
()

I I

, :: :I

11 ~
~ : .If

D[Jl)riios@

ANSI C Toolset
User Guide

INMOS Limited

~ SGS-11tOMSON
IJa,~,® ~o©oo@rn[brn©iMJ@~O©~
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TDS 345 01 October 1992

© INMOS Limited 1992. This document may not be copied. in whole or in part. without
prior written consent of INMOS.

e®. ~[]i)mOs ® • IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

lifi.1~ is a registered trademark of the SGS-THOMSON Microelectronics Group.

The Ccompiler implementation was developed from the Perihelion Software "C" Compiler
and the Codemist Norcroft "c" Compiler.

INMOS Document Number: 72 TDS 345 01

Contents overview

Contents

Preface

Differences from previous issue

Basics

1 Introduction to trans- An introduction to transputers and transputer
pulers programming.

2 Introduction to the An introduction to the ANSI Ctoolset and its fea-
ANSI C toolset tures including a list of the tools provided.

3 Developing programs An overview of the program development cycle
for the transputer using the toolset.

4 Getting started Shows the command sequences to generate C
programs. using simple examples.

5 Parallel processing Describes parallel processing using the toolset.
Describes the concurrency functions and
explains how to use them.

6 Configuring trans- Describes the configuration language and how
puter programs to use it to configure software on transputer net-

works.
7 Loading transputer Describes how to load programs onto trans-

programs puter networks. with brief descriptions of the'
tools used.

8 Debuggmg uansputer Describes how to use the debugger to debug
programs transputer programs in post-mortem and

breakpoint modes.

Advanced techniques

9 Advanced use of the Describes advanced features of the configurer
configurer which can be used. for example. to partition net-

works.

10 Mixed language pro- Describes how to mix C and occam code at
gramming source and configuration levels.

11 EPROM Programming Describes howto use the EPROM support tools
to develop ROM-base programs.

12 Dynamic code loading Describes how to include dynamically loadable
code in your program.

72TDS 34501 October 1992

ii

Appendices

Contents overview

A Transputer instruction List instruction sets for INMOS transputers.
set

B Configuration lan- Defines the syntax of the transputer configura-
guage definition tion language.

C Glossary A glossary of terms.

0 Bibliography Lists literature and documentation for further
reading.

Index

72 TDS 345 01 October 1992

IContents

Contents overview .

Contents iii

Preface xvii

Host versions xvii
About this manual xvii
About the toolset documentation set xviii
Other documents . xix

occam and FORTRAN toolsets . xix
Documentation conventions. xix

Differences from previous release. xxi

Basics.. 1

1 Introduction to transputers 3
1.1 Transputers . 3

1.1.1 Transputer links............................... 3
1.1.2 Process scheduling 4
1.1.3 Real time programming 5
1.1.4 Multitransputer systems. 5

1.2 Programming models 6
1.2.1 Parallel processing model . 6

1.3 Transputer products 6
1.3.1 Toolset products 7

2 Overview of the toolset 9
2.1 Introduction . 9

2.1.1 Toolset features. 9
2.1.2 Transputer targets 10

2.2 ANSI C compiler - ice . 10
2.2.1 Concurrent programming 11
2.2.2 Standard object file format 11
2.2.3 Preprocessor directives . 11
2.2.4 Include files 11
2.2.5 Pragmas . 12
2.2.6 Error modes. 12

iv Contents

2.2.7 Transputer Program Execution. 12
2.3 Runtime library. 13

2.3.1 Reduced library. 13
2.3.2 Header files 14

2.4 Runtime system . 14
2.5 Dynamic code loading. 15
2.6 Low level programming 15

2.6.1 Assembly code support. 15
2.6.2 Compiler predefines 16
2.6.3 Assembly programming. 16

2.7 Configuration system 16
2.7.1 Configuration language. 16
2.7.2 Software routing and multiplexing 17
2.7.3 Code and data placement. 17

2.8 Mixed language programming. 17
2.9 Toolset summary. 18

3 Developing programs for the transputer 21
3.1 Introduction . 21
3.2 Program development using the toolsets 21

3.2.1 Compatibility with previous toolset releases 24
3.3 Compiling. 25
3.4 Tools for building executable code 25

3.4.1 Linker - ilink . 25
3.4.2 Configurer. 26
3.4.3 Code collector - icollecl . 26

3.5 Loading and running programs . 26
3.5.1 Host file server - iserver 26
3.5.2 Skip loader - iskip 26

3.6 Program development and support 27
3.6.1 Network debugger - idebug 27
3.6.2 Memory dumper - idump 28
3.6.3 Librarian - ilibr . 28
3.6.4 Binary lister - ilist 28
3.6.5 Makefile generator - imakef . 28
3.6.6 Memory map tool - imap . 28
3.6.7 T425 simulator- isim 29

