
ANSI C Toolset
Reference Manual

INMOS Limited

~ SGS-1HOMSON,.~I® ~D©OO@rn[brn©lJrn@~D©~
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TDS 346 01 October 1992

© INMOS Limited 1992. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

• ®, ~[[i)mOs® , IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

~I~ is a registered trademark of the SGS-THOMSON Microelectronics Group.

The Ccompiler implementation was developed from the Perihelion Software "C" Compiler
and the Codemist Norcroft nc" Compiler.

INMOS Document Number: 72 TDS 346 01

Contents overview
Contents

Preface

Tools

1 ice Describes the ANSI C compiler.

2 icconf Describes the configurer which generates configuration
binary files from configuration descriptions.

3 icollecl Describes the code collector which generates executable
code files.

4 idebug Describes the network debugger. Lists the symbolic functions
and Monitor page commands at machine level.

5 idump Describes the memory dumper tool which dumps root trans-
puter memory for post mortem debugging.

6 iemit Describes the memory configurer tool which helps to confi-
gure the transputer memory interface.

7 ieprom Describes the EPROM formatter tool which creates execut-
able files for loading into ROM.

8 ilibr Describes the toolset librarian which creates libraries from
compiled code files.

9 ilink Describes the toolset linker which links compiled code and
libraries into a single unit.

10 ilist Describes the binary lister which displays binary files in a
readable form.

11 imakef Describes the Makefile generator which creates Makefiles for
toolset compilations.

12 imap Describes the map tool which generates a memory map for
an executable file.

13 iserver Describes the host file server which loads programs onto
transputer hardware and provides host communication.

14 isim Describes the transputer simulator which allows programs to
be run without hardware.

15 iskip Describes the skip loader tool which loads programs onto
external subnetworks.

72 TDS 346 01 October 1992

ii

Appendices

Contents overview

A Toolset standards and Describes the conventions and standards of the
conventions toolset.

B Transputer types and Describes the meaning and use of transputer
classes types and classes and lists the command line

options to select them for the compiler and
linker.

C Using the assembler Describes the use of the C assembler and the
assembler directives.

D ISERVER Protocol Describes the server protocol and the
ISERVER functions.

E ITERM Describes the format of the ITERM files.

F Bootstrap loaders Describes the INMOS bootstrap loading
scheme and advises on how it might be custom-
ized.

Index

72 TDS 346 01 October 1992

I Contents

Contents overview .

Contents iii

Preface xix

Host versions xix

About this manual xix

About the toolset documentation set xx

Other documents . xxi

occam and FORTRAN toolsets . xxi

Documentation conventions. xxi

Tools... 1

1 ice - ANSI C compiler .
1.1 Introduction .

1.2 Running the compiler .

Examples of use: .
1.2.1 Optimizing compiler options .
1.2.2 Transputer targets .
1.2.3 Error modes .
1.2.4 Default command line options .
1.2.5 File extension defaults .
1.2.6 Search paths .
1.2.7 Using the assembler .
1.2.8 Compatibility with other C implementations .

Arithmetic right shifts .
Signedness of char .

1.2.9 Software quality check .
1.3 Memory map .

1.4 Compiler directives .

1.4.1 #define .
1.4.2 #elif constant_expression .
1.4.3 #else .
1.4.4 #endif .
1.4.5 #error .
1.4.6 #if .
1.4.7 #ifdef .
1.4.8 #ifndef .

3
3
3
6
6
6
7
7
7
7
7
8
8
8
8
9

12

12
12
12
12
13
13
13
13

iv Contents

1.4.9 #include. 14
Relative directory names . 14
Backslash character in filenames 14

1.4.10 #line. 14
1.4.11 #pragma. 14

Pragma IMS_nolink 17
Pragma IMS_descriptor . 17

1.4.12 #undef. 19
1.5 Compiler predefinitions . 19

1.5.1 Macro names. 19
1.5.2 Other predefines . 20

1.6 Transputer inline code 21
1.6.1 Inlined functions 21

1.7 Compiler diagnostics . 22
1.7.1 Message format 22
1.7.2 Severities 22
1.7.3 Standard terms 22

abstract declarator . 23
1.7.4 ANSI trigraphs . 24
1.7.5 Warning diagnostics . 24
1.7.6 Recoverable errors. 31
1.7.7 Serious errors 38

2 icconf - configurer 49
2.1 Introduction ~ 49
2.2 Configuration language implementation 50
2.3 Running the configurer . 50

2.3.1 Default command line 52
2.3.2 Virtual routing processes . 52
2.3.3 Support for the Advanced Toolset 52
2.3.4 Boot from ROM options . 52
2.3.5 Mixed language programming 53
2.3.6 Configurer library file 53
2.3.7 Standard include files. 53

