaqe = Ferror(Streamld)

To server: BYTE
INT32

From server: BYTE
INT32

" INT16:: []BYTE

Taq = 20
Streamld

Result
ErrorNo
Messaqe

Ferror succeeds if the error indicator for Streamld is set. If it is, Fer­
ror returns a host-defined error number and a (possibly null) message
corresponding to the last file error on the specified stream.

Remove - Delete a file

Synopsis:

To server:

From server:

Remove(Name)

BYTE
INT16: : [] BYTE

BYTE

Taq = 21
Name

Result

Remove deletes the named file.

72 TDS 276 02 March 1991

240

Rename - Rename a file

Synopsis:

H Host file server protocol

Rename(OldName, NewName

To server:

From server:

BYTE
INT16:: []BYTE
INT16: : [] BYTE

BYTE

Tag = 22
OldName
NewName

Result

Rename changes the name of an existing file OldName to NewName.

FGetBlock - Read a block of data and return status

Synopsis: Data,Result ~ FGetBlock(StreamId,Count)

To server:

From server:

BYTE
INT32
INT16

BYTE
INT16: : [] BYTE

Tag = 23
Streamld
Count

Result
Data

FGetBlock reads Count bytes of binary data from the specified stream.
Input stops when the specified number of bytes are read, or the end of
file is reached, or an error occurs. If Count is less than one then no
input is done. The stream is left positioned immediately after the data
read. If an error occurs the stream position is undefined.

The actual number of bytes returned may be less than requested. In the
case of Result indicating a failure Feof and Ferror should be used to
determine the cause of the error.

This function is preferred over the Fread function, which should no longer
be used.

72 TDS 276 02 March 1991

H.5 Defined protocol

FPutBlock - Write a block of data and return status

241

Synopsis: Written,Result = FPutBlock(StreamId,Data)

To server:

From server:

BYTE
INT32
INT16: : [] BYTE

BYTE
INT16

Tag = 24
Streamld
Data

Result
Written

FPutBlock writes a given number of bytes of binary data to the speci­
fied stream, which should be open for output. If the length of Data is
less than one then no output is done. The position of the stream is ad­
vanced by the number of bytes actually written. If an error occurs then
the resulting position if undefined.

FPutBlock returns the number of bytes actually output in Written. The
actual number of bytes returned may be less than requested and Feof
and Ferror should be used to check for status.

If the Streamld is 1 (standard output) then the write is automatically
flushed.

This function is preferred over the Fwrite function, which should no longer
be used.

H.5.3 Host commands

Getkey - Get a keystroke

Synopsis: Key = GetKey()

To server: BYTE Tag = 30

From server: BYTE Result
BYTE Key

GetKey gets a single character from the keyboard. The keystroke is
waited on indefinitely and will not be echoed. The effect on any buffered
data in the standard input stream is host-defined.

72 TDS 276 02 March 1991

242

Pollkey - Test for 8 key

Synopsis:

H Host file server protocol

Key = PollKey ()

To server: BYTE

From server: BYTE
BYTE

Tag = 31

Result
Key

PollKey gets a single character from the keyboard. If a keystroke is not
available then PollKey returns immediately with a non-zero result. If a
keystroke is available it will not be echoed. The effect on any buffered
data in the standard input stream is host-defined.

Getenv - Get environment variable

Synopsis: Value = Getenv(Name

To server:

From server:

BYTE
INT16: : [] BYTE

BYTE
INT16:: []BYTE

Tag = 32
Name

Result
Value

Getenv returns a host-defined environment string for Name. If Name is
undefined then Result will be non-zero. If the resultant environment
string for Name is longer than the space available in the packet buffer,
then it will be truncated.

Time - Get the time of day

Synopsis: LocalTime, UTCTime = Time()

To server: BYTE Tag = 33

From server: BYTE
INT32
INT32

Result
LocalTime
UTCTime

Time returns the local time and Coordinated Universal Time if it is avail­
able. Both times are expressed as the number of seconds that have

72 TDS 276 02 March 1991

H.5 Defined protocol 243

elapsed since midnight on 1st January, 1970. If UTC time is unavail­
able then it will have a value of zero. The times are given as unsigned
INT32s.

System - Run a command

Synopsis: Status = System(Command

To server:

From server:

BYTE
INT16: : [] BYTE

BYTE
INT32

Tag = 34
Command

Result
Status

System passes the string Command to the host command processor for
execution. If Command is zero length then System will succeed if there
is a command processor. If Command is not null then Status is the
return value of the command, which is host-defined.

H.5.4 Server commands

Exit - Terminate the server

Synopsis: Exit(Status)

To server: BYTE
INT32

From server: BYTE

Tag = 35
Status

Result

Exit terminates the server, which exits returning Status to its caller.

If Status has the special value 999999999 then the server will terminate
with a host-specific 'success' result.

If Status has the special value -999999999 then the server will termi­
nate with a host-specific 'failure' result.