3.7 EPROM programming.................................. 29
3.7.1 EPROM programmer - ieprom 29
3.7.2 Memory configurer - iemit . 29

3.8 File types and extensions. 30
File extensions required by imakef 31

3.9 Error reporting 33

Contents v

3.10 Host dependencies 33
Command line syntax 33

3.10.1 Filenames................................... 34
3.10.2 Search path 34
3.10.3 Environment variables 34
3.10.4 Default command line arguments 35

3.11 Linker startup and indirect files 36
3.11.1 ANSI C Toolset 36

cstartup.lnk 37
cstartrd.lnk . 37
cnonconf.lnk 37

3.11.2 occam 2 Toolset 38
3.11.3 Mixed language programs. 38
3.11.4 Other startup files supplied with the ANSI C Toolset 39

3.12 Unsupported options. 39

4 Getting started. .. 41
4.1 Outline procedure 41
4.2 Running the examples 41

4.2.1 Sources. 41
4.2.2 Example command lines 42
4.2.3 Using the simulator. 42

4.3 A simple sequential program 42
4.3.1 Compiling . 42
4.3.2 Linking. 42
4.3.3 Configuring. 43
4.3.4 Collecting . . . 44
4.3.5 Loading and Execution 44
4.3.6 A short cut 44
4.3.7 Separate compilation. 45

5 Parallel processing .. 47

5.1 Introduction . 47
5.2 Abstract model . 47

5.2.1 Processes. 48
5.2.2 Channels. 48
5.2.3 Semaphores. 48

5.3 Parallel processing and transputers . 48
5.3.1 Multitransputer networks 49
5.3.2 Instruction set 49

Process control . 49
Process selection 49
Process timing . 49

5.4 INMOS Concurrent C library 49

vi Contents

5.4.1 Library support 50
5.4.2 New data types . 50
5.4.3 Concurrency functions . 51

5.5 Processes . 51
5.5.1 Unused process pointer. 52
5.5.2 Process initialization. 53
5.5.3 Freeing stack and workspace 54
5.5.4 Process termination 54
5.5.5 Process execution (process.h) 54

Asynchronous processes 55
Synchronous processes 56
Synchronizing between processes 58

5.6 Channel communications (channeLh) 58
5.6.1 Channel initialization 58
5.6.2 Channel output 59
5.6.3 Channel Input 59
5.6.4 Reading from several channels 61

5.7 Semaphores (semaphor.h) 62
5.8 Timers and delays 63

5.8.1 Control of processes by timers. 63
5.9 Other process facilities. 64

6 Configuring transputer programs. 65

6.1 Configuration basics 65
6.1.1 Introduction to configuration 65
6.1.2 Hardware network description 67

Processor links. 67
Defining new processor types 68
Edges....................................... 68
Host edge. 69
The reserved attribute. 69
The router attribute . 69

6.1.3 Software network description 70
Process attributes . 70
Defining new process types 74
Input and output channels. 75
Edge connections . 75

6.1.4 Mapping description . 76
Placement of processes 76
Placement of channels 76
Predefined connection names 78
Assigning code to processes 78
Mapping example .. 79

6.1.5 Types of main program 80

Differences from. .
prevIous Issue

This section provides a brief list of the differences between this and the previous
release of the ANSI C toolset; full details can be found in the relevant section of
the tool5et documentation.

New and changed features:

Host types:

• The host types supported by this toolset are: IBM PC 386, Sun 4 running
SunOS 4.1 or later and VAX under VMS.

• Bootable versions of hosted tools are no longer supplied and as a result
the sources of all tools are can be found in the tools directory. The
i tools and iserver directories found in previous releases, no longer
exist. See the accompanying delivery manual for details of source directo­
ries.

Compiler

• A new optimizing C compiler is supplied which generates code for any
32-bit transputer. It does not support 16-bit transputers or debugging
information. See the Optimizing Compiler User Guide for details.

• A compiler command line option is provided for invoking the assembler,
see the appendices of the Toolset Reference Manual.