Defaults file setconf.inc 53
Other include files . 53

2.3.8 Configuration description examples 53
2.3.9 Search paths . 54
2.3.10 Default memory map 54
2.3.11 LoadStart. 55
2.3.12 System processes 55

2.4 Configurer messages 55
2.4.1 Information . 56
2.4.2 Warnings. 57

Contents v

2.4.3 Errors. 60
2.4.4 Serious messages 75
2.4.5 Fatal errors 79

3 icollect - code collector D • • • • •• 81
3.1 Introduction. 81

Unconfigured program (using 'T' option): 82
Configured processor program: 82

3.2 Running the code collector 82
3.2.1 Examples of use . 85

Example A (unconfigured program mode): 85
3.2.2 Default command line 85
3.2.3 Input files 85
3.2.4 Output files. 85

Single processor non--eonfigured case (T option) . . 86
Configured programs. 86
Memory map files 86
Debug data file 86

3.3 Memory allocation for unconfigured programs 86
3.3.1 C and FORTRAN programs 87
3.3.2 occam programs. 88
3.3.3 Memory initialization errors . 89
3.3.4 Small values of IBOARDSIZE 89

3.4· Parity-checked memory 90
3.5 Non-bootable files created with the K option 91

3.5.1 File format '........... 91
3.6 Boot-from-ROM output files . 92
3.7 Alternative bootstrap loaders for unconfigured programs. . . . 93
3.8 Alternative bootstrap schemes 93
3.9 The memory map file 93

3.9.1 Unconfigured (single processor), boot from link 94
Program targetled at transputer type 94
Program targetled at transputer class 96

3.9.2 Configured program boot from link 97
3.9.3 Boot from ROM programs . 98

Unconfigured (single processor), boot from ROM,
run in RAM 98
Unconfigured (single processor), boot from ROM,
run in ROM 98
Configured program, boot from ROM, run in RAM. 98
Configured program, boot from ROM, run in ROM. 98

3.10 Disabling interactive debugging - 'V' option 99
3.11 Error messages 100

3.11.1 Warnings. .. 100

vi

3.11.2
3.11.3

Contents

Serious errors 100
Fatal errors 106

4 idebuq - network debugger 107

4.1 Introduction .. 107
4.2 Debugging the root transputer .. 107

4.2.1 Board wiring. .. 108
4.2.2 Post-mortem debugging R-mode programs. 108
4.2.3 Post-mortem debugging T-mode programs 108
4.2.4 Post-mortem debugging from a network dump file. 109
4.2.5 Debugging a dummy network 109
4.2.6 Methods for interactive breakpoint debugging. 109

4.3 Running the debugger 109
4.3.1 Toolset file types read by the debugger 111
4.3.2 Environment variables .. 112
4.3.3 Program termination. .. 113

4.4 Post-mortem mode invocation. .. 113

4.4.1 Debugging T-mode programs - option 'T' 114
4.4.2 Debugging R-mode programs - option 'R' 114
4.4.3 Debugging a network dump file - option 'N' 114
4.4.4 Debug~ing a previous breakpoint session -

option M' 115
4.4.5 Reinvoking the debugger on single transputer

programs 115
4.4.6 Debugging boot from ROM programs. 115

4.5 Interactive mode- invocation .. 115
4.6 Function key mappings. .. 116
4.7 Debugging programs on INMOS boards.... 116

4.7.1 Subsystem wiring. .. 116
4.7.2 Debugging options to use with specific board types 117
4.7.3 Detecting the error flag in interactive mode 117

4.8 Debugging programs on non-INMOS boards. 118
4.9 Monitor page commands 119

4.9.1 Command format............................. 119
4.9.2 Specifying transputer addresses 119
4.9.3 Scrolling the display. .. 119
4.9.4 Editing functions 120
4.9.5 Commands mapped by ITERM 120
4.9.6 Summary of commands. .. 120
4.9.7 Symbolic-type commands. .. 122
4.9.8 Scroll keys 122
4.9.9 Monitor page command descriptions 123
4.9.10 Symbolic-type commands .. 141

4.10 Symbolic functions. .. 142

6

Examples of use:

UNIX based toolsets:

ice hello
ilink hello. teo -f estarlup.lnk
ieeonf hello.efs
ieolleet hello.efb
iserver -sb hello.btl-se

1.2 Running the compiler

MS-D-OSNMS based toolsets:

ice hello
ilink hello.teo If estarlup.lnk
ieeonf hello.efs
ieolleet hello.efb
iserver /sb hello.btl/se

1.2.1 Optimizing compiler options

There are a number of options which may be specified on the command line but
which the standard ANSI C compiler will ignore. These options are supported
exclusively by the optimizing ANSI C compiler and they enable and support a range
of code optimizations performed at compile time. These options are documented
in detail in the 'ANSI C Optimizing Compiler User Guide' which accompanies this
toolset. The options are listed in table 1.2 for completeness.