72 TDS 276 02 March 1991

244 H Host file server protocol

CommandLlne - Retrieve the server command line

Synopsis:

To server:

String = CommandLine (All

BYTE Tag = 40
BYTE All

From server: BYTE
INT16: : [] BYTE

Result
String

CommandLine returns the command line passed to the server on invo­
cation. On certain operating systems it is possible to quote arguments
on the command line. The quotes themselves have been removed by
the time the arguments are passed on to the server. When building
the command line to pass on to the application the server replaces the
quotes.

If All is zero the returned string is the command line, with options and
their arguments that the server recognised at startup removed, as well
as the server command.

If All is non-zero then the string returned is the entire command vector
as passed to the server on startup, including the name of the server
command itself.

Core - Read peeked memory

Synopsis Data = Core(Offset, Length

To server:

From server:

BYTE
INT32
INT16

BYTE
INT16: : [] BYTE

Tag = 41
Offset
Length

Result
Core

Core returns the contents of the root transputer's memory, as peeked
from the transputer when the server was invoked with the analyse option.

Core fails if Offset is larger than the amount of memory peeked from
the transputer or if the transputer was not analysed.

If Offset + Length is larger than the total amount of memory that
was peeked then as many bytes as are available from the given offset

72 TDS 276 02 March 1991

H.5 Defined protocol

are returned.

Version - Find out about the server

245

Synopsis: Id = Version ()

To server: BYTE

From server: BYTE
BYTE
BYTE
BYTE
BYTE

Tag = 42

Result
Version
Host
OS
Board

Version returns four bytes containing identification information about the
server and the host it is running on.

If any of the bytes has the value 0 then that information is not available.

Version identifies the server version. The byte value should be divided
by ten to yield the version number.

Host identifies the host machine and can be any of the following:

1 PC

2 NEC-PC

3 VAX

4 Sun 3

5 370 Architecture

6 Sun 4

7 Sun 386i

8 Apollo

OS identifies the host environment and can be any of the following:

1 DOS

2 Helios

3 VMS

72 TDS 276 02 March 1991

246 H Host file server protocol

4 SunOS

5 eMS

Board identifies the interface board and can be any of the following:

1 8004

2 B008

3 8010

4 8011

5 8014

6 DRX-11

7 QTO

8 8015

9 CAT

10 8016

11 UDPlink

Values of Host, OS and Board from 0 to 127, inclusive, are reserved for use
by INMOS.

72 TDS 276 02 March 1991

Glossary
Alias check A program compilation check that ensures that names are unique

within a given scope.

Analyse To assert a signal to a transputer forcing it to halt at the next deschedul­
ing point, to allow the state of the processor to be read. In the context
of 'analysing a network', to analyse all processors in the network.

Also refers to one of the system control functions on transputers and the
pin on which the function is asserted.

Backtrace Within the debugger and simulator tools, to move from a position
within a procedure or function body to the call of that procedure or func­
tion.

Bootable code Self-starting program code, that can be loaded onto a transputer
or transputer network down a transputer link arid run. Bootable code is
produced by icollect from linked units (single transputer programs)
or configuration binary files (configured programs).

Bootstrap A transputer program, loaded from a ROM or over a link after the
transputer has been reset or analysed, which initialises the processor
and loads a program for execution (which may be another loader).

Compiler library A group of occam library routines that are used by the com­
piler to implement extended arithmetic and transputer system operations.

Configuration The association of components of a program with a set of physi­
cal resources. Used in this manual to refer to the specific case of allocat­
ing software processes to processors in a network, and channels to links
between processors. The term is also used, depending on the context,
to describe the act of deciding on these allocations for a program, the
configuration code which describes such a set of allocations, and the act
of applying the configurer to a network description.

Configurer The tool which assigns processes and channels on a specified con­
figuration of transputers. The output from the tool is a configuration binary
file for input to icollect.

72 TDS 276 02 March 1991

248 Glossary

Deadlock A state in which one or more concurrent processes can no longer
proceed because of a communication interdependency.

Error mode The compilation mode of a program that determines what happens
when a program error (such as an array bounds violation) occurs. A
program compiled using the toolset may be compiled in one of three
error modes: HALT, STOP, or UNIVERSAL.

Error signal In the transputer, an external signal used to indicate that an error
has occurred in a running program. Also refers to one of the system
control functions on transputers. Error signals can be OR-ed together
on transputer boards to indicate an error has occurred in one of the
transputers in the network.

Extended data types occam data types INT16, INT32, INT64, REAL32
and REAL64.

Hard channels Channels which are mapped onto links between processors in
a transputer network (et. Soft channels).

Host The computer which is running the toolset host file server and providing
the filing system and terminal i/o.

Host file server A file server which provides access to the filing system and
terminal i/o of a host operating system, which may be used when running
standalone programs. The toolset host file server is distinct from that
used to run the Transputer Development System (TDS).

Include file A file containing source code which is incorporated into a program
using the 'INCLUDE directive.

Library A collection of separately compiled procedures or functions, created by
the toolset librarian ilibr, which may be shared between parts of a
program or between different programs.