• A new compiler option Fe directs the compiler to treat plain chars as
signed chars, see the Toolset Reference Manual.

Compiler pragmas

• The following new compiler pragmas are supported:

Pragma Supported by: Description
IMS_nosideeffects Optimizing compiler Marks a function as

side effect free.
IMS_descriptor Both the standard Creates a TCOFF des-

compiler and the opti- criptor for C functions.
mizing compiler.

The pragmas are documented in the Toolset Reference manual and the
Optimizing Compiler User Guide.

Configura~ion

• The configurer supplied with this toolset supports virtual routing by using
software processes. If the user specifies the icconf 'lW' command line

72TDS 345 01 October 1992

xxii Collecting

option then the configuration will be similar to that produced by the pre­
vious toolset. See chapter 6 of this manual.

• The virtual routing processes have certain implications for debugging. To
reproduce the results achieved using the previous toolset, use the confi­
gurer command line:

icconf -g -nv

instead of:

icconf -g

• The configuration language has been extended to include attributes which
enable the user to specify actual addresses at which code and data is to
be loaded into memory. New attributes have also been added to enable the
configurer to selectively use particular routes though the network. See
chapter 9 of this manual.

Collecting

• The RO and RA collector command line options for specifying boot-from­
ROM output no longer need to be specified for configured programs. This
is because configuration options should be used to specify ROM output.
See the Too/sel Reference Manua/.

Debugger - see chapter 8 of this manual.

• The debugger idebug may be used with programs which use software
virtual routing. Anew option has been introduced to display virtual links on
a processor.

• idebug can now debug boot-from-ROM, run in RAM programs.

Memory map

• A new tool imap has been provided which will produce a detailed memory
map for a collected program. Intermediate memory maps may also be pro­
duced by the compiler, linker and collector tools. See the Too/sel Refer­
ence Manual.

New iserver

• A completely new version of iserver has been supplied with this toolset.
See the Too/sel Reference Manual for details.

Dynamic code loading

• Aset of library functions is provided that enable an application to load and
execute a process that has been separately compiled and linked. The
loaded process is created as an •r8C file. See chapter 12 of this manual.

72 TDS 345 01 October 1992

Differences from previous issue xxiii

Bootstrap loaders

• The sources of the bootstrap loaders are supplied. The sources are fully
commented so that they can be tailored as required. See the appendices
of the Too/set Reference Manual.

Parallel process stacks

• The support for parallel process stacks has been extended in this release
to allow them to exist anywhere in the transputer address space except
nested within an existing parallel process stack.

Libraries

• Startup linker files: New versions of the startup linker files are supplied.
(See chapter 3 of this manual).

Use Link file Entry point
Configured programs using cstartup.lnk C.ENTRYD
full runtime system

Configured programs-using cstartrd.lnk C.ENTRYD.RC
reduced runtime system

Non~nfigured programs cnonconf.lnk C.ENTRY
using full runtime system

Note: that the configured and non-configured cases have been sepa­
rated. In future toolsets, the non-configured case may not be supported.

The linker files supplied with the previous issue are maintained in a modi­
fied format in the present toolset for compatibility purposes; they will be
omitted in future releases:

Use Link file Entry point
Programs using full runtime startup.lnk C.ENTRY
system
Configured programs using s tartrd. lnk C.ENTRYD.RC
the reduced runtime system

Note: that startup .lnk should only be used for non--eonfigured pro­
grams and that the entry point has changed for the reduced linker file.

It is strongly recommended that all applications are configured and that the
new linker files cstartup .lnk and cstartrd.lnk are used for future
development.

In addition the following startup files are supplied which do not specify an
entry point. They can be used whenever the main entry point of a program
is not one of the standard C entry points. For example certain cases of

72 TOS 34501 October 1992

xxiv Libraries

mixed language programming, or when generating code which will be
dynamically loaded.

linker indirect file Comment

clibs.lnk Lists the library files required for the full library.

clibsrd.lnk Lists the library files required for the reduced
library.

• Reducing library entry overhead:

In order to provide flexibility for the user to tailor the runtime system to a
particular application, the source code of the startup routines is provided.
Guidance on how to modify the startup system is given in the ANSI C Lan­
guage and Libraries Reference Manual.

• Channels:

The definition of type Channel is changed to provide the optimizer with
better information. If a program restricts its use of channels to the docu­

--mented uses of the header files, then the program will continue to work.