Option Description

FSC Provides information on how the compiler has treated rou-
tines with respect to side effects.

00 Disable optimization.

01 Enable local optimization.

02 Enable both global and local optimization.

QS Optimize for space.

QT Optimize for time.

WS Suppress warning messages about possible side effects.

Table 1.2 Optimizing compiler options

1.2.2 Transputer targets

The compiler generates code for a specific transputer type. This means that a pro­
cessor type should be specified for all transputer targets except the default which
is built into the compiler. The default processor type which is used if no target is
specified is the T414.

Transputers are also grouped into classes for the purpose of generating common
code suitable for running on a number of different transputer targets. Transputer
classes group transputers according to word size and instruction set compatibility.
They can be used to generate code for combinations of transputers.

The use of transputer types and classes in developing programs is explained in
appendix B. The command line options for selecting a transputer target are given
in this appendix.

72 TDS 34601 October 1992

1 ice - ANSI C compiler

1.2.3 Error modes

7

All code in mixed language transputer programs must be compiled and linked in
the same or a compatible error mode. ice always generates code in UNIVERSAL
error mode, which is compatible with HALT and STOP error modes created by
other INMOS compiler toolsets.

The error mode for a mixed language program can be consolidated into a single
mode for the entire program by specifying the appropriate linkeroption. If no mode
is specified the linker generates the program in HALT mode.

1.2.4 Default command line options

Commonly used command line parameters can be defined in the host environment
variable ICCARG. Parameters specified in this way are automatically added to the
end of the command line when the compiler is invoked.

Command line parameters must be specified in ICCARG using the syntax required
by the ice command line.

1.2.5 File extension defaults

The . c extension is assumed on input source files and does not need to be speci­
fied. If no output file is specified the compiled object file is named after the input
file and given a . tco extension. A . tco extension is also added ifa file is specified
without an extension.

When the input file is an assemblersource file, a file extension (otherthan .c) must
be specified. Even though the 'AS' option is specified to invoke the assembler, the
compilerwill assume a Csource file is to be compiled ifa file extension is not speci­
fied on the command line.

1.2.6 Search paths

The normal search paths are used for locating files specified on the command line.
The search rules are described in appendix A.

Search paths for files imported with the 'include compiler directive differ slightly
from those for files specified on the command line and can be extended by the use
of special syntax and a command line option. Details of this facility can be found
in section 1.4.9. .

1.2.7 Using the assembler

Assembler source files may be assembled by using the ice command line option
'AS'. This causes the compilation phase of the compiler to be suppressed and the
input file to be passed directly to the assembler. If the input assembly source file

72 TDS 346 01 October 1992

8 1.2 Running the compiler

contains preprocessor directives, the compiler preprocessor must first be used to
process the source file; the output from the preprocessor may then be used as
input to the assembler.

The use of the assembler is described in appendix C, together with examples of
how it is invoked. The file name conventions for assembler files and the command
options which may be used with the assembler are listed. The appendix also
describes the syntax of assembler directives and lists the error messages which
may be generated by the assembler.

1.2.8 Compatibility with other C implementations

Two compiler options are provided which may assist users porting existing C code
to transputer systems.

Arithmetic right shifts

By default, the compiler implements right-shifts of signed integers as logical shifts,
the command line option FS switches the implementation. This allows correct
working of programs which assume that right shifts of signed values propagate the
sign.

Signedness of char

By default the compiler implements plain chars as unsigned chars. The com­
mand line option Fe switches the implementation to signed char. Details of type
representation are given in chapter 6 of the ANSI C Language and Libraries
Manual.

1.2.9 Software quality check

The FH option allows policing ofsoftware quality requirements. The option requires
all externally visible definitions to be preceded by adeclaration (from a header file),
thus guaranteeing consistency.

When the FH option is used the compiler reports:

• all forward s tatic declarations which are unused when the function is
defined.

• all repeated macro definitions (this is when macros are redefined to the
same value; redefining a macro to adifferent value is always diagnosed as
an error).

• (optimizing compiler only) - reports all unused function arguments.

Note: the standard compiler reports all unused function arguments by default.

72 TDS 346 01 October 1992

1 ice - ANSI C compiler

1.3 Memory map

9

The compiler may be instructed, via the P mapfile option, to produce a map ofwork­
space for each function defined in the file, and a map of the static area of the whole
file. The file contains information which may assist the user during program debug­
ging. The map is written to the file mapfile.

The file consists ofa series ofworkspace maps; one for each routine, giving details
of workspace requirements. These are followed by a series of section maps; one
for each section of code, listing details of its static variables.

The file is generated in text format and is structured as follows:

• The name of the source file for which the map of code and data is being pro­
duced. The full pathname will be given if it exists.