Library build file A file containing a list of input files for the librarian tool ilibr.
Each file forms a separately loadable module in the library. Library build
files must have the • lbb extension.

72 TDS 276 02 March 1991

Glossary 249

Library usage file A file listing the libraries and separately compiled units used
by another library. Library usage files must have the • liu extension.

Link In the context of transputer hardware, the serial communication link be­
tween processors. Used as a verb in the context of program compilation,
to collect together all the code for a program or compilation unit, resolving
all references and recompiling where necessary, and place the collected
code into a single file.

Llnker The program or tool which links a program or compilation unit.

Loader Depending on the context, refers to the part of the host file server which
loads a transputer network or to a small program which is loaded into
a transputer, and which then distributes code to other transputers and
loads a larger program on top of itself.

Makefile An input file for a Make program. A Makefile contains details of file
dependencies and directions for rebuilding the object code. Makefiles
are created for the toolset using imakef.

Network A set of transputers connected together using links as a connected
graph, that is, in such a way that there is a path, via links and other
transputers, from each transputer to every other transputer in the set.

Newline sequence The sequence of ASCII characters, defined within the host
file server, that directs a new line to be started on the terminal display or
within a file. Defined for the toolset as the sequence 'CR LF'.

Object code Intermediate code between source and bootable files. Object code
cannot be directly loaded onto a transputer and run. The compiler and
tinker tools generate object code.

Peek and poke To read and write locations in a transputer's memory, by com­
munication over a link, while the transputer is waiting for a bootstrap.

Preamble The part of a transputer loader program that initialises the state of the
processor.

72 TDS 276 02 March 1991

250 Glossary

Priority In the transputer, the priority level at which the currently executing pro­
cess is being run. INMOS transputers support two levels of priority, known
as 'high' and 'Iow'.

Process Self-contained, independently executable occam code.

Protocol The pattern of communications between two processes, often includ­
ing communications on more than one channel. When appearing as
PROTOCOL, refers to a specific communication structure on an occanl
channel (see the 'occam 2 Reference Manua!').

Reset The transputer system initialisation control signal. Also refers to the pin
on which the signal is asserted.

Root transputer (or Root processor) The processor in a transputer network
which is physically connected to the host computer, and through which
the network is loaded or analysed.

Separate compilation A self-contained part of a program may be separately
compiled, so that only those parts of a program which have changed
since the last compilation need to be recompiled.

Server A program running in the host computer attached to a transputer network,
which provides access to the filing system and terminal i/o of the host
computer. The server can also be used to load the program onto the
network.

Soft channels Channels declared and used within a process running on a single
transputer. (cf. Hard channels). Soft channels are implemented by a
single word in memory.

Standard error The host system error handler. Errors directed to standard error
are displayed in a host-defined way, for example, on the terminal screen.
For details of how to modify standard error on the system, consult the
operating system documentation.

Standard Input The host system input handler. Specifies the standard input
device, for example the terminal keyboard or a disk file. For details of
how to modify standard input on the system, consult the operating system
documentation.

Standard output The host system output handler. Specifies the standard output
device, for example, the terminal screen or a disk file. For details of how

72 lDS 276 02 March 1991

Glossary 251

to modify standard input on the system, consult the operating system
documentation.

SUbsystem In transputer board architecture, the combination of the Reset, Anal­
yse and Error signals which allows the boa'rd to control another board on
its subsysterTI port.

Target transputer The transputeron which the code is intended to run. The
transputer type, or a restricted set of types defined in a transputer class,
is defined when the program is compiled, using command line options.

Usage check A compilation check that ensures no variables are shared between
parallel processes, and that enforces rules about the use of channels as
unidirectional point-to-point connections.

Vector space The data space required for the storage of vectors (arrays) within
an occam program.

Workspace The data space required by an occam process; when used in
contrast to Vector space, refers to the data space required for scalars
within the process.

72 TDS 276 02 March 1991

252

72 TDS 276 02

Glossary

March 1991

J Bibliography
This appendix contains a list of some transputer-related publications which may
be of interest to the reader.

J.1 INMOS publications

D Pountain and D May
A tutorial introduction to occam programming
Blackwell Scientific 1987.

INMOS
occam 2 Reference Manual
Prentice Hall 1988.

INMOS, A B Fontaine (tr)
occam 2 Manuel de reference
Masson 1989?
(In French)

INMOS
occam
Keigaku Shuppan Publishing Company 1984
(In Japanese)

INMOS
Transputer instruction set: a compiler writer's guide
Prentice Hall 1988

INMOS Ltd
The Transputer Databook (Second Edition 1989)
INMOS 1989

INMOS Ltd
The Transputer Applications Notebook: Architecture and Software (First
Edition 1989)
INMOS 1989

72 TDS 276 02 March 1991

254 J Bibliography

INMOS Ltd
The Transputer Applications Notebook: Systems and Performance (First
Edition 1989)
INMOS 1989

INMOS Ltd
The Transputer Development and iq Systems Databook (Second Edition
1991)
INMOS 1991