• Library functions See the Language and Libraries Reference Manual for
full details.

o The library functions exit and exit terminate have been
modified with respect to when they termmate the server. They now
terminate the server for configured programs. A new function
exit noterminate has been added.
(Note:should startup . Ink be used, in the configured case, then
exi t will not terminate the server. This is compatible with the pre­
vious release of the toolset).

o ProcIni t - the pointer to the stack space to be used may now
point anywhere within the transputer address space except into the
stack space of an existing parallel process.

o The functions ProcJoin and ProcJoinList have been added.
Both functions wait for a list of asynchronous processes to termi­
nate. The first function takes a list of pointers to process structures
as a parameter; the second function accepts an array of pointers
to process structures.

o The function IMS HOST IBM370 has been added to support the
new host typeIBM-370. -

o ProcRun ProcRunHigh ProcrunLow ProcPar
ProcParList ProcPriPar give a fatal error message if they
detect that an attempt has been made to start a process which is
already running.

72 TOS 345 01 October 1992

Differences from previous issue xxv

o The header files fnload. hand hostlinJc .h have been added
to provide functions to support the dynamic loading of code at run­
time.

o New functions have been added to the header file misc .h:

call without gsb,get details of free memory,
get_details_of_free_stack_space~halt:-processor

o The header file bootlinJc .h has been added for the newfunction
get_bootlink_channels.

o The following functions have been added and will be implemented
inline, provided the appropriate hardware support exists and the
appropriate header file is included in the source:

BlockMove BitCnt BitCntSum BitRevNBits
BitRevWord
Move2D Move2DNonZero Move2DZero
CrcByte CrcWord
DirectChanIn DirectChanInChar DirectChanInInt
DirectChanOut DirectChanOutChar DirectChanOutInt

In addition the functions: ProcGetPriority ProcReschedule
ProcTime are implemented inline where possible.

o In addition to the two new CRC inline functions, two further cyclic
redundancy support functions: CrcFromLsb and CrcFromMsb
have been added.

o The functions ChanInChar and ChanOutChar have had the type
of char changed to unsigned char.

o The type definition ofclock t, a parameter to the function clock,
has changed from an unsigned long to an unsigned into
CLOCKS PER SEC is nowsensitive to the priority of the calling pro­
cess Le.lt is a-different value depending on whether the priority of
the process is high or low. In addition the two constants
CLOCKS PER SEC HIGH and CLOCKS PER SEC LOW have
been added tothe header file process. h-:-Care should be taken
when using the function clock on 1~bit transputers at high prior­
ity.

o The library callc. lib provides four occam procedures for
assisting with mixed language programming. This library is not a
C library but is now supplied with this toolset rather than with the
INMOS occam 2 toolset.

Documentation

• The toolset documentation has been substantially reworked and restruc­
tured. What used to constitute the •User Manuaf has now been split into

72 TDS 34501 october 1992

xxvi Features removed:

two volumes: the'Too/set User Guide' and the 'Too/set Reference Manuaf.
The 'Too/set Reference Manua! has been renamed the 'Language and
Ubraries Reference Manua!.

• Many of the chapters in the new 'Too/set User Guide' and the 'Too/set Ref­
erence Manua! are generic to several INMOS Toolset products.

Featyres removed:

Tools

• The two file formatting tools icvlink and icvemit have been removed.

Common command line options

• The common command line options 'L', 'XM' and 'xo' to load transputer
hosted versions of the tools have been removed.

Libraries

• All 3L concurrency functions have been removed.

• The functions _memcpy and _strcpy have been removed.

• The feature which allowed the first array of input channels and first array
of output channels (found in the configuration interface description for a C
program) to be accessed from the main function argument list as in and
out is no longer supported.

Compiler pragmas

• The inline string ops parameter to IMS on and IMS off is no
longer supported. - --

r \

72 TDS 345 01 October 1992

Basics

72 TDS 34501 october 1992
"f

2

72 TDS 34501

Basics

October 1992

1 Introduction to
transputers

This chapter introduces transputers and the programming models which may be
adopted when designing programs for the transputer. It describes the main fea­
tures of the transputer and transputer systems, and introduces the Communicat­
ing Sequential Process (CSP) model of parallel processing.

1.1 Transputers

Transputers are high performance microprocessors that support parallel proces­
sing through on-chip hardware and external communication links. They can be
connected one-to-another by their INMOS serial links in application-specific ways
and may be used as building blocks for complex parallel processing networks or
as powerful dedicated microprocessors.