• Version data for the compiler.

• The target transputer of the compilation, T805, T400 etc.

• The error mode of the compilation, this is always UNIVERSAL for C pro­
grams.

• Name of the routine forwhich the map ofworkspace is being produced. Items
in the workspace map are given in ascending order of workspace offset.

List of local variables giving their offset (in bytes) into the routine's work­
space. This list may include temporary variables introduced by the com­
piler.

List of formal parameters giving their name and offset (in bytes) into the
routine's workspace. Parameters added by the compiler may also be
listed, see table 1.3.

The workspace requirement of the routine in bytes. Note: this includes
the four word call overhead introduced by the transputer call instruction.

• Name of the section for which the section map is being produced. Items in
the section map are given in ascending order of section offset.

• A list of static variables or routines, giving the following details:

- Name of static variable or routine. This may be in the form
'<name>%xp', see table 1.4

- Type of variable or routine

- Offset in bytes into static data or code area

- Other properties of variable or routine, see table 1.4.

Static variables are either placed in the static or code areas. Details of how the
compiler allocates space for static data are given in section 6.15 of the ANSI C Lan­
guage and Libraries Manual.

72 TDS 346 01 October 1992

10

Formal parameter

Compiler temporary

Result pointer

Return address

Global static base pointer (gsb)

Static link

1.3 Memory map

Table 1.3 Parameters inserted by compiler

Property Description

global Globally visible static item.

static Static item.

pointer to external Static item introduced by the compiler to
object enable code to access an external object.

The name of the external object is used as
the prefix to the compiler generated name.
e.g. 'fred%xp' is a static item introduced by
the compiler which points to an external
object named 'fred'.

translated from data Static items whose name has been modified
name by the IMS_translate pragma are listed

under the name that is put into the object file.
They are annotated with the message:
'translated from sourcename', where
sourcename is the name used in the source
file.

Table 1.4 Static variable properties

Note: The message "No local variables" may be displayed if no user vari­
ables are found, however, compiler temporaries may have been assigned to work­
space. In addition some compiler temporaries may not be listed in the map file.

The compiler does not generate an explicit "No static data" message. If a file
does not contain static data, such information will not be present in the map file.

Information generated in the compiler map file may be extracted by the imap tool.
This tool can be used to produce a memory map for the program after it has been
compiled, linked and collected. See chapter 12.

72 TDS 34601 October 1992

1 ice - ANSI C compiler

Map of code and data for source file hello.c

11

Created by INMOS C compiler Version 2.02.05 (built at 18:11:13 Dec 10 1991)

Target processor T4
Error mode UNIVERSAL

Map of workspace

Routine : main

Variable name

b
a

Formal parameter name

<return address>
<gsb>

Offset (bytes)

Offset (bytes)

8
12

Workspace size

Map of workspace

Routine : bill

24 bytes

Variable name

<compiler temporary>
<compiler temporary>
z

Formal parameter name

<return address>
<gsb>
<result pointer>
c
f

Offset (bytes)

0
4
12

Offset (bytes)

20
24
28
32
36

Workspace size 36 bytes

Section map

Section name static%base

Name Type Offset (bytes)

fred static data

Section map

Section name text%base

Name Type Offset (bytes)

main code 4 global
bill code 36 static

Figure 1.1 Example compiler map

72 TDS 346 01 October 1992

12 1.4 Compiler directives

1.4 Compiler directives

1.4.1 #define

Syntax: 'define name [(arg1, . . .,argn)] [value]

#define allows simple macro substitution to be performed. In its simplest mode
of operation name and value represent a series of ASCII characters causing the
preprocessor to substitute all occurrences of name by value (which may be nUll).
Arguments may also appear after the name, and when this happens the prepro­
cessor will still replace all occurrences of name and its following arguments by
value, but in this case the value string will have been defined in terms of the
expected arguments, and will therefore exhibit a dependence on the original text.

'define YES 1 /* replace all occurrences
of YES by 1 */

#define max(a,b) (a > b ? a : b)
/* max(2,4) will be replaced by

(2 > 4 ? 2 : 4) */

1.4.2 #elif constant_expression

Syntax: #elif

This directive can be used in place of the sequence

#else
#if constant_expression.

1.4.3 #else

Syntax: #else

This directive can be used with the #if, #ifdef, and #ifndef directives to mark
the beginning of text which will be ignored whenever the expression following the
#if evaluates to a non-zero value.

1.4.4 #endif

Syntax: #endif

This directive must be used with the #if, #ifdef, and #ifndef directives to mark
the end of the text which may be affected by the #if ... #else ... #endif
construct.