J.2 INMOS technical notes

P Moors
IMS 8010 NEC add-in board
Technical note 8
72 TCH 008

S Ghee
IMS B004 IBM PC add-in board
Technical note 11
72 TCH 011

G Harriman
Notes on graphics support and performance
improvements on the IMS TBOO
Technical note 26
72 TCH 026

S Redfern
Implementing data structures and recursion in occam
Technical note 38
72 TCH 038

J.3 References

W J Cody and W M Waite
Software Manual for the Elementary Functions
Prentice Hall 1980

72 TDS 276 02 March 1991

J.3 References

D E Knuth
The Art of Computer Programming
2nd edition, Volume 2: Seminumerical Algorithms
Addison-Wesley 1981

IEEE
IEEE Standard for Binary Floating-Point Arithmetic
ANSI-IEEE Std 754-1985

External occam 2 and transputer publications

K C Bowler, R 0 Kenway, G S Pawley and 0 Roweth
An introduction to occam 2 programming
Chartwell-Bratt 1987 ISBN 0-86-238-137-1

A Burns
Programming in occam 2
Addison-Wesley 1988 ISBN 0-201-17371-9

J Gallantly
OCCam2
Pitman 1989

G Jones and M Goldsmith
Programming in occam 2
Prentice Hall 1988 ISBN 0-13-730334-3

J Wexler
Concurrent programming in occam 2
Ellis Horwood 1989 ISBN 745-80394-6

72 TDS 276 02

255

March 1991

256

72 TDS 276 02

J Bibliography

March 1991

Index

#COMMENT 193
#IMPORT 193
#INCLUDE 193

in configuration description 203
#OPTION 193
#PRAGMA 193
#PRAGMA LINKAGE 188
#SECTION 188
#USE 4, 6, 193
*" 201
*, 201
** 201
*C 201
*c 201
*L 201
*1 201
*N 201
*n 201
*s 201
*8 201
*T 201
*t 201
2D block move 5, 11

ABS 8
Accuracy of floating point arithmetic

21
ACOS 40,61
Alignment 191
ALOG 28,49
ALOG10 29, 50
ALT 195
ANSI screen protocol 114
ANSI-IEEE standard 754 19
Apollo 88
append. char 130
append.hex.int 131
append.hex.int64 131
append. int 130
append. int64 131
append.rea132 131
append.rea164 132

72 TDS 276 02

append. text 130
ARC 203
Argument reduction 21
ARGUMENT. REDUCE 8
Arithmetic functions

IEEE behaviour 6
supplementary 13
occam behaviour 6

Arrays 196
unknown size 196

ASHIFTLEFT 10
ASHIFTRIGHT 10
ASIN 39,60
ASM 169, 194

differences from GUY 177
syntax 199

ASM code 194
Assembler

literal bytes 169
opcodes 169

Assembly code 169, 194
ASSERT 18
ATAN 41,62
ATAN2 42,63
Attributes

Configuration 204

Binary byte stream 73
Bit manipulation 5, 12
BITCOUNT 12
BITREVNBITS 12
BITREVtlORD 12
Block CRC library 141
BOOL 192
BOOLTOSTRING 138
Bootstrap loaders 209

creating 210
listing of example 211

Bootstraps
example 209

Buffers 105
BYTE 192

March 1991

258

convert. lib 133
C run time library 70 COPYSIGN 8
callc.lib 147 COS 35,56
Caplin QTO 88 COSH 45,65
CASE 195 CRC 12
CAT 88 CRC library 141
CAUSEERROR 17 ere. lib 141
CHAN 192 CRCBYTE 13
CHAN OF ANY 193 CRCFROMLSB 141
Channel allocation 204 CRCFROMMSB 141
char.pos 128 CRCWORD 13
Character identification 126 Cursor positioning 223
CLIP2D 11
Clock rate 192, 193 DABS 9
CMS 88 DACOS 40
Code DALOG 28

allocation in memory 187 DALOG10 29
Code insertion 169 DARGOMENT.REDUCE 9
Command line 83, 84 DASIN 39
compare. strings 127 DATAN 41
Compiler DATAN2 42

C 232 Date 104
implementation restrictions 196 dblmath.lib 19,26
memory allocation 187 DCOPYSIGN 9

Compiler directives 193 DCOS 35
Compiler keyword 157 DCOSH 45
Compiler libraries 5 DDIVBY2 9

user functions 6 Debug library 157
Compiler predefine 157 DEBUG.ASSERT 145
CONFIG 203,204 debug .lib 145
Configuration language DEBUG.MESSAGE 146

constraints 207 DEBUG. STOP 146
syntax 203 DEBUG. TIMER 146

CONNECT 204 Debugging support library 145
Connections 204 DEC VAX 88
Constant arrays 196 delete. string 129
Constants 4 DEXP 30

DOS specific 186 DFLOATING.UNPACK 9
hostio 179 DFPINT 9
maths 184 DIEEECOMPARE 9
predefined 179 Direct instructions 171
rates of transputer clocks 185 Directives 157
streamio 183 DISNAN 9
transputer Iink 185 DIVBY2 8