The transputer is a complete microcomputer on a single chip. In addition to hard­
ware support for concurrent programming and inter-processor communication it
contains:

• A very fast (single cycle) on-chip memory.

• A programmable memory interface that allows external memory and
memory mapped devices to be added with the minimum of supporting
logic.

• System services for integrating transputer systems.

• Real time clocks

• On the TB series, an integral floating point unit.

Figure 1.1 shows the generalized architecture of the INMOS family of32-bit trans­
puters. 1~bit transputers are also available.

1.1.1 Transputer links

Links allow processes running on connected processors to exchange data and
synchronize their activity. Support for link communications is implemented in hard­
ware on each transputer chip. Communications down links operate concurrently
with the processing unit and data can be transferred simultaneously on all links.
Most transputers have four links except the IMS M212 and T400 transputers which
have just two links.

72TOS 34501 October 1992

4 1.1 Transputers

Transputer links allow tools such as debugging programs to examine memory
directly, from a remote processor. Links also provide a means of loading programs
onto a network from the host down a single transputer link. Alternatively a network
can be loaded via its links from a ROM on a single transputer.

BootFromROM

Analyse
Reset
Error

System
services

32-bit
Processor

Application specific interface

Figure 1.1 Transputer architecture

1.1.2 Process scheduling

Each transputer has a highly efficient run-time scheduler for time-sharing user
application processes running on the same transputer. Within a single transputer
communication between processes is supported using single words in memory.
Processes waiting for input or output, or waiting for a time-slice, consume no CPU
resources, and process context switching time is often less than one microsecond.

72T08 34501 October 1992

1 Introduction to transputers 5

1.1.3 Real time programming

Features of the transputer provide direct hardware support for real time program­
ming. The key features are:

• Direct and efficient implementation of parallel processes in hardware.

• Prioritization of parallel processes.

• Simple implementation of interrupt handling software.

• Easy programming of software timers, allowing dose control of timing and
non-busy polling.

• Placement of variables at specific addresses in memory, for accessing
memory mapped devices.

Direct support for these features can be found in the current range of INMOS lan­
guage toolsets, which use a common code format to facilitate code compatibility.

1.1.4 Multitransputer systems

Multitransputer systems can be built very simply using the four high speed links;
only two wires are required to connect two links together. The circuitry to drive the
each link is on the transputer chip.

Transputers may be connected by their INMOS links in many configurations,
depending on the needs of the application. Some possible arrangements of net­
works of transputers are illustrated in Figure 1.2.

Linked processors Pipeline

Tree Grid

72 TDS 345 01

Figure 1.2 Transputer networks

October 1992

6 1.2 Programming models

1.2 Programming models

Programs developed for running on a single transputer can be designed using
traditional sequential programming methods or they can be designed to exploit
parallelism.

Parallelism can be designed into a program at two levels by dividing the program
up into a number of independent communicating processes capable of operating
in parallel. Such processes can either be run on asingle transputer or on a network
of transputers. Programs designed for running on a network of transputers must
use the parallel processing model. See section 1.2.1.

Sequential programs can be run on a single transputer connected to a host. Such
programs can exploit the transputer architecture and software support provided
by INMOS toolsets and iq systems products, see section 1.3.

1.2.1 Parallel processing model

The abstract programming model which the transputer supports is the Communi­
cating Sequential Process (CSP) model, based on the idea of independent parallel
processes communicating through channels. Channels are one-way, point-to­
point communication paths that allow processes to exchange data and synchro­
nize their activity. (Furtherdetails can be found in 'Communicating SequentialPro­
cesses' - C.A.R. Hoare, published by Prentice Hall International).

Each process is built from any number of parallel processes, so that an entire soft­
ware system can be described in the form of a hierarchy of intercommunicating
parallel processes. This model is consistent with many modem software design
methods.

Communication b~tween processes is synchronized. When data is passed
between two processes the output process does not proceed until the input pro­
cess is ready and vice versa. Library functions are provided for channel-based
input and output.

Communication between software processes running on the same transputer
takes place through internal channels implemented as words in memory; commu­
nication between processes running on connected processors is driven by the link
interfaces and takes place through the transputer links.

1.3 Transputer products

There is a complete family of transputer devices, including: 32-bit and 16-bit pro­
cessors; a link switch; and an adaptor from a parallel port to a link.