72 TDS 346 01 October 1992

1 ice - ANSI C compiler

1.4.5 terror

13

Syntax: terror text

This directive causes an explicit error with the text following the directive displayed
in the error message. This is useful for determining which pieces of code are being
bypassed by a construct of the form #if ... #else ... #endif.

1.4.6 #if

Syntax: #if constant_expression

This directive, along with the #else and #endif directives, is used in asimilarway
to the if ... else construct of many high level programming languages. When it is
encountered, the preprocessor evaluates the following constant expression and
if it is zero it ignores all text up to the following #else or #endif directive. If, how­
ever, the expression evaluates to non-zero, then the text between the #else and
#endif directives (if any) is ignored. This mechanism would typically be used to
allow conditional compilation.

As an extension to this directive, the preprocessor also allows 'if defined' type
expressions. In this case 'defined' is used as a unary operator which returns true
if its operand represents an identifier that is currently defined within the preproces­
sors symbol table, and false if it is not. By combining this operator with the logical
operators it is possible to build complex expressions of the form:

#if defined foo & ! defined dummy

/* if foo is defined & dummy is not */

1.4.7 #ifdef

Syntax: #ifdef identifier

This directive works in a similar way to the #if directive, but instead of basing its
decision on the result of an expression it uses the existence or non-existence of
the identifier within the preprocessor's symbol table as the criterion. If the identifier
has not previously appeared in a 'define directive or if it is not one of the prede­
fined identifiers then all text up to the following #else or #endif directive is
ignored; otherwise all text between the #else and 'endif directives is ignored.

1.4.8 'ifndef

Syntax: #ifndef identifier

This directive is similar to #ifdef, except that the text is passed if identifier is not
currently defined.

72 TDS 346 01 October 1992

14 1.4 Compiler directives

1.4.9 #include

Syntax: #include filename

The #include directive instructs the preprocessor to read the contents of the
named file as if they were at the current position in the current file. The filename
must be enclosed within angle brackets «filename» or double quotes ("file­
name"). The two forms generate different search strategies.

If angle brackets are used only those directories specified by ISEARCH are
searched. No other directories (including the current directory) are searched. This
method is mainly used to include the standard library header files.

If double quotes are used to enclose the filename the standard toolset search is
used, but incorporating a method for extending the search list. First the current
directory is searched. If the file is not found the search continues with the list of
directories specified after the compiler •J' option. If the file is still not found, or if no
list is given, directories specified by ISEARCH are searched.

A #include preprocessing directive may appear in a source file that has been
read because of a #include directive in another file. There is no fixed limit to
#include nesting.

Relative directory names

Relative directory names are treated as relative to the directory containing the cur­
rent source file.

Backslash character in filenames

In included filenames the backslash is not treated as introducing an escape
sequence unless it is followed by another backslash ('\ \').

1.4.10 #line

Syntax: #line linenumber [filename]

This directive instructs the compiler that subsequent lines begin with line number
linenumber in the file filename. If no file name is specified, the original name is
retained. linenumber must be within the range 1 to 32767 inclusive.

1.4.11 #pragma

Syntax: #pragma pragma (params)

This directive activates and deactivates various compiler options in sections of C
code. It may be used to set (or override) options specified on the command line.
Most pragmas also take parameters or numerical arguments.

Table 1.5 lists the main compiler pragmas and table 1.6 lists the parameters to
IMS_on and IMS_off.

72 TOS 346 01 October 1992

1 icc - ANSI C compiler

Option

IMS on (params)

IMS off (params)

IMS nolink (functionname)

IMS_linkage (["name"])

IMS_modpatchsize (n)

IMS_codepatchsize (n)

IMS translate (name,
" newname ")

IMS descriptor (function­
name,mnguage_~pe,work­
space,vectorspace, "descrip­
tor-string")

15

Description

Enables specific compiler actions. Takes a list
of parameters which specify the actions to be
enabled.

Disables specific compiler actions. Takes a list
of parameters which specify the actions to be
disabled.

Compiles the function functionname without a
global static base parameter. The function
must already have been declared but must not
have been defined or called. This pragma is
used for importing code written using lan-
guages such as occam which do not use
static data, and for exportin-g C functions to the
same languages.

Enables the user to change the order in which
code modules are linked together; this may aid
the use of faster on-ehip RAM. The compiler
creates the object code into a section named
"text%base". The IMS linkage pragma
causes the compiler to change the name of the
section to that supplied in the string. If no string
is present, "pri%text%base" is used; this
section being inserted at the front by the linker
in the default case. A linkage command (see
9.4.6) controls of the ordering of the sections.
The linkage directive should appear at the start
of the code, before any function definitions.

Specifies the number of bytes reserved by the
compiler for a linker module number patch. n
has default values of 3 for 32-bit targets and 2
for 16-bit targets.

Specifies the number of bytes n reserved by
the compiler for a linker code patch. n has a
default value of 6 for 32-bit targets and 4 for
16-bit targets.