Conventions DLOGB 9
used in manual x DMINUSX 9

Index

72 TDS 276 02 March 1991

Index

DMULBY2 9
DNEXTAFTER 9
DNOTFINITE 9
DO 206
DORDERED 9
DOS 88
DOS specific constants 186
DOS specific library 149
dos.call.interrupt 151
dos.port.read 153
dos.port.write 154
dos.read.regs 152
dos.receive.block 150
dos.send.block 150
DPOWER 31
DRAN 47
DRAW2D 11
DRX-11 88
DSCALEB 9
DSIN 33
DSINH 43
DSQRT 9
DTAN 37
DTANH 46
Dynamic code loading procedures

15

Echoed keyboard input 91
EDGE 203
Elementary function library 25

TB 48
Elementary functions 19
End of file 80
Environment variables 85, 225
eqstr 127
Examples

bootstrap loader 209
EXP 30,51
Extended data types 5
Extraordinary link handling library

142
Extraordinary use of links 142

File access 71
File access errors 80
File deletion 81

72 TDS 276 02

259

File output 97
File positioning 79
File renaming 81
Filename length 196
Floating point arithmetic 5
Floating point representation

double length 20
single length 20

Floating point routines
placement in memory 188

Floating-point instructions 174
FLOATING. UNPACK 8
FMUL 48
FPINT 8
FRACMUL 13
FUNCTION 196

Generated error 21, 24
GUY 169,194

differences from ASM 177
GUY code 194

Hardware configuration description
204

HELlOS 88
HEX16TOSTRING 136
HEX32TOSTRING 136
HEX64TOSTRING 136
HEXTOSTRING 135
HOST 204
Host access

general 82
Host file server

file commands 233
host commands 241
protocol 229
server commands 243

Host file server library 70
Host system call 86
Hostio constants 179
Hostio library 70
hostio.lib 70,230
Hyperbolic functions 43

I/O library 157
IBM 370 88

March 1991

260

IBM PC 88, 226
IEEE floating point arithmetic 5
IEEE320P 8
IEEE32REM 8
IEEE640P 9
IEEE64REM 9
IEEECOMPARE 8
IF 206
ilist 4
Implementation restrictions

summary 196
IMS B004 88
IMS B008 88
IMS B010 88
IMS B011 88
IMS B014 88
IMS B015 88
IMS B016 88
IMS 0700 108
Indirect instructions

long 172
short 172

Inexact.NaN 21
Infinity 20
init.heap 148
init.static 147
INLINE 194

syntax 200
InputOrFail.c 143
InputOrFail.t 142
insert. string 129
Instructions

floating point 174
INT 192
INT16 192
INT16TOSTRING 135
INT32 192
INT32TOSTRING 135
INT64 192
INT64TOSTRING 135
INT'l'OSTRING 135
is.digit 126
is.hex.digit 126
is.id.char 127
is.in.range 126
is.lower 126

72 TDS 276 02

Index

is.upper 126
ISEARCH 75

compiler libraries 6
ISNAN 8
ITERM 225
ITERM file 221

example listing 226
format 221
keyboard 224
screen 222
version 222

KERNEL. RUN 15
Keyboard definitions 224
Keyboard input 89,110
Keyboard polling 90
Keystream input 116
Keystream protocol 108
Keyword 157
ks 109
ks.keystream.sink 112
kS.keystream.to.scrstream

112
ks . read. char 116
ks.read.int 117
ks.read.int64 117
ks.read.line 116
ks.read.rea132 117
ks.read.rea164 117

Language extensions
syntax 198

Language keyword 157
Lexical levels 197
Libraries 3

compiler 5
debugging support 145
displaying 4
double length 27
extraordinary link handling 142
hostio 70
maths 19
mixed languages 147
single length 26
streamio 108
string handling 124

March 1991

Index

T4001T414/425 maths 19
type conversion 133

Line parsing 132
Link 204
Link failure 142
Link handling library 142
LOAD. BYTE. VECTOR 17
LOAD.INPUT.CHANNEL 16
LOAD.INPUT.CHANNEL.VECTOR

16
LOAD. OUTPUT. CHANNEL 17
LOAD.OOTPOT.CHANNEL.VECTOR

17
LOGB 8
Logical name 225
Logical processor 204
Long integers 10
Long reals 26
LONGADD 10
LONGDIFF 10
LONGDIV 10
LONGPROD 10
LONGSOB 10
LONGSOM 10
Lowercase 126,130

MAP 207
Mapping

in configuration description 206
MAPPING 203,206
Maths constants 184
Maths functions 8
Maths libraries 19

predefined names 157
Maths support 157
Memory allocation 187
memsize 204, 207
MemStart 187
MINUSX 8
Mixed languages support library