72 TDS 345 01 October 1992

1 Introduction to transputers 7

A wide range of INMOS iq systems transputer programming boards is available
for a range of hosts. These boards can be used for:

• Developing and debugging transputer software

• Improving system performance (as accelerator boards)

• Loading software onto embedded systems

• Building specific transputer networks

• Specific applications such as SCSI interfacing.

1.3.1 Toolset products

The INMOS compiler toolsets are complete cross-development systems for trans­
puters. They allow transputers to be programmed sequentially and in parallel
using high-level languages, making optimum use of the transputer's built-in paral­
lel features. The combination of access to parallelism from a high level language
and a set of tools for configuring and loading programs on transputer-based sys­
tems forms a powerful development system for all parallel and embedded software
applications.

72TDS 345 01 October 1992

8

72 TDS 34501

1.3 Transputer products

October 1992

2 Overview of the
toolset

This chapter introduces the INMOS ANSI Ctoolset. It briefly describes the features
of the compiler, provides an introduction to the runtime library and gives a sum­
mary of the tools included in this toolset.

2.1 Introduction

The ANSI C toolset is a software cross-development system for transputers,
hosted on 386PC/MS-OOS, Sun 41SunOS and VAXNMS systems. It contains a
full ANSI C compiler with concurrency support, a multHanguage linker, a confi­
gurer for mapping programs onto transputer networks, a code collector tool for
generating directly loadable files and a combined program loader/host server.

A number of tools are provided to assist with program development: an interactive
and post-mortem debugger, librarian and program build tools, an object code lister,
and EPROM programming tools. Together, the compiler and its supporting tools
form an integrated environment for the development of programs on transputers
and transputer-based hardware.

2.1.1 Toolset features

The ANSI C toolset features:

• An ANSI C compiler with concurrency support

• Standard object file format generated by the compiler and linker tools.

• An extensive Runtime Library providing support for concurrent program-
ming based on the communicating process model

• Modifiable runtime system.

• Dynamic code loading facility.

• Support for assembly programming.

• A generic configuration system which facilitates the mapping of software
to hardware. The system supports:

o Mixed language programming.

72TOS 345 01 october 1992

10 2.2 ANSI C compiler - icc

o Software routing and multiplexing.

o Placement of code and data at specific addresses.

• A comprehensive range of INMOS development tools as listed in table 2.1.

2.1.2 Transputer targets

The ANSI C tcolset supports all transputer types in the current range of INMOS
transputers. These are listed in appendix B in the ANS/ C Toolset Reference
Manual.

2.2 ANSI C compiler - ice

The compiler ice is an ANSI standard C compiler with concurrency extensions to
support parallel programming for transputers and transputer networks. The ANSI
C compiler implementation was developed from the Perihelion Software C Com­
piler and the Codemist Norcroft C Compiler written by Ors. Arthur Norman and
Alan Mycroft.

The ANSI C compiler conforms fully with the X3. 159-1989 ANSI standard for the
C programming language. This standard has now been ratified as ISO/IEC
9899:1990 Programming languages - C. The standard specifies the content and
defines the interpretation of programs written in C, establishing standards of reli­
ability and maintainability and enhancing portability of programs between sys­
tems.

The ANSI standard for C formalizes the original implementation of C as described
in 'The C Programming Language' by Kemighan and Ritchie, and extends it to
include a runtime library, some language extensions already in common usage
and many other improvements designed to standardize the language.

The original implementation of C will be referred to in the rest of this manual as
'K&R C' and ANSI standard Cas 'ANSI C'.

The compiler produces compiled code for specific processor types or transputer
classes (generic groups of transputers). The compiled object file is in a standard
intermediate code format which must be linked, configured and made executable
before the program can be run. The executable file consists of code which can be
directly loaded onto an initialized network.

Advice about how to create libraries compiled for different processor types is pro­
vided in the ANS/ C Toolset Reference Manual which accompanies this toolset.
Appendix Bin the ANS/ CToolset Reference Manualdescribes howto compile and
link code targeted at a single processor type or at a range of transputers.

Command line options for the compiler are described in the ANSI C Too/set Refer­
ence Manual. Options are provided to control such facilities as the degree of com-

72 TOS 34501 October 1992

2 Overview of the toolset 11

piler checking, the suppression of error displays, the suppression of code genera­
tion and the output of assembly data to a file.