The compiler replaces all references to name
(e.g. an external routine) by "newname". "new­
name" is a C string which can contain alphanu­
meric characters; the underscore (' '), percent
('%'), or full stop (' . ') characters. -

Creates a TCOFF descriptor for C functions.
Further details are given below.

72 TDS 34601

Table 1.5 icc compiler pragmas

October 1992

16

Parameter Short Description
form

1.4 Compiler directives

channel.J>ointers cp Treats a variable of type Channel in the scope
of the definition typedef const volatile
void * as a channel type for the debugger.
Default is off. This pragma is enabled in the
header file channel. h. If channel. h is
included in the program this pragma will remain
active until specifically disabled.

inline_ops il Compiles certain operations on long operands
(signed or unsigned) on 16-bit targets as in-line
operations rather than as calls to the compiler
library. Operations affected are: ~(bitwise com­
plement), +, -, & (bitwise AND), I (bitwise OR),
A (bitwise exclusive OR), «, », <, <=, =, ! =,
>=, and >. D~fault is on.

printf_checking pc Checks that arguments passed to a function
conform to the format used by printf. Default
is off. This pragma is normally used to check for­
mal arguments which are to be passed directly
as format strings to printf.

For each function within the scope of the pragma
the last formal parameter is read as a format
string and subsequent variable arguments are
checked for correct type, according to the for­
matting rules of printf. This pragma is
enabled in s tdio . h for the declaration of
printf and related functions, and subse­
quently disabled.

scanf_checking sf Checks that arguments passed to a function
conform to the format accepted by scanf.
Default is off. Otherwise this pragma has the
same effect printf checking. This pragma
is enabled in stdiO: h for the declaration of
scanf and related functions, and subsequently
disabled.

stack_checking sc Checks for stack overflow at the start of each
function. Default is off.

warn_bad_target wt Warns of inferior code generated for a transputer
class rather than for a specific transputer target.
Default is on.

warn_deprecated wd Warns of parameterless function declarations.
Default is on.

warn_ implici t wi Warns of undeclared functions. Default is on.

Table 1.6 Parameters to IMS on and IMS off

72 TDS 346 01 October 1992

1 ice - ANSI C compiler

Pragma INS_nolink

17

The pragma INS nolink enables C routines to call or be called from occam and
other languages:-

Syntax: 'pragma INS_nolink (fname)

The following code uses the pragma to allow an occam routine OCCAMREALOP to
be called in a C program:

extern float OCCAMREALOP(const float x,
const int op,
const float y);

'pragma IMS nolink (OCCAMREALOP)

float x, y, z;
z = OCCAMREALOP(x, op_add, y);

The following code allows the C function max to be called from occam:

extern int max(const int x, const int y);
'pragma INS nolink (max)
extern int max(const int x, const int y)
{ return x > y ? x : y; }

Note: functions which have had the IMS nolink pragma applied may not be
called through a pointer. The library routine call vithout gsb is supplied to
allow a call through a pointer to a nolinked function. -

Pragma IMS_descriptor

The pragma IMS descriptor creates a TCOFF descriptorfor C functions. It also
causes the definition of two TCOFF symbols giving the workspace and vector­
space requirements of the function. This pragma is of particular use when modify­
ing the C runtime startup code, further details of which are given in chapter 3 of the
ANSI C Language and Libraries Reference Manual. It is also applicable when mak­
ing use of the dynamic loading facility provided in the C library (see chapter 2 of
the ANSI C Language and Libraries Reference Manual and chapter 12 of the ANSI
C Toolset User Guide).

Syntax: 'pragma IMS_descriptor (functionname, language_type, \
workspace, vectorspace, udescriptor-stringn

)

The parameters to the pragma are given in table 1.7.

72 TDS 34601 October 1992

18 1.4 Compiler directives

functionname Name of the C function to which the descriptor applies.
language_type The language in which the descriptor string is written. The

language is given as a keyword:
unknown
occam
ansi c
fortran
isoyascal
modula2
ada
assembler
occam harness
Alternatively the descriptor-string may be an empty string,
however, a language type must still be given.

workspace The amount of workspace required by the function.
(Expressed as a number of words).

vectorspace The amount of vector space required by the function.
(Expressed as a number ofwords). This is usually '0' for C
functions.

"descriptor-stringn This is the descriptor string itself. If the string is not empty
then it must contain an occam style function declaration
equivalent to the C function prototype.

Table 1.7 Parameters to IMS_descriptor

The rules governing the use of this pragma are as follows:

• The function must be externally visible.

• The function must have been declared before the pragma appears.

• The function must not have been defined before the pragma appears.

• The pragma must appear in the same file in which the function is defined.

• Only one descriptor pragma can exist per function.