147
MOSTNEG INT 188
MOSTPOS INT 188
MOVE2D 11
Moving the cursor 122
MS-DOS 225

72 TDS.276 02

261

MSDOS library 149
msdos .lib 149
MULBY2 8
Multidemensional array

null element 194
Multiplexors 105

NEC PC 88
Nested include files 196
NETWORK 203, 204
next.int.from.line 133
next.word.from.line 132
NEXTAFTER 8
NODE 203
NORMALISE 10
NotaNumber 20
NOTFINITE 8

occam
libraries 3

occam and the transputer
implementation 187

occam configuration language
syntax 203

Operations 172
ORDERED 8
OutputOrFail.c 143
OutputOrFail.t 143

Packet 229
problems with size' 231

PAJl 189, 190, 196
Parsing command line 84
Physical processor 204
PLACE 193, 204
PLACE array of channels 193
PLACE name AT expression

syntax 200
PLACE name AT WORKSPACE
expression

syntax 200
PLACE name IN VECSPACE

syntax 200
PLACE name IN WORKSPACE

syntax 200
PLACE scalar channel 193

March 1991

262

PLACE statement 193
PORT OF D 192
POWER 31,52
Predefined names 157
Prefixing instructions 170
PRI ALT 195
PRI PAR 189, 192, 196

nested 196
replicated 196

Priority 192
PROCESSOR 204
Propagated error 22, 24
PROTOCOL 197
Protocol tags 191
Protocols

predefined 179
Pseudo-instructions 169

RAN 47,67
Random number generation 47
Range reduction 21
Rates of transputer clocks 185
REAL 70
REAL 32 192
REAL 64 192
Real numbers 70
REAL32EQ 8
REAL32GT 8
REAL320P 8
REAL32REM 8
REAL32TOSTRING 136
REAL64EQ 9
REAL64GT 9
REAL640P 9
REAL64REM 9
REAL64TOSTRING 138
Reinitialise 144
Replicated PAR 190, 196
RESCHEDULE 18
Resetting links 142
Restictions

implementation 196
RETYPES 191, 194
romsize 204
root 204
ROTATELEFT 10

72 TDS 276 02

Index

ROTATERIGHT 10
ROUNDSN 14

SCALES 8
Screen definitions 222
Screen driver 226
Screen output 94
Screen size 222
Screenstream output 118
Screenstream protocol 108
Search path 75
search.match 128
search.no.match 128
Server

libraries 230
porting 232
protocol 230

Server functions 232
Server terminati.on 86
SET 204,205
SHIFTLEFT 10
SHIFTRIGHT 10
SIN 33,54
SINH 43,64
SKIP 205, 206
snglmath.lib 19,26
so 109
so.ask 91
so.buffer 106
so.close 76
so.commandline 83
so.core 87
so.date.to.ascii 104
so.eof 80
so.exit 86
so.ferror 80
so. flush 78
so.fwrite.char 99
so.fwrite.hex.int 100
so.fwrite.hex.int32 101
so.fwrite.hex.int64 101
so.fwrite.int 100
so.fwrite.int32 100
so.fwrite.int64 100
so.fwrite.nl 99
so.fwrite.rea132 101

March 1991

Index

so.fwrite.rea164 102
so.fwrite.string 99
so.fwrite.strinq.nl 99
so . qetenv 85
so . qetkey 90
so.qets 77
so.keystream. from. file

111
so.keystream.from.kbd 110
so.keystream.from.atdin

111
so.multiplexor 106
so.open 73
so.open.temp 74
so.overlapped.buffer 106
so.overlapped.multiplexor

107
~o.overlapped.pri.multiplexor 107
so.parse.command.line 84
so.pollkey 90
so.popen.read 75
so.pri.multiplexor 107
so.puts 78
so.read 77
so.read.echo.any.int 93
so.read.echo.hex.int 92
so.read.echo.hex.int32 92
so.read.echo.hex.int64 92
so.read.echo.int 91,92
so.read.echo.int32 92
so.read.echo.int64 92
so.read.~cho.line 91
so.read.echo.rea132 93
so.read.echo.rea164 93
so.read.line 90
so.remove 81
so.rename 81
so.scrstream.to.ANSI 114
so.scrstream.to.file 112
so.scrstream.to.stdout

113
so.scrstream.to.TVI920

115
so.seek 79
so . system 86
so.tell 79

72 TDS 276 02

263

so.test.exists 82
so.time 86
so.time.to.ascii 104
so.time.to.date 103
so.today.ascii 104
so.today.date 104
so.version 87
so.write 77
so.write.char 94
so.write.hex.int 96
so.write.hex.int32 96
so.write.hex.int64 96
so.write.int 95
so.write.int32 95
so.write.int64 95
so.write.nl 95
so.write.rea132 96
so.write.rea164 97
so.write.strinq 95
so.write.string.nl 95
Sortware configuration description

204
Specification

configuration description 203
SQRT 8
ss 109
ss . beep 122
ss.clear.eol 122
ss.clear.eos 122
ss.del.line 123
ss.delete.chl 123
ss.delete.chr 123
ss . down 122
ss.qoto.xy 122
ss.ins.line 123
ss.insert.char 123
ss.left 122
ss.right 123
ss.scrstream.copy 114
ss.scrstream.fan.out 114
ss.scrstream.from.array