2.2.1 Concurrent programming

The abstract model used in ANSI C reflects the Communicating Sequential Pro­
cess (CSP) model of parallel programming. The model maps easily onto the trans­
puter to provide efficient parallel code.

Concurrency is supported within a C main program using a series of predefined
data types and a comprehensive set of process handling, channel communication
and semaphore manipulation functions.

Software may be broken down into independent linked processes which exchange
data and synchronize their activity via channels. Such processes and channels
may be mapped onto one orseveral transputers and are declared within a configu­
ration description.

2.2.2 Standard object file format

The current range of INMOS compilers generate object code in an intermediate
form known as TCOFF (Transputer Common Object File Format), that can be pro­
cessed by other tools in the toolset. This standard has been adopted for the devel­
opment of transputer toolsets and enables modules written in different languages
to be freely mixed in the same system.

2.2.3 Preprocessor directives

The ANSI C compiler incorporates an ANSI C preprocessor that allows source file
inclusion, conditional and unconditional definitions, and implementation depen­
dent pragmas. The following directives are supported:

#include
#elif
'if
'pragma

#else
'undef
'line
'ifndef

define
#endif
'ifdef
'error

Details of compiler pragmas are given in the ANS/ C Too/set Reference Manua/
which accompanies this toolset.

2.2.4 Include files

Include files can contain declarations, definitions or code. Header files for the run­
time library are imported using the 'include directive.

The search paths for files imported with the 'include directive are similar to
those for the toolset as a whole (see appendix A of the ANS/ C Too/set Reference

72TDS 345 01 October 1992

12 2.2 ANSI C compiler - ice

Manual) but differ in some important respects. Two forms of syntax can be used
to specify the filename, one of which allows the search path to be extended by
directories specified on the command line. For more details see the ANS/ C Too/set
Reference Manua/.

2.2.5 Pragmas

The Ipragma directive allows some compiler operations to be activated ordeacti­
vated in specific sections, of code. Pragmas are defined for setting or overriding
compiler options, particularty those concerned with code checking, for defining the
size of linker code patches, and for allowing code written in other languages to be
called from C.

The pragmas provided with icc are listed below:

!MS on
!MS-linkage
!MS:translate

INS off INS nolink
INS-modpatchsize INS:codepatchsize
IMS:descriptor

Details of pragma syntax and options can be found in the ANS/ C Too/set Refer­
ence Manua/.

2.2.6 Error modes

Transputer programs possess an attribute known as the errormode which sets the
runtime behavior of the transputer. icc generates object code in an error mode
called UNIVERSAL,which is compatible with error modes generated by other
INMOS TCOFF-based compilers.

The other two common modes, which may be encountered in mixed language pro­
grams are: HALT which halts the transputer when the program generates a run­
time error; and STOP, which stops the errant process but allows the rest of the pro­
gram to continue. These two error modes are mutually exclusive.

Object modules for a whole program, including those aeated from different lan­
guages, must be in compatible error modes. Error modes for a modular program
can be rationalized at link time using the appropriate command line option.

Further information about error modes can be found in the Too/set reference
manual.

2.2.7 Transputer Program Execution

There are two basic types of programs that can be executed on transputers. One
sort can use the full range of runtime library routines and is executed on a trans­
puter network operating as a slave to the host system. The other type uses a
reduced subset of the library and can execute on a transputer network without any
support from a host system.

72TDS 345 01 October 1992

2 Overview of the tool.et 13

If a program requires access to a file system, or other host facilities, then it must
operate in the full mode. In order that the host can provide services to the trans­
puter network, there is a program called the iserver which executes on the host
during the execution of the program on the transputer network.

Further information about the iserver can be found in the ANSI C Toolset Refer­
ence Manual.

2.3 Runtime library

The runtime library is a library of compiled C functions that perform common prcr
gramming operations. The library contains a complete set of ANSI standard func­
tions plus functions to support the use of the transputer's real time clocks, commu­
nications, parallel programming and some non-ANSI extensions.

The concurrency functions are divided into three functional groups: process man­
agement, channel communication and semaphore handling. The non-ANSI
extensions include a set of input/output (ilo) primitives, a set ofshort mathematical
functions, functions for retrieving information about the host system, and debug­
ging functions.

Libraries are supplied in two forms. The full library contains the full set of functions;
the reduced library contains all functions except those requiring a~ss to the
server. The appropriate library is selected by the user by specifying the correct
startup file at link time.