• No argument to the descriptor pragma can be the result of earlier prepro­
cessor substitutions.

An example of the use of this pragma follows:

void centry(int bill);

#praqma IMS_descriptor(centry, occam, 32, 0, \
"PROC centry(VAL INT bill)\n SEQ\n:")

void centry(int bill)
{

/* function body */;

72 TOS 346 01 October 1992

1 ice - ANSI C compiler 19

This defines an occam descriptor for the function centry. A requirement for 32
words of workspace and no vectorspace is also recorded in the descriptor. The
syntax for the descriptor string is the standard syntax for occam descriptors.

Note: type compatibility between the parameters in occam and C is retained by
following the rules given in the ANS/ C Too/sel User Guide, Mixed language pro­
gramming chapter.

Example TCOFF output from the above can be obtained using the 't' option on the
lister tool ilist, as follows:

00000080 SYMBOL EXP "centry" id: 4

00000092 SYMBOL EXP ONI "centry'wa" id: 5
0000009F SYMBOL EXP ONI "centry'vs" id: 6
OOOOOOAC DEFINE SYMBOL id: 5 32
000000B1 DEFINE-SYMBOL id: 6 0
000000B6 DESCRIPTOR id: 4 lanq: OCCAN
vs: 32 vs: 0
PROC centry(VAL INT bill)

SEQ

1.4.12 #undef

Syntax: #undef identifier

This directive causes the current definition of identifier (as defined using the
#define directive) to be deleted.

1.5 Compiler predefinitions

Certain macros which identify global information, and some function names, are
automatically recognized by the compiler. Generally, these items can be refer­
enced directly in C programs and do not need to be declared.

Note: Predefined variables _lsb and ""params (see section 1.5.2) should be
declared to avoid spurious warning messages being generated by the compiler.

1.5.1 Macro names

All predefined macro names defined by the ANSI standard are present; they are:

DATE
FILE- -
LINE- -
STDC
TIME- -

72 TDS 346 01

The current date.
Name of the current source file.
Line number of the current line of source.
A non-zero value if the implementation conforms to ANSI C.
The current time.

October 1992

20 1.5 Compiler predefinitions

CC NORCROFT
Ice
PTYPE
ERRORMODE

SIGNED CHAR

Details of the ANSI macros and the values they can take can be found in chapter
4 of the ANSI C Language and Libraries Reference Manual.

The following INMOS macro names are also defined:

Derived from the Norcroft C compiler.
INMOS C compiler.
Processor type.
Execution error mode.
Signedness of the plain char type, defined if the
ice 'FC' command line option is used.

Details of the macros and the values they can take can be found in chapter 5 of
the ANSI C Language and Libraries Reference Manual.

1.5.2 Other predefines

Two further names _lsb and yarams are predefined by the compiler. They can
be used in expressions in the same way as C variables. Both represent addresses
which may be manipulated in low level programming and must be declared as fol­
lows:

extern volatile const void *_lsb;

extern volatile const void *-params;

_lsb is a pointer to the base of the compiled file's data area.

yarams is a pointer to the base of the the current function's parameter block. It
can be used to obtain low level information about a function's runtime code.

The following example illustrates how -params can be used to determine a func­
tion's return address, global static pointer, and workspace pointer.

void p ()
{
extern volatile const void *-params;
typedef struct paramblock

{ void *return address;
void *gsb; -
int regparam1, regparam2;

}
paramblock;

paramblock *pp = (paramblock *)-params;

/* Return address is: pp->return address
global static base sb is: pp->gsb
caller wptr is: (void *) (pp + 1) */

72 TDS 346 01 October 1992

1 icc - ANSI C compiler 21

1.6 Transputer inline code

INMOS C provides different levels of support for inlining transputer instructions:

• A special keyword asm can be used to enclose sequences of transputer
instructions into CJ)rograms. The asm statement and how to use it is
described in chapter 5 of the ANSicLanguage and Libraries Reference
Manual.

• A number of functions are supplied which can be compiled inline as trans­
puter instructions, provided the appropriate header files are included in the
source code. The inputs and outputs of the instructions are treated as
parameters to and results from the functions.

1.6.1 Inlined functions

Each of the supplied functions is designed to allow access to a transputer instruc­
tion which is not directly accessible from the C source level. Note: however, that
the automatic inlining will only occur if the appropriate header file has been incorpo­
rated in the source code by using the #include directive. The header files contain
prototypes for the routines. Table 1.8 lists the functions, the instructions they sup­
port and the header file which is required.