114
ss.scrstream.multiplexor

115
ss.scrstream.sink 112
ss.scrstream.to.array 113

March 1991

264

ss.up 122
ss.write.char 119
ss.write.endstream 120
ss.write.hex.int 121
ss.write.hex.int64 121
ss.write.int 120
ss.write.int64 120
ss.write.nl 119
ss.write.rea132 121
ss.write.rea164 121
ss.write.string 120
ss.write.text.line 120
standard error 233
standard input 233
standard output 233
STOP 205, 206
str.shift 129
Stream ito library 108
Streamio constants 183
streamio.lib 108
Streams 71
String escape characters 194
String handling

comparison 127
editing 128
searching 128

String handling library 124
String literal

first character 194
string.lib 124
string.pos 128
STRINGTOBOOL 140
STRINGTOHEX 139
STRINGTOHEX16 139
STRINGTOHEX32 140
STRINGTOHEX64 140
STRINGTOINT 138
STRINGTOINT16 139
STRINGTOINT32 139
STRINGTOINT64 139
STRINGTOREAL32 140
STRINGTOREAL64 140
Sun 3 88
Sun 386i 88
Sun 4 88
SunOS 88

72 TDS 276 02

Index

Syntax 198
ASM 199
configuration language 203
INLINE 200
PLACE statements 200

System call 86
System library 157

T400 19
T414 19
T425 19
T8 26
Tabs 195
TAN 37,58
TANS 46,66
TB 48
tbmaths.lib 19,48
TDS 108
terminate.heap.use 148
terminate.static.use 148
Text reading 77
Text stream 73
Text writing 78
Time 86,104

transputer clock 192, 193
Time processing 103
Timeout 142

channel input 142
channel output 143

TIMER 192
TIMER channels 193
to.lower.case 130
to.upper.case 130
Toolset constants 179
Transputer Development System

108
Transputer link constants 185
Trigonometric functions 28
TVI920 115
type 204, 207
Type conversion library 133
Type mapping 191

UDPlink 88
Undefined.NaN 20
UNIX 225

March 1991

"•

Index

UNPACKSN 14
Unstable.NaN 20
Upper case 126,130

Variables 197
maximum 197

VECSPACE 193
Vector space 187, 190
VMS 88,225

WITH 205
Workspace 187,189,193
WORKSPACE 193

xlink.lib 142

72 TDS 27602

265

March 1991

lbimos
Worldwide Headquarters

INMOS Umited
1000 Aztec west
A1mondsbury
Bristol 8812 480
UNITED KINGDOM
Telephone (0454) 616616
Fax (0454) 617910

Worldwide Business Centres

USA EUROPE

SGS-THOMSON Microelectronics Inc. INMOS Business Centre
Sales and Marketing Headquarters (USA) SGS-THOMSON Microelectronics Inc.
1000 East Bell Road 1310 Electronics Drive
Phoenix Carrollton
Arizona 85022 Texas 75006
Telephone (602) 8676100 Telephone (214) 466 8844
Fax (602) 8676102 Fax (214) 466 7352

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
2225 Executive Circle
PO Box 16000
Colorado Springs
Colorado 80935-6000
Telephone (719) 630 4000
Fax (719) 630 4325

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
Uncoln North
55 Old Bedford Road
Uncoln
Massachusetts 01 n3
Telephone (617) 2590300
Fax (617) 259 4420

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
9861 Broken Land Parkway
Suite 320
Columbia
Maryland 21045
Telephone (301) 9956952
Fax (301) 290 7047

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
200 East Sandpointe
Suite 650
Santa Ana
California 92707
Telephone (714) 9576018
Fax (714) 957 3281

INMOS Business Centre
SGS-THOMSON Microelectronics Inc.
2055 Gateway Place
Suite 300
san Jose
California 95110
Telephone (408) 452 9122
Fax (408) 452 0218

ASIA PACIFIC

Japan

INMOS Business Centre
SGS-THOMSON Microelectronics K.K.
Nisseki Takanawa Building, 4th Floor
18-10 Takanawa 2-chome
Minato-ku
Tokyo 108
Telephone (03) 3280 4125
Fax (03) 3280 4131

Singapore

INMOS Business Centre
SGS-THOMSON Microelectronics Pte Ltd.
28 Ang Mo Kio Industrial Park 2
Singapore 2056
Telephone (65) 482 14 11
Fax (65) 482 02 40

United Kingdom

INMOS Business Centre
SGS-THOMSON Microelectronics Ltd.
Planar House
Parkway Globe Park
Marlow
Bucks SL7 1YL
Telephone (0628) 890 800
Fax (0628) 890 391

France

INMOS Business Centre J

SGS-THOMSON Microelectronics SA
7 Avenue Gallieni
BP 93
94253 Gentilly Cedex
Telephone (1) 47407575
FAX (1) 47407910

Weat Germany

INMOS Business Centre
SGS-THOMSON Microelectronics GmbH
Bretonischer Ring 4
8011 Grasbrunn
Telephone (089) 46 00 60
Fax (089) 46 00 61 40