Libraries are supplied as object code modules compiled for all transputer types
and classes; the correct code is selected by the linker according to the transputer
target. Versions are also supplied in different error modes.

Each library module contains either a single function or a few related functions, so
that only the minimum code is loaded. The libraries are indexed for quicker refer­
ence by the compiler and linker.

2.3.1 Reduced library

The reduced library is available for linking with programs that do not use host sys­
tem or file i/o or i/o-dependent functions. Examples of these are:

• Code installed in embedded systems

• Code that interacts only with other network processes and has no direct
communication with the host.

The reduced library omits all the object code associated with communication with
the server, for example, the code that ensures proper close-down of the host
server is not loaded. This reduces the size of the library object code that must be
linked in with the program. This feature is particularly useful in systems where
memory space is limited, such as embedded systems.

72TDS 345 01 october 1992

14 2.4 Runtime system

The reduced library contains all the functions (including concurrency functions)
that are in the full library, but omits those which require the host file server. Channel
routines are still included so that modules can still communicate with each other,
if not with the host. However, common ANSI functions such as printf and
getenv and ilo dependent functions such as host_info are not included,

A few functions from the standard Vo library, not true Vo functions, are available in
the reduced library. These are the functions sprintf, sscanf, and vsprintf,
which are used to format and de-format strings. These three functions are
declared in the header file s tdiored . h.

2.3.2 Header files

Library functions, like all C functions must be declared before use. Declarations
of library functions with associated constants, macros, and definitions are held in
a number of library header files to ensure that function declarations are of the cor­
rect form and that supporting macros and constants are included. Header files are
given the suffix . h.

The library header files contain groups of routines collected together according to
common usage. For example, routines that control standard i/o operations are
grouped in the file stdio. h. Most header files also contain definitions ofconstants
and macros that are associated with the functions' use.

Many of the header files and function groupings are defined in the ANSI standard.
The library extensions which support concurrency and other non-ANSI operations
are also grouped for programming convenience; for example, functions for send­
ing data down channels are grouped separately from those which manipulate
semaphores.

Some library functions are implemented as macros, and a few are implemented
as both functions and macros. The decision about which to use depends on the
programming style and personal choice.

2.4 Runtime system

In order to provide flexibility for the user to tailor the runtime system to a particular
application, the source code of the startup routines is provided. The source code
is written in C and is fully commented so that it can be changed by the user to
include only the functions that are actually required. Guidance on how to modify
the startup system is given in the ANSI C Language and Libraries Reference
Manual.

Note: this modifiable runtime system only supports programs which have been
configured.

72 TDS 345 01 October 1992

2 Overview of the toolset

2.5 Dynamic code loading

15

A set of library functions is provided that enable an application to load and execute
a process that has been separately compiled and linked. The loaded process is
created as a . rsc file, using the collector. Functions are provided that read the
. rsc file and extract crucial information about the process, such as the size of
static required and the location of the entry point. The application can then allocate
the space required, load the file and call it.

Similar functions are provided to access a . rsc file that has been placed into ROM
or RAM, or is provided down a channel.

By adapting the startup code (supplied in source form), the code loaded can be
tailored to accept any parameters required.

2.6 Low level programming

The compiler supports low level programming in a number of ways by providing:

• a machine code insertion facility;

• a set of functions which can be compiled inline as transputer instructions;

• a direct user interface to the assembler;

• predefined names which can be used to obtain a limited amount of low level
information about compiled code.

2.6.1 Assembly code support

The compiler provides support for inline transputer assembly code in C programs.
Sequences of transputer instructions can be embedded in Ccode using the asm
construct. -

_asm can be useful for implementing low level operations such as controlling
peripheral devices, and for optimizing the performance of critical sections of code.
It is not intended for the wholesale inclusion of large blocks of assembly code and
should not be used for this purpose.

Details of how to use the assembly code insertion facility, with examples illustrating
commonly performed operations, can be found in chapter 5 'Language extensions'
of the 'ANSI C Language and Libraries Reference Manuaf.

In addition a set of functions is provided which enable certain transputer instruc­
tions to be compiled inline. The functions include: bit manipulation, block moves,
CRC calculation and channel ilo support. A list of the functions can be found in sec­
tion 1.6.1 of the ANSI C Toolset Reference Manual; they are described in full in the
'ANSI C Language and Libraries Reference Manuaf.

72 TDS 345 01 October 1992