Function Instruction supported Header file
BitCnt bitcnt misc.h
BitCntSum bitcnt misc.h
BitRevNBits bitrevnbits misc.h
BitRevWord bitrevword misc.h
BlockMove move misc.h
CrcByte crcbyte misc.h
CrcWord crcword misc.h
DirectChanln in channel.h
DirectChanlnChar in channel.h
DirectChanlnlnt in channel.h
DirectChanOut out channel.h
DirectChanOutChar outbyte channel.h
DirectChanOutlnt outword channel.h
memcpy move string.h
Move2D move2dall misc.h
Move2DNonZero move2dnonzero misc.h
Move2DZero move2dzero misc.h
ProcGetPriority Idpri process.h
ProcReschedule - process.h
ProcTime Idtimer process.h
strcpy - string.h

Table 1.8 Inlined functions

72 TDS 34601 October 1992

22 1.7 Compiler diagnostics

Note: the 'OirectChan.. .' functions- must not be used with virtual channels: sec­
tion 6.3.1 of the ANS/ C Too/set User Guide. discusses this.

Descriptions ofall the functions are provided in the ANS/ CLanguage andLibraries
Reference Manual.

1.7 Compiler diagnostics

This section lists diagnostic error messages generated by ice. The section is
introduced by descriptions of some standard terms which may be encountered in
the message texts.

1.7.1 Message format

Diagnostic messages are displayed in the standard toolset format for error mes­
sages. Details of the standard can be found in appendix A.

1.7.2 Severities

Diagnostics are tagged with a severity level which indicates their effect on the com­
pilation. Severity levels are the same as those used in the toolset standard but have
slightly different meanings, which are described below.

Information messages provide the user with information about the functioning or
performance of the tool. They do not indicate an errorand no useraction is required
in response.

Warning severity diagnostics are generated whenever legal. but unorthodox pro­
gramming styles are detected. Compilation is unaffected and object code is gener­
ated normally.

Error severity diagnostics are generated whenever the compiler detects a pro­
gramming error from which it can recover. Compilation continues. but may abort
if more errors are detected subsequently. No object code is generated.

Serious severity diagnostics are generated when programming errors are
detected from which the compiler cannot recover. Compilation continues but code
has been lost. No object code is generated.

Fatal errors indicate internal inconsistencies in the software and cause immediate
termination of the operation with no output. Fatal errors are unlikely to occur but
if they do the fact should be reported to your local INMOS distributor or field
applications engineer.

Error. Serious. and Fatal diagnostic messages return error codes for handling by
system MAKE programs and batch files.

1.7.3 Standard terms

This section explains some of the standard terms and notation used in compiler
error messages.

72 TDS 34601 October 1992

1 ice - ANSI C compiler 23

abstract declarator

When using explicit casts or when passing an argument to sizeof () , a
data type must be specified. This can be done by declaring an object of the
correct type without specifying the name of the object. Declarations of this
type are called abstract declarations, because they apply to no known
object.

Examples of abstract declarations are:

(int) a = b; /* 'int' is the abstract
declarator */

sizeof(int [3]); /* 'int [3]' is the abstract
declarator */

char

Stands for a single ASCII character.

context

Stands for a type, for example, 'character constant', 'integer constant', and
'string constant'.

deprecated declaration

This means that a function declaration is incomplete. Declarations should
specify the type of the function and the type of each formal parameter. If
there are no parameters then the function type void should be specified.

expression

Stands for a C expression.

filename

A file name.

function prototype

A function declaration which usually precedes the function definition. It
declares the function's type and the types of its parameters.

identifier

A C identifier, for example, a variable or function name.

initializer

An initial value which is assigned to an object at the time of its declaration.

message string

The string which follows a compiler directive.

72TDS 34601 October 1992

24

op

1.7 Compiler diagnostics

An operator. Valid operators include: "++", "--", "->", "<=", and the unary
operators &, ., + and -.

store class

A C storage class. Valid classes are static or extern.

string

Any string of ASCII characters.

struct/union

A variable of type struct or union.

type

A type identifier.

void context

This can occur at any point in a program where a value is not expected, for
example, calling a function without using the returned number.

instruction

A transputer instruction, or a pseudo-instruction as accepted by the asm
construct. -

1.7.4 ANSI trigraphs

The ANSI specification includes a number of three character sequences that can
be used to represent certain ASCII characters that may not be present on all key­
boards. These sequences, known as trigraphs, are used in compiler error mes­
sages to stand for these characters.

ANSI standard trigraph sequences consist of a sequence of 2 question marks fol­
lowed by a third character. A complete list of ANSI trigraphs is given in the chapter
4 of the accompanying ANSI C Language and Libraries Manual.

1.7.5 Warning diagnostics

#define macro identifier defined but not used

The named macro has been defined, but not referenced in the rest of the
program. This message is only generated if specifically enabled by the 'FM'
compiler option.

'&' unnecessary for function or array identifier

A pointer to a function or array is implied by use of the name alone; the (,'
operator is not required.

72 TDS 34601 October 1992