Italy

INMOS Business Centre
SGS-THOMSON Microelectronics SpA
V.1e Milanofiori
Strada4
Palazzo A/4/A
20090 Assago (MI)
Telephone (2) 89213 1
Fax (2) 8250449

	Contents overview
	Contents
	Preface
	Libraries
	1 The occam libraries
	1.1 Introduction
	1.1.1 Using the occam libraries
	Linking libraries

	1.1.2 Listing library contents
	1.1.3 Toolset constants

	1.2 Compiler libraries
	1.2.1 User functions and procedures
	Maths functions
	2D block moves
	Procedure definitions
	Bit manipulation functions
	Supplementary arithmetic support functions
	Dynamic code loading support procedures
	Transputer error flag manipulation
	Rescheduling priority process queue

	1.3 Maths libraries
	1.3.1 Introduction
	Inputs
	Outputs
	Accuracy
	Symmetry
	The Function Specifications

	1.3.2 Single length and double length elementary function libraries
	1.3.3 IMS T400, T414 and T425 elementary function library

	1.4 Host file server library
	1.4.1 Errors and the C run time library
	1.4.2 Inputting real numbers
	1.4.3 Procedure descriptions
	1.4.4 File access routines
	Procedure definitions

	1.4.5 General host access
	Procedure definitions

	1.4.6 Keyboard input
	Procedure definitions

	1.4.7 Screen output
	Procedure definitions

	1.4.8 File output
	Procedure definitions

	1.4.9 Miscellaneous commands
	Time processing
	Buffers and multiplexors

	1.5 Streamlo library
	1.5.1 Naming conventions
	1.5.2 Stream processes
	Procedure definitions

	1.5.3 Stream input
	Procedure definitions

	1.5.4 Stream output
	Procedure definitions

	1.6 String handling library
	1.6.1 Character identification
	1.6.2 String comparison
	1.6.3 String searching
	1.6.4 String editing
	1.6.5 Line parsing

	1.7 Type conversion library
	1.7.1 Procedure definitions

	1.8 Block CRC library
	1.8.1 Function definitions

	1.9 Extraordinary link handling library
	1.9.1 Procedure definitions

	1.10 Debugging support library
	1.10.1 Procedure definitions

	1.11 Mixed languages support library
	1.11.1 Procedure definitions

	1.12 DOS specific hostio library
	1.12.1 Procedure definitions

	Appendices
	A Names defined by the software
	B Transputer instruction set support
	B.1 Pseudo-instructions
	B.2 Prefixing instructions
	B.3 Direct instructions
	B.4 Operations
	B.4.1 Short indirect instructions
	B.4.2 Long indirect instructions

	B.5 Additional instructions for the T400, T414, T425 and TB
	B.6 Additional instructions for the IMS T800, T801 and T805
	B.6.1 Floating-point instructions

	B.7 Additional instructions for the IMS T225, T400, T425, T800, T801 and T805
	B.8 Additional instructions for the IMS T225, T400, T425, T801 and T805
	B.9 Differences between ASM and GUY

	C Constants
	C.1 Hostio constants
	C.2 Streamio constants
	C.3 Maths constants
	C.4 Transputer link addresses
	C.5 Rates of the transputer clocks
	C.6 DOS specific constants

	D Implementation of occam on the transputer
	D.1 Memory allocation by the compiler
	D.1.1 Procedure code
	D.1.2 Compilation modules
	D.1.3 Workspace

	D.2 Type mapping
	D.3 Hardware dependencies
	D.4 Language
	D.5 Summary of implementation restrictions
	D.6 Syntax of language extensions
	D.6.1 ASM statement
	D.6.2 PLACE statements
	D.6.3 INLINE statement
	D.6.4 *l or *L character

	E Configuration language definition
	E.1 New types and specifications
	E.2 Software description
	E.3 Hardware description
	E.4 Mapping structure
	E.5 Constraints
	E.6 Changes from the IMS D705/D605/D505 products

	F Bootstrap loaders
	F.1 Introduction
	F.1.1 The example bootstrap
	Transfer of control

	F.1.2 Writing bootstrap loaders

	F.2 Example user bootstrap
	F.3 The INMOS Network Loader

	G ITERM
	G.1 Introduction
	G.2 The structure of an ITERM file
	G.3 The host definitions
	G.3.1 ITERM version
	G.3.2 Screen size

	G.4 The screen definitions
	G.4.1 Goto X Y processing

	G.5 The keyboard definitions
	G.6 Setting up the ITERM environment variable
	G.7 An example ITERM

	H Host file server protocol
	H.1 The host file server iserver
	H.2 The server protocol
	H.2.1 Packet size
	H.2.2 Protocol operation

	H.3 The server libraries
	H.3.1 Problems with packet size

	H.4 Porting the server
	H.5 Defined protocol
	H.5.1 Reserved values
	H.5.2 File commands
	H.5.3 Host commands
	H.5.4 Server commands

	I Glossary
	J Bibliography
	J.1 INMOS publications
	J.2 INMOS technical notes
	J.3 References

	Index

